平面直角坐标系单元复习

合集下载

平面直角坐标系复习

平面直角坐标系复习
3 、若 0<m<2 ,则点 P(m-2,m) 在第 ___ 象限 4 、 已 知 点 P(a+1,2-a) 在 y 轴 上 , 那 么 a=_______ 。 5、以(0,3)为圆心,5为半径的圆与坐 标轴的交点的坐标是__________
6 、点 M ( -2 , 1 )关于 y 轴的对称点的坐标是 ______ ;点 P ( -2 , 3 )关于 x 轴的对称点的坐 标是 ________ ;点 N ( -3 , -2 )关于原点的对 称点的坐标是________。 7、已知a<0,那么点P(-a2-2,2-a)关于x轴的对 称点在第_______象限。 8 、已知点 P(x,4-y) 与点 P(1-2y,2x) 关于 x 轴对 称,求yx的值.
7.如果同一直角坐标系下两个点的横坐标相同, 那么过这两点的直线( B ) (A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对 8.若点(a,b-1)在第二象限,则a的取值范围是 a<0 ,b的取值范围________ b>1 。 _____
9.实数 x,y满足 (x-1)2+ |y| = 0,则 点 P( x,y)在【 B 】. (A)原点 (B)x轴正半轴 (C)第一象限G(2,-3) 于x轴
7、平面直角坐标系内对称点的坐标的特点: 1、关于x轴对称的两点,横坐标相同,纵 坐标互为相反数。 2、关于y轴对称的两点,纵坐标相同,横 坐标互为相反数。
3、关于原点对称的两点,横纵坐标都 互为相反数。 8、平面直角坐标系内的点的坐标几何意义:
9 、点A(-2 ,3)关于 y轴的对称点是 _____ ,A 到x轴的距离是_____,到y轴的距离是_____。 10、直角坐标系中,第四象限内的点M到横轴的 距离为 28 ,到纵轴的距离为 6 ,则 M 点的坐标为 _________ 11、已知,A点的坐标为(3,-4),B点的坐 标为(-2,0),则△ABO的面积为____

平面直角坐标系复习题

平面直角坐标系复习题

平⾯直⾓坐标系复习题⼀、知识点概述1.特殊位置的点的特征(1)各象限的点的横纵坐标的符号(2)坐标轴上的点(3)⾓平分线上的点2.具有特殊位置的点的坐标特征(1)关于x轴、y轴、坐标原点对称的两点(2)与x轴或y轴平⾏的直线上的点3.距离(1)点A(x,y)到两坐标轴的距离(2)同⼀坐标轴上两点间的距离4.求点的坐标5.点平移的坐标变化规律⼆、例题与练习1.线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(-4,–1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(– 9,– 4)2.⼀个长⽅形在平⾯直⾓坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(3,3) D.(2,3)3.若点M在第⼀、三象限的⾓平分线上,且点M到x轴的距离为2,则点M的坐标是() A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(2,-2)或(-2,2)4.过点A(-2,5)作x轴的垂线L,则直线L上的点的坐标特点是_________.5.已知点P(0,a)在y轴的负半轴上,则点Q(-2a-1,-a+1)在第象限.6.已知点M(2m+1,3m-5)到x轴的距离是它到y轴距离的2倍,则m=7.如果点M(3a-9,1-a)是第三象限的整数点,则M的坐标为;8.点A(-1,2)与B(3,5)的距离是;9.对任意实数x,点2(2)P x x x-,⼀定不在..()A.第⼀象限B.第⼆象限C.第三象限D.第四象限10.点),4(yP在第⼀象限内, 且OP与x轴正半轴的夹⾓为60, 则OP等于( )(A)334(B) 34(C) 8 (D) 211. 如图,在平⾯直⾓坐标系中,直线l是第⼀、三象限的⾓平分线实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5) 关于直线l的对称点B'、C'的位置,并写出他们的坐标:B'、C';归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平⾯内任⼀点P(a,b)关于第⼀、三象限的⾓平分线l的对称点P'的坐标为(不必证明);13.如图为风筝的图案.(1)若原点⽤字母O 表⽰,写出图中点A ,B ,C 的坐标.(2)试求(1)中风筝所覆盖的平⾯的⾯积.14.ABC ?中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ?与ABC ? 全等,那么点D 的坐标是 .15. 三⾓形ABO 是以OB 为底的等腰三⾓形,点O与坐标原点的距离为3,点A 与x 轴的距离为2,写出A,B 的坐标(第22题图)x三、课后作业⼀. 选择题1. 下列各点中,在第⼆象限的点是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)2. 将点A(-4,2)向上平移3个单位长度得到的点B的坐标是()A. (-1,2)B. (-1,5)C. (-4,-1)D. (-4,5)3. 如果点M(a-1,a+1)在x轴上,则a的值为()A. a=1B. a=-1C. a>0D. a的值不能确定4. 点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5)D. (-3,-5)5. 若点P(a,b)在第四象限,则点M(b-a,a-b)在()A. 第⼀象限B. 第⼆象限C. 第三象限6. 已知正⽅形ABCD的三个顶点坐标为A(2,1),B(5,1),D(2,4),现将该正⽅形向下平移3个单位长度,再向左平移4个单位长度,得到正⽅形A'B'C'D',则C’点的坐标为()A. (5,4)B. (5,1)C. (1,1)D. (-1,-1)7. 点M(a,a-1)不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限8. 到x轴的距离等于2的点组成的图形是()A. 过点(0,2)且与x轴平⾏的直线B. 过点(2,0)且与y轴平⾏的直线C. 过点(0,-2且与x轴平⾏的直线D. 分别过(0,2)和(0,-2)且与x轴平⾏的两条直线⼆. 填空题9. 直线a平⾏于x轴,且过点(-2,3)和(5,y),则y=10. 若点M(a-2,2a+3)是x轴上的点,则a的值是11. 已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是12. 已知点Q(-8,6),它到x轴的距离是,它到y轴的距离是13. 若P(x,y)是第四象限内的点,且2,3==,则点P的坐标是x y14.在平⾯直⾓坐标系中,点A的坐标为(11),,点B的坐标为(111),,点C到直线A B的距离为4,且A B C△是直⾓三⾓形,则满⾜条件的点C有个.15. 如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探究可得,第100个点的坐标为.x16. 在平⾯直⾓坐标系内,已知点(1-2a ,a -2)在第三象限的⾓平分线上,求a 的值及点的坐标?17.如图,在平⾯直⾓坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的⾯积A B D C S 四边形(2)在y 轴上是否存在⼀点P ,连接PA ,PB ,使PAB S ?=A B D C S 四边形若存在这样⼀点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的⼀个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①D C P B O PC P O∠+∠∠的值不变,②D C P C P OB O P∠+∠∠的值不变,其中有且只有⼀个是正确的,请你找出这个结论并求其值.。

第七章 平面直角坐标系复习题---填空题(含解析)

第七章 平面直角坐标系复习题---填空题(含解析)

人教版七下第七章平面直角坐标系复习题---填空题一.填空题(共45小题)1.(2018•渝中区)若点A(a+3,a﹣2)在y轴上,则a=.2.(2018•北京)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.3.(2018•柳州)如图,在平面直角坐标系中,点A的坐标是.4.(2018•临安区)P(3,﹣4)到x轴的距离是.5.(2018•新疆)点(﹣1,2)所在的象限是第象限.6.(2018秋•奉化区期末)若点A(2,n)在x轴上,则点B(n+2,n﹣5)位于第象限.7.(2018秋•嘉兴期末)平面直角坐标系中,点A(1,﹣2)到x轴的距离是.8.(2018秋•海淀区期末)如图,在平面直角坐标系xOy中,点A(3,0),判断在M,N,P,Q 四点中,满足到点O和点A的距离都小于2的点是.9.(2018•鄂尔多斯)在平面直角坐标系中,对于点P(a,b),我们把Q(﹣b+1,a+1)叫做点P 的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,A n,若A1的坐标为(3,1),则A2018的坐标为.10.(2018•辽阳)如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点A1作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;……,按此规律进行下去,点A2020的坐标是.11.(2018•抚顺)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边,在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为.12.(2018•齐齐哈尔)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依此规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.13.(2018•资阳)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.14.(2018秋•历城区期末)如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.15.(2018秋•埇桥区期末)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)正方形的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…,则顶点A2020的坐标为.16.(2018秋•安庆期末)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→,…,根据这个规律,第2019个点的坐标为.17.(2017秋•李沧区期末)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为.18.(2018秋•通川区校级期中)在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A 的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积为.19.(2018春•越秀区期中)如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为.20.(2018秋•青羊区校级期中)如图所示把多块大小不同的30°直角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2;第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3;…按此规律继续下去,则点B2018的坐标为.21.(2018春•陆川县期中)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第11个正方形(实线)四条边上的整点个数共有个.22.(2017秋•冷水滩区期末)如图,折线OA1A2A3A4A5…称为螺旋折线,以起点O为坐标原点建立直角坐标系,得到折点A1,A2,A3,A4的坐标分别A1(),A2(1,),A3(0,3),A4(﹣2,2),照此规律,则点A2018到原点的距离是,它的坐标为.23.(2018春•建安区期中)如图所示,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2018次碰到矩形的边时,点P的坐标为.24.(2018秋•镇江期末)幂a b在神秘的β星球上对应着一对有序数(a,b),例如23在β星球上是用(2,3)表示的,又如((2,3),5)表示(23)5,它等于85=32768,令a=4,b=3,c =2,d=1,那么((a,b),(c,d))是.25.(2018秋•汝阳县期末)在电影票上,如果将“8排4号”记作(4,8),那么(1,5)表示.26.(2018秋•长兴县期末)如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣2),白棋③的坐标是(﹣1,﹣4),则黑棋②的坐标是.27.(2018秋•淮安区期末)小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.28.(2018秋•岑溪市期中)在国家体育馆“鸟巢”一侧的座位上,6排3号记为(6,3),则5排8号记为.29.(2018秋•怀柔区期末)在平面直角坐标系xOy内有三点:(0,﹣2),(1,﹣1),(2.17,0.37).则过这三个点(填“能”或“不能”)画一个圆,理由是.30.(2018秋•埇桥区期末)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在x 轴上,且AC+BC=6,写出满足条件的所有点C的坐标.31.(2018秋•兴化市期末)已知点P(2m﹣5,m﹣1),则当m为时,点P在第一、三象限的角平分线上.32.(2018秋•南部县校级期中)平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使P A﹣PB最大,则P点坐标为33.(2018秋•金牛区校级期中)已知AB∥x轴,点A的坐标为(2,5),并且AB=6,则点B的坐标为.34.(2018秋•盐田区校级期中)已知两点A(﹣3,m),B(n,4),AB∥x轴,AB=7,则m+n =.35.(2018秋•泰兴市期末)若点A(x,5)与B(2,5)的距离为5,则x=36.(2018春•濮阳期末)已知线段AB∥x轴,AB=3,A点的坐标为(1,2),则点B的坐标为.37.(2018•南湖区一模)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C的坐标为.38.(2018春•阿城区期末)已知平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到轴的距离相等,则a的值为.39.(2018春•鞍山期末)在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是.40.(2018秋•下城区期末)点A(﹣2,﹣3)向上平移3个单位得到的点的坐标为.41.(2018秋•金湖县期末)在平面直角坐标系中,将点A(3,﹣5)向左平移1个单位得到点A′,那么A′的坐标为.42.(2018秋•海州区期末)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是.43.(2018秋•罗湖区期中)如图,在直角坐标系中,边长为2的等边三角形OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动4个单位(即A2A3=A5A6=2……),依次得△A3A4A5,△A6A7A8……则顶点A100的坐标是.44.(2018秋•雨花区校级月考)一只蚂蚁先向上爬4个单位长度,再向左爬3个单位长度后,到达(0,0),则它最开始所在位置的坐标是.45.(2018秋•张家港市期中)点P在第二象限,P到x轴的距离为2,到y轴的距离为3,如把P 向下平移4个单位得到Q,那么点Q的坐标是人教版七下第七章平面直角坐标系复习题---填空题参考答案与试题解析一.填空题(共45小题)1.(2018•渝中区)若点A(a+3,a﹣2)在y轴上,则a=﹣3.【分析】直接利用y轴上点的坐标特点a+3=0,进而得出a的值即可.【解答】解:∵点A(a+3,a﹣2)在y轴上,∴a+3=0,解得:a=﹣3,故答案为:﹣3.2.(2018•北京)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:33.(2018•柳州)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).4.(2018•临安区)P(3,﹣4)到x轴的距离是4.【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.5.(2018•新疆)点(﹣1,2)所在的象限是第二象限.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.6.(2018秋•奉化区期末)若点A(2,n)在x轴上,则点B(n+2,n﹣5)位于第四象限.【分析】直接利用x轴上点的坐标特点得出n的值,进而得出答案.【解答】解:∵点A(2,n)在x轴上,∴n=0,则点B(n+2,n﹣5)的坐标为:(2,﹣5)位于第四象限.故答案为:四.7.(2018秋•嘉兴期末)平面直角坐标系中,点A(1,﹣2)到x轴的距离是2.【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点A(1,﹣2)到x轴的距离是|﹣2|=2,故答案为:2.8.(2018秋•海淀区期末)如图,在平面直角坐标系xOy中,点A(3,0),判断在M,N,P,Q 四点中,满足到点O和点A的距离都小于2的点是点M与点N.【分析】分别以点O和点A为圆心,2为半径画圆,即可得到满足到点O和点A的距离都小于2的点.【解答】解:如图,分别以点O和点A为圆心,2为半径画圆,可得满足到点O和点A的距离都小于2的点是点M与点N,故答案为:点M与点N.9.(2018•鄂尔多斯)在平面直角坐标系中,对于点P(a,b),我们把Q(﹣b+1,a+1)叫做点P 的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,A n,若A1的坐标为(3,1),则A2018的坐标为(0,4).【分析】根据题意可以分别写出A1的坐标为(3,1)时对应的点A2,A3,A4,A5,从而可以发现其中的规律,进而得到A2018的坐标,本题得以解决.【解答】解:∵点A1的坐标为(3,1),∴A2的坐标为(0,4),A3的坐标为(﹣3,1),A4的坐标为(0,﹣2),A5的坐标为(3,1),∴每连续的四个点一个循环,∵2018÷4=504…2,∴A2018的坐标为(0,4),故答案为:(0,4).10.(2018•辽阳)如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点A1作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;……,按此规律进行下去,点A2020的坐标是(,).【分析】根据△ABC是等边三角形,得到AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,解直角三角形得到A(,),C(1,0),根据等腰三角形的性质得到AA1=A1C,根据中点坐标公式得到A1(,),推出△A1B1C是等边三角形,得到A2是A1C的中点,求得A2(,),推出A n(,),即可得到结论.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,∴A(,),C(1,0),∵BA1⊥AC,∴AA1=A1C,∴A1(,),∵A1B1∥OA,∴∠A1B1C=∠ABC=60°,∴△A1B1C是等边三角形,∴A2是A1C的中点,∴A2(,),同理A3(,),…∴A n(,),A2020的坐标是(,).故答案为:(,).11.(2018•抚顺)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边,在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为(21010﹣2,21009).【分析】由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,点O2018的纵坐标为21009,可得21009=x+1,同侧x=21010﹣2,可得点O2018的坐标为(21010﹣2,21009).【解答】解:由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,∵点O2018的纵坐标为21009,∴21009=x+1,∴x=21010﹣2,∴点O2018的坐标为(21010﹣2,21009).故答案为(21010﹣2,21009).12.(2018•齐齐哈尔)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依此规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为32019.【分析】根据题意,分别找到AB、A1B1、A2B2……及BA1、B1A2、B2A3……线段长度递增规律即可【解答】解:由已知可知点A、A1、A2、A3……A2018各点在正比例函数y=的图象上点B、B1、B2、B3……B2018各点在正比例函数y=的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为:①由已知,Rt△A1B1A2,…,到Rt△B2017A2018B2018都有一个锐角为30°∴当A(B)点横坐标为时,由①AB=2,则BA1=2,则点A1横坐标为,B1点纵坐标为9=32当A1(B1)点横坐标为3时,由①A1B1=6,则B1A2=6,则点A2横坐标为,B2点纵坐标为27=33当A2(B2)点横坐标为9时,由①A2B2=18,则B2A3=18,则点A3横坐标为,B3点纵坐标为81=34依稀类推点B2018的纵坐标为32019故答案为:3201913.(2018•资阳)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是(0,21009).【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【解答】解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018==21009故答案为:(0,21009)14.(2018秋•历城区期末)如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为(﹣505,505).【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1的坐标为(﹣n,n)(n为正整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,∴点A4n﹣1的坐标为(﹣n,n)(n为正整数).又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).15.(2018秋•埇桥区期末)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)正方形的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…,则顶点A2020的坐标为(505,﹣505).【分析】观察图形,由第四象限点的坐标的变化可得出“点A4n的坐标为(n,﹣n)(n为正整数)”,再结合2020=4×505,即可求出点A2020的坐标.【解答】解:观察图形,可知:点A4的坐标为(1,﹣1),点A8的坐标为(2,﹣2),点A12的坐标为(3,﹣3),…,∴点A4n的坐标为(n,﹣n)(n为正整数).又∵2020=4×505,∴点A2020的坐标为(505,﹣505).故答案为:(505,﹣505).16.(2018秋•安庆期末)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→,…,根据这个规律,第2019个点的坐标为(45,6).【分析】根据点的坐标的变化可得出“第(2n﹣1)2个点的坐标为(2n﹣1,0)(n为正整数)”,依此规律可得出第2025个点的坐标为(45,0),再结合第2019个点在第2025个点的上方6个单位长度处,即可求出第2019个点的坐标,此题得解.【解答】解:观察图形,可知:第1个点的坐标为(1,0),第4个点的坐标为(1,1),第9个点的坐标为(3,0),第16个点的坐标为(1,3),…,∴第(2n﹣1)2个点的坐标为(2n﹣1,0)(n为正整数).∵2025=452,∴第2025个点的坐标为(45,0).又∵2025﹣6=2019,∴第2019个点在第2025个点的上方6个单位长度处,∴第2019个点的坐标为(45,6).故答案为:(45,6).17.(2017秋•李沧区期末)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为(11,10).【分析】根据题意和图象中的点的坐标,可以发现这些点的变化规律,从而可以求得第56个点的坐标.【解答】解:由题意可得,横坐标是1的点有1个,横坐标是2的点有2个,横坐标是3的点有3个,…,∵56=(1+2+3+…+10)+1,∴第56个点的坐标为(11,10),故答案为:(11,10)18.(2018秋•通川区校级期中)在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A 的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积为20×()4030.【分析】先求出正方形ABCD的边长和面积,再求出第一个正方形A1B1C1C的面积,得出规律,根据规律即可求出第2016个正方形的面积.【解答】解:∵点A的坐标为(2,0),点D的坐标为(0,4),∴OA=2,OD=4∵∠AOD=90°,∴AB=AD=,∠ODA+∠OAD=90°,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,S正方形ABCD=(2)2=20,∴∠ABA1=90°,∠OAD+∠BAA1=90°,∴∠ODA=∠BAA1,∴△ABA1∽△DOA,∴=,即=∴BA1=,∴CA1=,∴正方形A1B1C1C的面积=()2=20×()2…,第n个正方形的面积为20×()2n﹣2,∴第2016个正方形的面积20×()4030.故答案为:20×()4030.19.(2018春•越秀区期中)如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为(﹣505,﹣505).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2018的在第三象限,再根据第三项象限点的规律即可得出结论.【解答】解:由规律可得,2018÷4=504…2,∴点P2018第三象限,∵点P2(﹣1,﹣1),点P6(﹣2,﹣2),点P10(﹣3,﹣3),∴点P2018(﹣505,﹣505),故答案为:(﹣505,﹣505)20.(2018秋•青羊区校级期中)如图所示把多块大小不同的30°直角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2;第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3;…按此规律继续下去,则点B2018的坐标为(0,﹣2×()2019).【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,OB=OA•tan60°=2×=2,OB1=OB•tan60°=2×=2×()2=6,OB2=OB1•tan60°=2×()3,…∵2018÷4=504…2,∴点B2018的坐标为[0,﹣2×()2019].故答案为:(0,﹣2×()2019).21.(2018春•陆川县期中)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第11个正方形(实线)四条边上的整点个数共有44个.【分析】分别数出每个正方形边上整点格数,找出正点数变化规律问题可解【解答】解:由图象可知,第一个正方形边上整点数为4,第二个正方形边上整点数为8,第三个正方形边上整点数为12,则第n个正方形边上整点数为4n当n=11时,第11个正方形整点个数为44故答案为:4422.(2017秋•冷水滩区期末)如图,折线OA1A2A3A4A5…称为螺旋折线,以起点O为坐标原点建立直角坐标系,得到折点A1,A2,A3,A4的坐标分别A1(),A2(1,),A3(0,3),A4(﹣2,2),照此规律,则点A2018到原点的距离是2018,它的坐标为(1009,1009).【分析】根据题意,分别从点到原点距离和点相对于x轴正方向的旋转角度研究,则问题可解.【解答】解:由已知,折点A1,A2,A3,A4各点到原点的距离依此是1,2,3,4,…依此类推则点A2018到原点的距离是2018由已知,OA1,OA2,OA3,OA4…各点x轴正向的夹角依次为30°,60°,90°,120°…由2018×30°=168×360°+60°则线段OA2018与x轴正向夹角为60°则由OA2018=2018可得点A2018的坐标为(1009,1009)故答案为:2018,(1009,1009)23.(2018春•建安区期中)如图所示,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2018次碰到矩形的边时,点P的坐标为(7,4).【分析】根据点的碰撞可得出:P0(0,3),P1(3,0),P2(7,4),P3(8,3),P4(7,4),P5(3,0),P6(0,3),P7(3,0),…,根据点的坐标的变化可得出点P n的坐标6次一循环,再结合2018=336×6+2即可得出结论.【解答】解:根据题意得:P0(0,3),P1(3,0),P2(7,4),P3(8,3),P4(7,4),P5(3,0),P6(0,3),P7(3,0),…,∴点P n的坐标6次一循环.∵2018=336×6+2,∴当点P第2018次碰到矩形的边时,点P的坐标为(7,4).故答案为:(7,4).24.(2018秋•镇江期末)幂a b在神秘的β星球上对应着一对有序数(a,b),例如23在β星球上是用(2,3)表示的,又如((2,3),5)表示(23)5,它等于85=32768,令a=4,b=3,c =2,d=1,那么((a,b),(c,d))是4096.【分析】根据新定义得出((a,b),(c,d))=(a b,c d),代入计算可得.【解答】解:((a,b),(c,d))=(a b,c d)=(43,21)=(64,2)=642=4096,故答案为:4096.25.(2018秋•汝阳县期末)在电影票上,如果将“8排4号”记作(4,8),那么(1,5)表示5排1号.【分析】由于将“8排4号”记作(4,8),根据这个规定即可确定(1,5)表示的点.【解答】解:∵“8排4号”记作(4,8),∴(1,5)表示5排1号.故答案为:5排1号.26.(2018秋•长兴县期末)如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣2),白棋③的坐标是(﹣1,﹣4),则黑棋②的坐标是(1,﹣3).【分析】以白棋①向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出黑棋②的坐标即可.【解答】解:建立平面直角坐标系如图,黑棋②的坐标是(1,﹣3).故答案为:(1,﹣3).27.(2018秋•淮安区期末)小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B 座10层,可记为B10.【分析】明确对应关系,然后解答.【解答】解:小刚家位于某住宅楼A座16层,记为:A16,按这种方法,那么小红家住B座10层,可记为B10.故答案填:B10.28.(2018秋•岑溪市期中)在国家体育馆“鸟巢”一侧的座位上,6排3号记为(6,3),则5排8号记为(5,8).【分析】根据第一个数表示排数,第二个数表示号数解答.【解答】解:∵6排3号记为(6,3),∴5排8号记为(5,8),故答案为:(5,8).29.(2018秋•怀柔区期末)在平面直角坐标系xOy内有三点:(0,﹣2),(1,﹣1),(2.17,0.37).则过这三个点能(填“能”或“不能”)画一个圆,理由是因为这三点不在一条直线上.【分析】先设出过其中两点的函数的解析式,把(0,﹣2),(1,﹣1)代入求出其解析式,再把(2.17,0.37)代入解析式看是否与(0,﹣2),(1,﹣1)在同一条直线上.然后根据不在同一直线上的三点确定一个圆即可求解.【解答】解:设经过(0,﹣2),(1,﹣1)的直线解析式为y=kx+b,则,解得.所以经过(0,﹣2),(1,﹣1)的直线解析式为y=x﹣2;当x=2.17时,y=2.17﹣2=0.17≠0.37,所以点(2.17,0.37)不在经过(0,﹣2),(1,﹣1)的直线上,即三点:(0,﹣2),(1,﹣1),(2.17,0.37)不在同一直线上,所以过这三个点能画一个圆.故答案为能,因为这三点不在一条直线上.30.(2018秋•埇桥区期末)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在x 轴上,且AC+BC=6,写出满足条件的所有点C的坐标(3,0)或(﹣3,0).【分析】设点C到原点O的距离为a,然后根据AC+BC=6列出方程求出a的值,再分点C在x 轴的左边与右边两种情况讨论求解.【解答】解:设点C到原点O的距离为a,∵AC+BC=6,∴a﹣+a+=6,解得a=3,∴点C的坐标为(3,0)或(﹣3,0).故答案为:(3,0)或(﹣3,0).31.(2018秋•兴化市期末)已知点P(2m﹣5,m﹣1),则当m为4时,点P在第一、三象限的角平分线上.【分析】已知一、三象限上的点的横纵坐标相等,故按照题目要求,使横纵坐标相等,可列出等式,即可解出m.【解答】解:根据题意可知,点在一、三象限上的横纵坐标相等,故有2m﹣5=m﹣1;解得,m=4.故答案填:4.32.(2018秋•南部县校级期中)平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使P A﹣PB最大,则P点坐标为(1,0)【分析】根据|P A﹣PB|≤AB,即可得到当A,B,P三点共线时,P A﹣PB最大值等于AB长,依据待定系数法求得直线AB的解析式,即可得到P点坐标.【解答】解:∵A(4,3)、B(2,1),x轴上有一点P,∴|P A﹣PB|≤AB,∴当A,B,P三点共线时,P A﹣PB最大值等于AB长,此时,设直线AB的解析式为y=kx+b,把A(4,3)、B(2,1)代入,可得,解得,∴直线AB的解析式为y=x﹣1,令y=0,则x=1,∴P点坐标为(1,0),故答案为:(1,0).33.(2018秋•金牛区校级期中)已知AB∥x轴,点A的坐标为(2,5),并且AB=6,则点B的坐标为(8,5)或(﹣4,5).【分析】根据题意和与x轴平行的直线的特点,可知点B的纵坐标为5,横坐标与点A的横坐标相差6个单位长度,从而可以求得点B的坐标.【解答】解:∵AB∥x轴,点A的坐标为(2,5),并且AB=6,∴点B的坐标为(8,5)或(﹣4,5),故答案为:(8,5)或(﹣4,5).34.(2018秋•盐田区校级期中)已知两点A(﹣3,m),B(n,4),AB∥x轴,AB=7,则m+n =8或﹣6.【分析】根据平行x轴的直线上的点的纵坐标相等,可得m的值,由AB=7可得n的可能取值,再分别求解可得.【解答】解:∵A(﹣3,m),B(n,4),AB∥x轴,AB=7,∴m=4,n=4或n=﹣10,当m=4,n=4时,m+n=8;当m=4,n=﹣10时,m+n=﹣6;综上,m+n=8或﹣6,故答案为:8或﹣6.35.(2018秋•泰兴市期末)若点A(x,5)与B(2,5)的距离为5,则x=﹣3或7【分析】利用两点间的距离公式得到(x﹣2)2+(5﹣5)2=52,然后解关于x的方程即可.【解答】解:根据题意得(x﹣2)2+(5﹣5)2=52,解得x=7或x=﹣3.故答案为﹣3或7.36.(2018春•濮阳期末)已知线段AB∥x轴,AB=3,A点的坐标为(1,2),则点B的坐标为(﹣2,2)或(4,2).【分析】根据线段AB∥x轴,AB=3,A点的坐标为(1,2),可以设出点B的坐标,列出方程,从而可以得到点B的坐标.【解答】解:∵线段AB∥x轴,AB=3,A点的坐标为(1,2),设点B的坐标为(b,2),∴|1﹣b|=3,解得,b=﹣2或b=4,∴点B的坐标为:(﹣2,2)或(4,2),故答案为:(﹣2,2)或(4,2).37.(2018•南湖区一模)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).38.(2018春•阿城区期末)已知平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x 轴的距离相等,则a的值为1或﹣3.【分析】由A、B两点到x轴的距离相等,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:∵平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,∴|2a+2|=4,解得:a1=1,a2=﹣3.故答案为:1或﹣3.39.(2018春•鞍山期末)在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是﹣1或5.【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2﹣x|=3,从而可以求得x 的值.【解答】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为:﹣1或5.40.(2018秋•下城区期末)点A(﹣2,﹣3)向上平移3个单位得到的点的坐标为(﹣2,0).【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:点A(﹣2,﹣3)向上平移3个单位得到的点的坐标为(﹣2,0),故答案为(﹣2,0).41.(2018秋•金湖县期末)在平面直角坐标系中,将点A(3,﹣5)向左平移1个单位得到点A′,那么A′的坐标为(2,﹣5).【分析】根据向左平移,横坐标减,向下平移,纵坐标减进行计算即可得解.【解答】解:将点A(3,﹣5)向左平移1个单位得到点A′的坐标为(3﹣1,﹣5),即(2,﹣5),故答案为:(2,﹣5).42.(2018秋•海州区期末)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是(﹣1,1).【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A'的坐标为(1﹣2,﹣2+3),即(﹣1,1),故答案为:(﹣1,1).43.(2018秋•罗湖区期中)如图,在直角坐标系中,边长为2的等边三角形OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动4个单位(即A2A3=A5A6=2……),依次得△A3A4A5,△A6A7A8……则顶点A100的坐标是(133,).【分析】观察图形可知,3个点一个循环,每个循环向右移动4个单位,纵坐标与A1相同,依此可求顶点A100的坐标.【解答】解:(100﹣1)÷3=33,33×4+1=133,=.故顶点A100的坐标是(133,).故答案为:(133,).44.(2018秋•雨花区校级月考)一只蚂蚁先向上爬4个单位长度,再向左爬3个单位长度后,到达(0,0),则它最开始所在位置的坐标是(3,﹣4).【分析】根据平移变换的性质即可解决问题;【解答】解:设它最开始所在位置的坐标为(m,n),。

人教版七年级数学下册期末复习第五讲 平面直角坐标系单元复习(PPT课件ppt)

人教版七年级数学下册期末复习第五讲 平面直角坐标系单元复习(PPT课件ppt)

考点二 坐标与平移 例3 在平面直角坐标系中,将点A(x,y)向左平移5个单位长 度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的 坐标是(D ) A. (2,5) B. (-8,5) C. (-8,-1) D. (2,-1) 解析:在坐标系中,点(﹣3,2)先向右平移5个单位得( 2,2),再把(2,2)向下平移3个单位后的坐标为(2, ﹣1),则A点的坐标为(2,﹣1).故选:D.
例7 如图,A(﹣1,0),C(1,4),点B在x轴上,且
AB=4.(2)求△ABC的面积; (3)在y轴上是否存在点P,使以A.B、P三
点为顶点的三角形的面积为12?若存在,请直
接写出点P的坐标;若不存在,请说明理由.
解:(2)点C到x轴的距离为4.则S∆ABC=
4 4 =8 2

(3)设P到x轴距离为m,则S∆ABP=
例4 如图,把△ABC经过一定的变换得到△A′B′C′,如果 △ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的 坐标为 (a+3,b+2).
解析:由图可知A(-3,-2)移动到A′(0,0), 横坐标加3,纵坐标加2,所以P(a,b) 对应的P′(a+3,b+2).
考点三 坐标系中的几何图形面积 例5 已知,如图在平面直角坐标系中,S△ABC=24,OA= OB,BC=12. (1)求点B的坐标; (2)求△AOC的面积.
例6 已知如图,四边形ABCD的四个顶点的坐标分别为 A(0,0)、B(9,0)、C(7,5)、D(2,7).试 计算四边形ABCD的面积. 解:S四边形ABCD=S△ADE+S梯形CDEF+S△CFB
=7+ 1 ×(5+7)×5+5=42

《平面直角坐标系》复习课件(共32张PPT)

《平面直角坐标系》复习课件(共32张PPT)
x=-y
特殊位置点的特殊坐标:
坐标轴上点P
(x,y)
连线平行于坐标轴 的点
点P(x,y)在各象限的
坐标特点
象限角平分线 上的点
x轴 y轴 原点 平行于 平行于y 第一 第二 第三 第四 一三象 二四象
x轴

象限 象限 象限 象限 限

纵坐标相 横坐标相 x>0
(x,0) (0,y) (0,0) 同
.
6.点A(x,y),且x+y>0,
x 那0 么点A在第___象限 y
特殊点的坐标 y
(0,y)
在平面平直行角于坐x轴标的系直内线描上出(2,2),(的0,各2),点(2的,2)纵,(4坐,2)标,依相次连 接各点同,,从横中坐标你不发同现. 了什么?
1
-1 0 1 -1
在平面直角坐标系内描
出平(行-2于,3)y,轴的直线上的
x
1
2
.
C
3
4
5
1.点P的坐标是(2,-3),则点P在第 四象限.
2.若点P(x,y)的坐标满足xy﹥0,则点P
象限; 一或三
在第
若点P(x,y)的坐标满足xy﹤0,且在x轴上方,则点P
在第
象二限.
3.若点A的坐标是(-3,5),则它到x轴的距离是

到y轴的距离是



4.若点B在x轴上方,y轴右侧,并且到x轴、y轴距离分别是2、
1
-4 -3 -2 -1 0 -1 -2 -3
-4
A的横坐标为4
A的纵坐标为2
有序数对(4, 2)就叫做A的坐标
记作:(A ·4,2)
横坐轴 写在前面 1 2 3 4 5 x 横轴

人教版初中七年级数学下册第七单元《平面直角坐标系》复习题(含答案解析)

人教版初中七年级数学下册第七单元《平面直角坐标系》复习题(含答案解析)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0-B .()2,2-C .()2,0D .()5,1 2.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( ) A .-9B .9C .-3D .3 3.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 4.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交7.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2-8.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)9.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,510.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 11.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 12.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 13.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 14.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 15.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题16.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.17.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.18.写一个第三象限的点坐标,这个点坐标是_______________.19.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.20.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.21.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.22.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.23.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.24.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.25.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.26.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限三、解答题27.已知在平面直角坐标系中,ABC 三个顶点的坐标分别为:(3,1)A --,(2,4)B --,(1,3)C -.(1)作出ABC ;(2)若将ABC 向上平移3个单位后再向右平移2个单位得到111A B C △,请作出111A B C △.28.在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别为()()()()12340,0,1,12,03,1A A A A -,按照这个规律解决下列问题:()1写出点5678,,,,A A A A 的坐标;()2点2018A的位置在_____________(填“x轴上方”“x轴下方”或“x轴上”);()3试写出点n A的坐标(n是正整数).29.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()--“帅”的坐标为()2,40,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.30.如图,将△ABC向右平移4个单位长度,再向下平移2个单位长度,得到△A′B′C′.(1)请画出平移后的图形△A′B′C′.(2)写出△A′B'C'各顶点的坐标.(3)求出△A′B′C′的面积.。

2022届中考数学一轮复习知识点串讲专题05 平面直角坐标系【含答案】

2022届中考数学一轮复习知识点串讲专题05 平面直角坐标系【含答案】

2022届中考数学一轮复习知识点串讲专题05 平面直角坐标系【思维导图】【知识要点】知识点一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。

【注意】a、b的先后顺序对位置的影响。

平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。

两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。

平面直角坐标系原点:两坐标轴交点为其原点。

坐标平面:坐标系所在的平面叫坐标平面。

象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。

按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。

【注意】坐标轴上的点不属于任何象限。

点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。

知识点二 点的坐标的有关性质(考点) 性质一 各象限内点的坐标的符号特征性质二 坐标轴上的点的坐标特征 1.x 轴上的点,纵坐标等于0; 2.y 轴上的点,横坐标等于0; 3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;象限 横坐标x 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负XyPmnOyPmnOXYA Bm2.在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a +性质六 平面直角坐标系内平移变化性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;P (b a ,)abxyOXXY CDnXyP1Pnn -mO2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结:【考查题型】考查题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键.典例1.(2020·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴 Y 轴 原点 平行X 轴平行Y 轴第一象限 第二象限 第三象限 第四象限 第一、三象限 第二、四象限 (x,0) (0,y )(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0(m,m) (m,-m)XyP2P mm -nOXy P3Pnm -nOn -A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)【答案】C【详解】根据题意知小李所对应的坐标是(7,4).故选C.变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话:小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了”小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…”根据两人的对话记录,从邮局出发走到小军家应( ) A .先向北直走700米,再向西走100米 B .先向北直走100米,再向西走700米 C .先向北直走300米,再向西走400米 D .先向北直走400米,再向西走300米 【答案】A【分析】根据对话画出图形即可得出答案.【详解】解:如图所示:从邮局出发走到小军家应:向北直走700米,再向西直走100米.故选:A .考查题型二 求点的坐标典例2.(2020·天津中考真题)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:∵O ,D 两点的坐标分别是()0,0,()0,6,∴OD =6,∵四边形OBCD 是正方形,∴OB ⊥BC ,OB =BC =6 ∴C 点的坐标为:()6,6,故选:D .变式2-1.(2020·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( ) A .()4,5- B .(5,4)-C .(4,5)-D .(5,4)-【答案】D【分析】根据点到坐标轴的距离及点所在的象限解答即可. 【详解】设点M 的坐标为(x ,y ), ∵点M 到x 轴的距离为4, ∴4y =, ∴4y =±,∵点M 到y 轴的距离为5, ∴5x =, ∴5x =±,∵点M 在第四象限内, ∴x=5,y=-4,即点M 的坐标为(5,-4) 故选:D.变式2-2.(2020·湖北襄阳市模拟)如图,四边形ABCD 为菱形,点A 的坐标为()4,0,点C 的坐标为()4,4,点D 在y 轴上,则点B 的坐标为( )A .(4,2)B .(2,8)C .(8,4)D .(8,2)【答案】D【分析】根据菱形的性质得出D 的坐标(0,2),进而得出点B 的坐标即可. 【详解】连接AC ,BD ,AC 、BD 交于点E ,∵四边形ABCD 是菱形,OA =4,AC =4, ∴ED =OA =EB =4,AC =2EA =4, ∴BD =8,OD =EA =2 ∴点B 坐标为(8,2), 故选:D .变式2-3.(2020·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是( ) A .()4,0 B .()0,8C .()4,0-D .()0,8-【答案】A【分析】根据点P 在x 轴上,即y=0,可得出m 的值,从而得出点P 的坐标. 【详解】解:∵点2,24()P m m +-在x 轴上, ∴240m -=, ∴2m =;∴2224m +=+=, ∴点P 为:(4,0); 故选:A .变式2-4.(2020·广西一模)点M (3,1)关于y 轴的对称点的坐标为( ) A .(﹣3,1) B .(3,﹣1)C .(﹣3.﹣1)D .(1,3)【答案】A【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案. 【详解】点M (3,1)关于y 轴的对称点的坐标为(﹣3,1),故选:A . 考查题型三 点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律.典例3.(2019·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)【答案】A【分析】观察图形可以看出A 1﹣﹣A 4;A 5﹣﹣﹣A 8;…每4个为一组,由于2019÷4=504…3,A 2019在x 轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【详解】解:观察图形可以看出A 1﹣﹣A 4;A 5﹣﹣﹣A 8;…每4个为一组, ∵2019÷4=504…3 ∴A 2019在x 轴负半轴上,纵坐标为0, ∵A 3、A 7、A 11的横坐标分别为0,﹣2,﹣4, ∴A 2019的横坐标为﹣(2019﹣3)×12=﹣1008. ∴A 2019的坐标为(﹣1008,0). 故选A .变式3-1.(2019·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+, 则2019A 的坐标是()1009,0, 故选C .变式3-2.(2019·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭B .()600,0C .12600,5⎛⎫ ⎪⎝⎭D .()1200,0【答案】B【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上,由点A ,B 的坐标利用勾股定理可求出AB 的长,进而可得出点C 2的横坐标,同理可得出点C 4,C 6的横坐标,根据点的横坐标的变化可找出变化规律“点C 2n 的横坐标为2n×6(n 为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上.∵A(4,0),B(0,3), ∴OA=4,OB=3, ∴22OA OB +,∴点C 2的横坐标为4+5+3=12=2×6, 同理,可得出:点C 4的横坐标为4×6,点C 6的横坐标为6×6,…, ∴点C 2n 的横坐标为2n×6(n 为正整数), ∴点C 100的横坐标为100×6=600,∴点C 100的坐标为(600,0).故选:B .考查题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).典例4.(2020·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可以..是( )A .1B .32-C .43D .4或-4 【答案】B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数即可判断.【详解】解:∵点(,2)A a 是第二象限内的点,∴0a <,四个选项中符合题意的数是32-, 故选:B变式4-1.(2020·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】直接利用各象限内点的坐标特点分析得出答案.【详解】∵x 2+2>0,∴点P (x 2+2,−3)所在的象限是第四象限.故选:D . 变式4-2.(2020·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据点(,)A a b -在第三象限,可得0a <,0b -<,进而判定出点B 横纵坐标的正负,即可解决.【详解】解:∵点(,)A a b -在第三象限,∴0a <,0b -<,∴0ab ->,∴点B 在第一象限,故选:A .变式4-4.(2020·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A .(),a bB .(),a b -C .(),a b --D .(),a b -【答案】B 【分析】根据0,0a b ab +>>,得出0,0a b >>,判断选项中的点所在的象限,即可得出答案.【详解】∵0,0a b ab +>>∴0,0a b >>选项A:(),a b 在第一象限选项B:(),a b -在第二象限选项C:(),a b --在第三象限选项D:(),a b -在第四象限小手盖住的点位于第二象限故选:B考查题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)【解析】由点P(a−4,a)在y 轴上,得a−4=0,解得a=4,P 的坐标为(0,4),故选B.2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为() A .(0,﹣4) B .(4,0) C .(0,﹣2) D .(2,0)【答案】D【详解】解:∵点P (m+3,m+1)在x 轴上,∴y =0,∴m+1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0).故选:D .3.(2019·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( )A .(40),B .(04),C .40)(-,D .(0,4)-【答案】A【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选:A .4.(2019·甘肃中考模拟)已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【答案】A【详解】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.5.(2019·广东华南师大附中中考模拟)如果点P(m+3,m+1)在平面直角坐标系的x轴上,则m=() A.﹣1 B.﹣3 C.﹣2 D.0【答案】A【详解】由P(m+3,m+1)在平面直角坐标系的x轴上,得m+1=0.解得:m=﹣1,故选:A.2.象限角的平分线上的点的坐标1.已知点A(-3+a,2a+9)在第二象限角平分线上,则a=_________【答案】-2【详解】∵点A在第二象限角平分线上∴它的横纵坐标互为相反数则-3+a+2a+9=0解得a=-22.(2018·广西中考模拟)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【答案】C【解析】已知点M在第一、三象限的角平分线上,点M到x轴的距离为2,所以点M到y轴的距离也为2.当点M 在第一象限时,点M的坐标为(2,2);点M在第三象限时,点M的坐标为(-2,-2).所以,点M的坐标为(2,2)或(-2,-2).故选C.3.与坐标轴平行的直线上的点的坐标特征1.(2019·广西中考模拟)已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1 B.3 C.﹣1 D.5【答案】B【详解】解:∵AB∥y轴,∴点A横坐标与点A横坐标相同,为1,可得:a -2=1,a=3故选:B.2.(2018·天津中考模拟)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【答案】A【解析】试题解析:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.3.(2019·广东华南师大附中中考模拟)已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)【答案】A【详解】∵A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,∴B的纵坐标y=﹣2,∵“B到y轴的距离等于4”,∴B的横坐标为4或﹣4.所以点B的坐标为(4,﹣2)或(﹣4,﹣2),故选A.4.(2019·江苏中考模拟)若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1)B.(﹣1,1)C.(5,1)或(﹣1,1)D.(2,4)或(2,﹣2)【答案】C【详解】∵AB∥x轴且AB=3,点A的坐标为(2,1)∴点B的坐标为(5,1)或(﹣1,1)5.(2018·江苏中考模拟)已知点M(﹣1,3),N(﹣3,3),则直线MN与x轴、y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直【答案】D【详解】由题可知,M、N两点的纵坐标相等,所以直线MN与x轴平行,与y轴垂直相交.故选:D.4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.2.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-【答案】C【解析】由题意,得x=-4,y=3, 即M 点的坐标是(-4,3),故选C .3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( ) A .(﹣3,4)B .( 3,﹣4)C .(﹣4,3)D .( 4,﹣3) 【答案】C【详解】由点且到x 轴的距离为3、到y 轴的距离为4,得|y|=3,|x|=4.由P 是第二象限的点,得x=-4,y=3.即点P 的坐标是(-4,3),故选C .4.(2012·江苏中考模拟)在平面直角坐标系中,点P (-3,4)到x 轴的距离为( )A .3B .-3C .4D .-4【答案】C【详解】∵|4|=4,∴点P (-3,4)到x 轴距离为4.故选C .5.平面直角坐标系内平移变化1.(2019·山东中考真题)在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)【答案】A【解析】已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.2.(2019·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB 平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)【答案】A【详解】∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选A.3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)【答案】D【解析】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C【解析】因为4-0=4,10-6=4,所以由点A到点A1的平移是向右平移4个单位,再向上平移4个单位,则点B的对应点1B的坐标为(1,1)故选C.5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A .(2,4)B .(1,5)C .(1,-3)D .(-5,5)【答案】B【详解】 将点P ( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标(1,5).故选B.6.对称点的坐标1.(2019·广东中考模拟)在平面直角坐标系中.点P (1,﹣2)关于x 轴的对称点的坐标是( ) A .(1,2) B .(﹣1,﹣2) C .(﹣1,2) D .(﹣2,1)【答案】A【解析】点P (1,-2)关于x 轴的对称点的坐标是(1,2),故选A .2.(2019·山东中考模拟)已知点P (a +1,2a ﹣3)关于x 轴的对称点在第二象限,则a 的取值范围是( ) A .﹣1<a <B .﹣<a <1C .a <﹣1D .a >【答案】C【详解】依题意得P 点在第三象限, ∴, 解得:a <﹣1.故选C .3.(2014·广西中考真题)已知点A (a ,2013)与点B (2014,b )关于x 轴对称,则a+b 的值为( ) A .﹣1B .1C .2D .3 【答案】B【解析】关于x 轴对称的两个点的特点是,x 相同即横坐标,y 相反即纵坐标相反,故a=2014,b=-2013,故a+b=1 4.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A .a 1<-B .31a 2-<<C .3a 12-<<D .3a 2> 【答案】B【解析】∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限。

平面直角坐标系复习讲义(知识点+典型例题)

平面直角坐标系复习讲义(知识点+典型例题)

D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为

(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )

【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于

平面直角坐标系重难点复习

平面直角坐标系重难点复习
温馨提示:判断点的位置,关键抓住象限
内点的 坐标的符号特征.
巩固练习2:坐标轴上点的坐标
(1)点P(m+2,m-1)在x轴上,则点P的坐标是 ( 3, 0. ) (2)点P(m+2,m-1)在y轴上,则点P的坐标是 ( 0, -3 ). (3)点P(x,y)满足 xy=0, 则点P在 x 轴上 或 y 轴. 上
当P(x ,y)向右平移a个单位长度,再向上平移
b个单位长度后别是2,1,则点P的 坐标可能为 (1,2)、 (-1,2)、(-1,-2) 、(1,-.2).
在平面直角坐标系中,将点(x, y)向右 (或向左)平移a 个单位长度,可以得到对应点 (x+a,y)或(x-a,y) 将点(x, y)向上(或向下)平移b个单位长度,可以得 到对应点 (x,y+b) 或(x,y-b) 可以简单地理解为: 左、右平移___坐标不变, ___坐标变,变化 规律是___减___加, 上下平移___坐标不变, ___坐标变, 变化规律是___减 ___加。例如:
数就是这个点的横坐 标与纵坐标。
y
2 1
记作A( 2,1 ) A
-3 -2 -1 O 1 2 3 x
-1
方法:先在x轴和y轴上 分别找到表示横坐标与 纵坐标的点,然后过这 两点分别作x轴与y轴的 垂线,两条垂线的交点 就是该坐标对应的点。
-2
B
-3
找点B( 3,-2 )表 示的点?
特殊点的坐标 y
-1 0 1 -1
x
C(-a,-b)
A(a,-b)
巩固练习1:由坐标找象限。
(1)点P的坐标是(2,-3),则点P在第 四象限;
(2)若点P(x,y)的坐标满足xy﹥0, 则点P在第一或三 象限; (3)若点P(x,y)的坐标满足 xy﹤0,且在x轴上方, 则点P在第 二 象限;

人教版数学七年级第七章平面直角坐标系单元测试精选(含答案)2

人教版数学七年级第七章平面直角坐标系单元测试精选(含答案)2

【答案】A
31.在平面直角坐标系中,点 P(—3,0)在(

A.x 轴的正半轴 B.x 轴的负半轴 C.y 轴的正半轴 D.y 轴的负半轴
【来源】人教版数学七年级下册第七章平面直角坐标系单元测试
【答案】B
评卷人 得分
二、填空题
32.若点 A(x,2)在第二象限,则 x 的取值范围是____. 【来源】2016 年初中毕业升学考试(广西百色卷)数学(带解析) 【答案】x<0 33.若点 M(a+5,a-3)在 y 轴上,则点 M 的坐标为________. 【来源】2011-2012 学年黑龙江兰西县北安中学七年级下学期期中考试数学卷 【答案】(0,-8) 34.点 P(3,-4)到 x 轴的距离是_____________. 【来源】安徽省涡阳县石弓中心校 2018-2019 学年度第一学期八年级第一次月考数学试 题(沪科版) 【答案】4 35.点 P(3,-4)到原点的距离是___________。 【来源】甘肃省天水市第一中学 2017-2018 学年八年级上学期期末模拟考试数学试题 【答案】5
D. (1, 2)
【来源】2011 年初中毕业升学考试(湖南怀化卷)数学
【答案】C
21.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形
与原图形的关系是
A.关于 x 轴对称 B.关于 y 轴对称 C.关于原点对称 D.两图形重合
【来源】2012 届四川省沐川县初三二调考试数学卷(带解析)
A.m=0,n 为一切数 B.m=0,n<0
C.m 为一切数,n=0 D.m<0,n=0
【来源】2017-2018 学年浙教版八年级数学上册习题:单元测试
【答案】D

第七章平面直角坐标系 综合复习人教版数学七年级下册

第七章平面直角坐标系 综合复习人教版数学七年级下册

2021-2022学年人教版数学七年级下册《第七章平面直角坐标系》综合复习(练习、考试专用——带答案解析)一、选择题(本大题共10小题,共30分)1.(2019·浙江省台州市·期末考试)若点P在第四象限内,P到x轴的距离是1,到y轴的距离是3,则点P的坐标为()A. (3,−1)B. (−3,−1)C. (−3,1)D. (−1,−3)2.(2022·江西省·模拟题)已知AB//y轴,且点A的坐标为(m,2m-1),点B的坐标为(2,4),则点A的坐标为(),4) C. (−2,−4) D. (2,−4)A. (2,3)B. (523.(2022·湖北省·期中考试)如图,在平面直角坐标系xOy中,点P的坐标为(1,1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是()A. (1,−1)B. (−1,1)C. (3,1)D. (1,2)4.(2022·广东省·单元测试)如图,长方形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边做环绕运动,物体甲按逆时针方向以1个单位长度/秒的速度匀速运动,物体乙按顺时针方向以2个单位长度/秒的速度匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A. (1,−1)B. (2,0)C. (−1,1)D. (−1,−1)5.(2022·全国·同步练习)某电影院里5排2号可以用数对(5,2)表示,小明买了7排4号的电影票,用数对可表示为( )A. (4,7)B. (2,5)C. (7,4)D. (5,2)6.(2021·重庆市·期中考试)如果点A(a,b)在第三象限,则点B(-a+1,3b-5)关于原点的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.(2021·北京市·月考试卷)已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A. (−2,2),(3,4),(1,7)B. (−2,2),(4,3),(1,7)C. (2,2),(3,4),(1,7)D. (2,−2),(3,3),(1,7)8.(2021·安徽省·单元测试)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:9.①f(m,n)=(m,-n),如f(2,1)=(2,-1);10.②g(m,n)=(-m,-n),如g(2,1)=(-2,-1).11.按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(-3,2)]等于()A. (3,2)B. (3,−2)C. (−3,2)D. (−3,−2)12.(2021·黑龙江省牡丹江市·历年真题)如图,在平面直角坐标系中A(-1,1),B(-1,-2),C(3,-2),D(3,1),一只瓢虫从点A出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2021秒瓢虫在()处.A. (3,1)B. (−1,−2)C. (1,−2)D. (3,−2)13.(2021·安徽省·单元测试)如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是()A. (1,1)B. (1,2)C. (−1,2)D. (−1,−2)二、填空题(本大题共6小题,共18分)14.(2021·安徽省·期中考试)已知点A(0,-3),点B在x轴上,且三角形OAB的面积为6,则点B的坐标为________.15.(2021·辽宁省沈阳市·同步练习)已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是____________________.16.(2018·山东省泰安市·月考试卷)已知:点P的坐标是(m,-1),且点P关于x轴对称的点的坐标是(-3,2n),则m= ______ ,n= ______ .17.(2020·安徽省芜湖市·单元测试)已知点N的坐标为(a,a-1),则点N一定不在第象限.18.(2020·安徽省芜湖市·单元测试)如图,长方形OABC的边OA,OC分别在x轴、,轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B'处,则点B'的坐标为 .19.(2021·江苏省南通市·单元测试)在平面直角坐标系中,O为坐标原点,点A(−a,a)(a>0),点B(−a−4,a+3),点C为平面直角坐标系内的一点,连接AB,OC,若AB //OC且AB=OC,则点C的坐标为.三、解答题(本大题共6小题,共52.0分)20.(2019·吉林省白山市·期末考试)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.21.(2021·重庆市市辖区·单元测试)在平面直角坐标系中,点A(0,a),B(b,0),C(c,c)的坐标满足(a−5)2+|b+2|+√c−3=0,四边形ABCD是平行四边形,点D在第一象限.直线AC交x轴于点F.(1)求点D的坐标(2)求三角形BCF的面积.22.(2020·浙江省台州市·期末考试)三角形ABC在平面直角坐标系中的位置如图所示(图中每个小方格的边长均为1个单位长度).将三角形ABC先向左平移4个单位长度,再向下平移3个单位长度得到三角形A1B1C1.(1)在图中画出三角形A1B1C1;(2)求三角形ABC的面积.23.(2022·安徽省·模拟题)如图1,在平面直角坐标系中,C是第二象限内一点,CB⊥y轴于点B,且B(0,b)是y轴正半轴上一点,A(a,0)是x轴负半轴上一点,且|a+2|+|b-3|=0,S四边形AOBC=9.(1)求点C的坐标;(2)如图2,点D为线段OB上一动点,且,求点D的坐标.24.(2022·江苏省南通市·同步练习)如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为____,A n的坐标(用n的代数式表示)为____.(2)2022米长的护栏,需要两种正方形各多少个?25.(2020·全国·期中考试)如图,在平面直角坐标系中有一点A(4,-1),将点A向左平移5个单位再向上平移5个单位得到点B,直线l过点A、B,交x轴于点C,交y轴于点D,P是直线上的一个动点,通过研究发现直线l上所有点的横坐标x与纵坐标y都是二元一次方程x+y=3的解.①直接写出点B,C,D的坐标;B______,C______,D______;②求S△AOB;③当S△OBP:S△OPA=1:2时,求点P的坐标.1.【答案】A【知识点】平面直角坐标系中点的坐标【解析】解:∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为3,∴点P的横坐标为3,纵坐标为-1.故点P的坐标为(3,-1).故选:A.根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.本题考查了点的坐标,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一、二、三、四象限内各点的符号分别为(+,+)、(-,+)、(-,-)、(+,-).2.【答案】A【知识点】坐标与图形性质、平面直角坐标系中点的坐标【解析】【分析】本题考查了坐标与图形性质:利用点的坐标得到相应的线段的长和判断线段与坐标轴的位置关系.在平面直角坐标系中与y轴平行,则它上面的点横坐标相同,可求A点的坐标.【解答】解:∵AB∥y轴,点A的坐标为(m,2m-1),点B的坐标为(2,4),∴m=2,∴2m-1=3,∴点A的坐标为(2,3).故选A.3.【答案】A【知识点】平移中的坐标变化【解析】【分析】本题考查了坐标与图形变化一平移,熟记左加右减,上加下减的规律是解题的关键.将坐标系中的x轴向上平移2个单位,即相当于将点P向下平移2个单位,根据左加右减,上加下减的规律求解即可.【解答】解:如果将x轴向上平移2个单位长度,则其纵坐标减少2,∴点P在新坐标系中的坐标是(1,-1),4.【答案】D【解析】解:长方形BCDE的长与宽分别为4和2,因为物体乙的速度是物体甲的2倍,二者的运动时间相同,所以物体甲与物体乙走的路程比为1:2.由题意可知, ①第一次相遇时,物体甲与物体乙走的路程之和为12×1,物体甲走的路程为12×1=4,物3=8,相遇在BC边上点(-1,1)处;体乙走的路程为12×23 ②第二次相遇时,物体甲与物体乙走的路程之和为12×2,物体甲走的路程为12×2×1=8,3=16,相遇在DE边上的点(-1,-1)处;物体乙走的路程为12×2×23 ③第三次相遇时,物体甲与物体乙走的路程之和为12×3,物体甲走的路程为12×3×1=12,3=24,相遇在出发点A点.物体乙走的路程为12×3×23此时,甲、乙回到原出发点,故每相遇三次,甲、乙两物体就回到出发点.因为2021÷3=673⋯⋯2,所以两个物体运动后的第2021次相遇地点是DE边上的点(-1,-1)处.故选D.5.【答案】C【知识点】有序数对【解析】由5排2号可以表示为(5,2)可知,7排4号可用数对(7,4)表示.6.【答案】B【知识点】中心对称中的坐标变化、平面直角坐标系中点的坐标【解析】略7.【答案】A【知识点】平移中的坐标变化【解析】略8.【答案】A【知识点】平面直角坐标系中点的坐标【解析】【分析】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(-3,2)=(-3,-2),∴g[f(-3,2)]=g(-3,-2)=(3,2),故选A.9.【答案】A【知识点】平面直角坐标系中点的坐标、图形规律问题【解析】解:∵A(-1,1),B(-1,-2),C(3,-2),D(3,1),∴AB=CD=3,AD=BC=4,∴C矩形ABCD=2(AB+AD)=14.∵2021=288×(14÷2)+1.5+2+1.5,∴当t=2021秒时,瓢虫在点D处,∴此时瓢虫的坐标为(3,1).故选:A.根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由2021=288×(14÷2)+1.5+2+1.5,可得出当t=2021秒时瓢虫在点D处,再结合点D的坐标即可得出结论.本题考查了规律型中点的坐标,根据瓢虫的运动规律找出当t=2021秒时瓢虫在点D处是解题的关键.10.【答案】A【知识点】坐标与图形性质、图形规律问题【解析】【分析】本题主要考查平面直角坐标系中点的坐标的变化规律,理解题意,求出“凸”形的周长是解题关键.先根据已知点的坐标,求出凸形ABCDEGHP的周长为20,根据2019÷20的余数为19,即可得出答案.【解答】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),∴“凸”形ABCDEGHP的周长为:AB+BC+CD+DE+EG+GH+HP+PA=2+2+2+2+6+2+2+2=20,∵2019÷20=100······19,余数为19,∴细线另一端所在位置的点在P处上面1个单位的位置,坐标为(1,1).故选A.11.【答案】(-4,0)或(4,0)【知识点】三角形的面积、分类讨论思想【解析】【分析】本题考查了坐标与图形性质,三角形的面积,难点在于要分情况讨论.【解答】解:∵点B在x轴上∴设B点的坐标为:(m,0),∴OB=|m|,又∵A(0,-3),根据△OAB的面积是6得:×OB×36=12×3×|m|6=12m=±4,故答案为(-4,0)或(4,0).12.【答案】(3,3)或(6,-6)【知识点】平面直角坐标系中点的坐标【解析】略13.【答案】-3;12【知识点】轴对称中的坐标变化【解析】解:∵点P的坐标是(m,-1),且点P关于x轴对称的点的坐标是(-3,2n),∴m=-3;2n=1,即n=1.2平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.【答案】二【解析】略15.【答案】(2,1)【解析】解:由题意知四边形BEB'D是正方形,∴点B'的横坐标与点E的横坐标相同,点B'的纵坐标与点D的纵坐标相同,∴点B'的坐标为(2,1).16.【答案】(-4,3)或(4,-3)【知识点】两点间的距离公式*、平行线的性质【解析】解:依照题意画出图形,如图所示.设点C 的坐标为(x ,y ),∵AB ∥OC 且AB =OC ,∴{x −0=(−a −4)−(−a)y −0=a +3−a或{0−x =(−a −4)−(−a)0−y =a +3−a, 解得:{x =−4y =3或{x =4y =−3, ∴点C 的坐标为(-4,3)或(4,-3).故答案为:(-4,3)或(4,-3).设点C 的坐标为(x ,y ),由AB ∥OC 、AB =OC 以及点A 、B 的坐标,即可求出点C 的坐标.本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.17.【答案】解:(1)∵点P (2m +4,m -1)在y 轴上,∴2m +4=0,解得m =-2,所以,m -1=-2-1=-3,所以,点P 的坐标为(0,-3);(2)∵点P 的纵坐标比横坐标大3,∴(m -1)-(2m +4)=3,解得m =-8,m -1=-8-1=-9,2m +4=2×(-8)+4=-12,所以,点P 的坐标为(-12,-9);(3)∵点P 到x 轴的距离为2,解得m=-1或m=3,当m=-1时,2m+4=2×(-1)+4=2,m-1=-1-1=-2,此时,点P(2,-2),当m=3时,2m+4=2×3+4=10,m-1=3-1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,-2).【知识点】平面直角坐标系中点的坐标【解析】(1)根据y轴上点的横坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标比横坐标大3列方程求解m的值,再求解即可;(3)根据点P到x轴的距离列出绝对值方程求解m的值,再根据第四象限内点的横坐标是正数,纵坐标是负数求解.本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征是解题的关键,(3)要注意点在第四象限.18.【答案】解:(1)∵(a-5)2+|b+2|+√c−3=0,∴a=5,b=-2,c=3,则A (0,5),В (-2,0) ,C(3, 3),如图:过D作DN⊥y轴,过C作CM⊥x轴,垂足分别为N、M,延长BA交DN于G,延长DC交BM于H,则BM=5,CM=3,OA=5,∵四边形ABCD为平行四边形,又DN //BH .∴四边形BHDG 为平行四边形,∴∠ABM =∠CDN .∵四边形ABCD 为平行四边形,∴∠ABC =∠ADC ,∴∠CBM =∠ADN ,且AD =BC .在△BCM 和△DAN 中,∠CBM =∠ADN ,∠BMC =∠DNA =90°,BC =AD , ∴△BCM ≌△DAN ,∴DN =BM =5,AN =CM =3,∴ON =OA +AN =5+3=8,∴D 点的坐标为(5,8);(2)设F (m ,0),过点C 作CM ⊥x 轴于点M ,∴S △AOF =S △CMF +S 四边形AOMC ,∴12×m ×5=12×(m -3)×3+12×(3+5)×3, 解得m =152,∴F (152,0),∴S △BCF =574.【知识点】坐标与图形性质、平行四边形的判定与性质、非负数的性质:绝对值、三角形的面积、非负数的性质:偶次方、非负数的性质:算术平方根、全等三角形的判定与性质【解析】本题考查了坐标与图形性质,平行四边形的性质与判定,全等三角形的性质与判定等知识,解题时要正确作出辅助线,并且根据利用这些性质进行解题.(1)首先由已知确定A (0,5),B (-2,0),C (3,3),过D 作DN ⊥y 轴,过C 作CM ⊥x 轴,垂足分别为N 、M ,延长BA 交DN 于G ,延长DC 交BM 于H ,根据AAS 判定△BCM ≌△DAN ,进而求出DN 、BM 、AN 、CM 、ON ,OA 的值,解答即可; (2)设F (m ,O ),过点C 作CM ⊥x 轴于点M ,根据S △AOF =S △CMF +S 四边形AOMC 列式进而求得m 值,则可确定F 的坐标,再根据S △BCF =12·BF ・CN 解答即可. 19.【答案】解:(1)如图所示,三角形A 1B 1C 1即为所求;(2)如图所示,取格点D ,E ,则S △ABC =S 梯形CDEB -S △ADC -S △ABE=12×(1+3)×3-12×1×3-12×1×2 =6-32-1=72.【知识点】作图-平移变换、三角形的面积【解析】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.(1)依据三角形ABC 先向左平移4个单位长度,再向下平移3个单位长度,即可得到三角形A 1B 1C 1.(2)依据割补法进行计算,即可得到三角形ABC 的面积.20.【答案】解:(1)∵ |a +2|+|b -3|=0,∴a =-2,b =3,∵ S 四边形AOBC =9.×(2+BC)×3=9∴12∴BC=4,∵CB⊥y轴于点B,∴C(-4,3),(2)设D(0,m),则S四边形ADBC=9-m,S△ADC=S△AOC+S△ODC-S△AOD=3+2m-m=m+3,(9−m),∴m+3=23,解得m=95).∴D(0,95【知识点】四边形综合、平面直角坐标系中点的坐标【解析】本题属于四边形综合题,考查了四边形的面积,三角形的面积等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考常考题型.(1)利用非负数的性质求出a,b的值,可得结论.(2)设D(0,m).根据,构建方程求解即可.21.【答案】解:(1)(8,2);(3n﹣1,2);(2)∵2022÷(1+2)=674,∴需要大小正方形各674.【知识点】平面直角坐标系中点的坐标【解析】【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A2,A3,…,A n各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)根据一个小正方形与一个大正方形所构成的护栏长度,计算出2022米包含多少这样的长度,即可得出结果.解:(1)根据已知条件与图形可知,大正方形的对角线长为2,∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2,横坐标依次大3,∴A 3的坐标为(8,2),A n 的坐标为(3n ﹣1,2);(2)见答案.22.【答案】(-1,4) (3,0) (0,3)【知识点】平移与全等、平移中的坐标变化【解析】解:(1)∵点A (4,-1),将点A 向左平移5个单位再向上平移5个单位得到点B ,∴点B (-1,4)∵直线l 上所有点的横坐标x 与纵坐标y 都是二元一次方程x +y =3的解.∴直线l 的解析式为:y =-x +3,∴当x =0时,y =3,当y =0时,x =3,∴点C (3,0),点D (0,3)故答案为:(-1,4),(3,0),(0,3)(2)如图1,连接AO ,BO ,∵S △AOB =S △BOC +S △AOC ,∴S △AOB =12×3×4+12×3×1=152, (3)设点P (a ,-a +3)当点P 在线段AB 上时,∵S △OBP :S △OPA =1:2,且S △AOB =152∴S △OPA =5,∵S △OPA =S △OPC +S △OCA ,∴5=12×3×(3-a )+32,∴a =23,∴点P (23,73),当点P 在点B 的左侧时,∵S △OBP :S △OPA =1:2,且S △AOB =152,∴S △OPA =15,∵S △OPA =S △OPC +S △OCA ,∴15=12×3×(3-a )+32,∴a =-6,∴点P (-6,9)(1)由平移的性质可求点B 坐标,由题意可得直线l 的解析式,即可求点C ,点D 坐标;(2)由三角形面积公式可求解;(3)分两种情况讨论,由三角形的面积公式可求解.本题是几何变换综合题,考查了平移的性质,一次函数的性质,三角形的面积公式,利用分类讨论思想解决问题是本题的关键.。

平面直角坐标系复习课

平面直角坐标系复习课

提取关键信息
从实际问题中筛选出与坐 标系建立相关的信息,如 物体的位置、运动轨迹等 。
忽略次要因素
为了简化问题,需要忽略 一些对坐标系建立影响较 小的因素,如物体的大小 、形状等。
转化为数学模型
将实际问题中的关键信息 转化为数学模型,如点、 线、面等几何元素。
建立合适坐标系方法论述
选择原点
根据实际问题的需要,选择一个 合适的点作为x + b (k为斜率, b为y轴截距),斜率
截距明显,但不包括垂直于x轴的直线。
点斜式
1.C y - y1 = k(x - x1) (k为斜率,(x1, y1)为直 线上一点),适用于过指定点且斜率已知的 直线。
截距式
1.D x/a + y/b = 1 (a为x轴截距,b为y轴截距)
坐标变化规律
当一个点或图形在平面直角坐标系中沿x轴或y轴进行伸 缩变换时,其坐标值会发生变化。具体表现为:沿x轴伸 缩时,横坐标按倍数变化,纵坐标不变;沿y轴伸缩时, 纵坐标按倍数变化,横坐标不变。
对称变换规律总结
对称轴与对称中心
在平面直角坐标系中,图形的对称变换包括轴对称和 中心对称。轴对称是指图形关于一条直线对称,中心 对称是指图形关于一个点对称。通过观察图形对称变 换前后的坐标变化,可以总结出对称变换规律。
标准方程
$(x-a)^2+(y-b)^2=r^2$,其中圆心为 $(a,b)$,半径为$r$。圆方程具有对称性、 二次项系数相等、常数项大于零等特点。
圆心、半径确定方法
圆心确定
可通过解方程组或代入法求得圆心坐标。
半径确定
可通过距离公式或代入法求得半径长度。同 时,半径长度与圆的大小、形态等密切相关

第7章 平面直角坐标系【真题模拟练】(原卷版)七年级数学下册单元复习(人教版)

第7章 平面直角坐标系【真题模拟练】(原卷版)七年级数学下册单元复习(人教版)

第7章平面直角坐标系真题模拟练(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)P x+,3)-所在的象限是() 1.(3分)(2020•扬州)在平面直角坐标系中,点2(2A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)(2021•牡丹江)如图,在平面直角坐标系中(1,1)D,C-,(3,1)B--,(3,2)A-,(1,2)一只瓢虫从点A出发以2个单位长度/秒的速度沿A B C D A→→→→循环爬行,问第2021秒瓢虫在()处.A.(3,1)B.(1,2)---C.(1,2)-D.(3,2)3.(3分)(2021•海南)如图,点A、B、C都在方格纸的格点上,若点A的坐标为(0,2),点B的坐标为(2,0),则点C的坐标是()A.(2,2)B.(1,2)C.(1,1)D.(2,1)4.(3分)(2021•凉山州)在平面直角坐标系中,将线段AB平移后得到线段A'B',点A(2,1)的对应点A'的坐标为(-2,-3),则点B(-2,3)的对应点B'的坐标为()A.(6,1)B.(3,7)C.(-6,-1)D.(2,-1)5.(3分)(2020•宜昌)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是()A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列6.(3分)(2021•日照)在平面直角坐标系中,把点P(-3,2)向右平移两个单位后,得到对应点的坐标是()A.(-5,2)B.(-1,4)C.(-3,4)D.(-1,2)7.(3分)(2020•台湾)已知小薇住家的西方100公尺处为车站,住家的北方200公尺处为学校,且从学校往东方走100公尺,再往南走400公尺可到达公园.若小薇将住家、车站、学校分别标示在坐标平面上的(2,0)、(0,0)、(2,4)三点,则公园应标示在此坐标平面上的哪一点?()A.(4,4)-D.(0,12) -B.(4,12)C.(0,4)8.(3分)(2021•台湾)如图的坐标平面上有A、B、C、D四点.根据图中各点位置判断,哪一个点在第二象限()A.A B.B C.C D.D9.(3分)(2020•邵阳)已知0a b+>,0ab>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(,)--D.(,)a b-a b-C.(,)a ba b B.(,)10.(3分)(2020•毕节市)在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是()A .(5,4)B .(4,5)C .(4,5)-D .(5,4)-11.(3分)(2020•滨州)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为()A .(4,5)-B .(5,4)-C .(4,5)-D .(5,4)-12.(3分)(2021•遵义)数经历了从自然数到有理数,到实数,再到复数的发展过程,数学中把形如(a bi a +,b 为实数)的数叫做复数,用z a bi =+表示,任何一个复数z a bi =+在平面直角坐标系中都可以用有序数对(,)Z a b 表示,如:12z i =+表示为(1,2)Z ,则2z i =-可表示为()A .(2,0)Z B .(2,1)Z -C .(2,1)Z D .(1,2)Z -二、填空题(共8小题,满分24分,每小题3分)13.(3分)(2021•大连)在平面直角坐标系中,将点(2,3)P -向右平移4个单位长度,得到点P ',则点P '的坐标是.14.(3分)(2021•山西)如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片“顶部”A ,B 两点的坐标分别为(2,2)-,(3,0)-,则叶杆“底部”点C 的坐标为.15.(3分)(2020•金华)点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可).16.(3分)(2020•泰州)以水平数轴的原点O 为圆心,过正半轴Ox 上的每一刻度点画同心圆,将Ox 逆时针依次旋转30︒、60︒、90︒、⋯、330︒得到11条射线,构成如图所示的“圆”坐标系,点A 、B 的坐标分别表示为(5,0)︒、(4,300)︒,则点C 的坐标表示为.17.(3分)(2021•西宁)在平面直角坐标系xOy 中,点A 的坐标是(2,1)-,若//AB y 轴,且9AB =,则点B 的坐标是.18.(3分)(2020•威海)如图①,某广场地面是用A ,B ,C 三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)⋯若(,)m n 位置恰好为A 型地砖,则正整数m ,n 须满足的条件是.19.(3分)(2021•湖北)如图,在平面直角坐标系中,动点P 从原点O 出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得点1(1,1)P --;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点2P ;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点3P ;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点4P ,⋯,按此作法进行下去,则点2021P 的坐标为.20.(3分)(2021•潍坊)在直角坐标系中,点1A从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:2(1,0)A,3(1,1)A,4(1,1)A-,5(1,1)A--,6(2,1)A-,7(2,2)A,⋯.若到达终点(506,505)nA-,则n的值为.三、解答题(共6小题,满分40分)21.(6分)(2011•安徽)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:1(A,),3(A,),12(A,);(2)写出点4nA的坐标(n是正整数);(3)指出蚂蚁从点100A 到101A 的移动方向.22.(6分)(2010•杭州)常用的确定物体位置的方法有两种.如图,在44⨯个边长为1的正方形组成的方格中,标有A ,B 两点.请你用两种不同方法表述点B 相对点A 的位置.23.(6分)(2000•海淀区)在平面直角坐标系内,已知点(12,2)A k k --在第三象限,且k 为整数,求k 的值.24.(6分)(2012•黄冈)在平面直角坐标系中,ABC ∆的三个顶点的坐标是(2,3)A -,(4,1)B --,(2,0)C ,将ABC ∆平移至△111A B C 的位置,点ABC 的对应点分别是111A B C ,若点1A 的坐标为(3,1).求点1C 的坐标.25.(8分)(2007•广安)广安市旅游事业蓬勃发展,被评为“全国优秀旅游城市”,下图是该市部分旅游景点的示意图(图中每个小正方形的边长为1个单位长度).请以图中某个景点为坐标原点建立适当的直角坐标系,并在图中用坐标表示这些景点的位置.26.(8分)(2010•河源)在平面直角坐标系中,点M 的坐标为(,2)a a -.(1)当1a =-时,点M 在坐标系的第象限;(直接填写答案)(2)将点M 向左平移2个单位,再向上平移1个单位后得到点N ,当点N 在第三象限时,求a 的取值范围.。

第七章 平面直角坐标系 七年级数学下册单元复习(人教版)

第七章 平面直角坐标系 七年级数学下册单元复习(人教版)
的方向上,距离是50 n mile)
7-20-7
【典例讲解】
例10. 将顶点坐标为(-4,-1),(1, 1),(-1,4)的三角形向右平移2个单 位长度,再向上平移3个单位长度,则平移 后的三角形三个顶点的坐标分别是( C ) A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7) C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
①由两个数组成;
②两数有顺序性;(a,b)与(b,a)表示的是两个不同的位置(a≠b).
③成对出现.
(二)平面直角坐标系
1、平面直角坐标系的定义
平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直
角坐标系。水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;
知识点一 平面直角坐标系
竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向; 两坐标轴的交点是平面直角坐标系的原点 .
辨识平面直角坐标系的“三要素”: 1. 两条数轴;2. 共原点;3. 互相垂直. 注意:一般取向上、向右为正方向.
知识点一 平面直角坐标系
2、点的坐标表示方法
平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b 分别叫做点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标,记为P(a,b) 注意:在写点的坐标时,必须先写横坐标,再写纵坐标, 中间用逗号隔开,最后用小括号把它们括起来; 点的坐标是有序实数对,(a,b) 和(b,a)(a ≠ b) 虽然数字相同,但由于顺 序不同,表示的位置就不同. 3. 平面直角坐标系内的点与有序实数对的一一对应关系: (1)坐标平面内的任意一点,都有唯一的一个有序实数对(点的坐标)与它对应. (2)任意一个有序实数对(点的坐标)在坐标平面内都有唯一的一个点和它对应.

精选七年级下册数学第七章平面直角坐标系单元测试(含答案解析)(2)

精选七年级下册数学第七章平面直角坐标系单元测试(含答案解析)(2)

人教版七年级数学下册第七章平面直角坐标系期中复习检测试题一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,2)在( B )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB( B )A.经过原点 B.平行于x轴C.平行于y轴D.无法确定3.若y轴上的点P到x轴的距离为3,则点P的坐标是( D )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C )A.(7,1) B.B(1,7)C.(1,1) D.(2,1)5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使三角形ABC的面积为3,则这样的点C共有( B )A.2个B.3个C.4个D.5个6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.图7-2-1是一局象棋残局,已知棋子“马”和“车”所在位置用坐标表示分别为(4,3),(-2,1),则棋子“炮”所在位置用坐标表示为( D )A.(-3,3) B.(3,2) C.(0,3) D.(1,3)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在网格的格点上.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为( A )A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3)8.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是(A)A.(11,3)B.(3,11)C.(11,9)D.(9,11)9.如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1的位置,则a+b 的值为( A )A.2 B.3 C.4 D.510.在平面直角坐标系xOy中,对于点,我们把点叫做点伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(2,4),点的坐标为( D )A. (-3,3)B.(-2,-2)C.(3,-1)D.(2,4)二、填空题(每空3分,共18分)11.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是(﹣3,4)。

《第5章平面直角坐标系》期末单元专题复习教案+测试

《第5章平面直角坐标系》期末单元专题复习教案+测试

苏州市~15第一学期数学期末复习教学案《平面直角坐标系》单元复习一、考点总结:考点一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。

1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。

(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

考点二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同;平行于y 轴(或纵轴)的直线上的点的横坐标相同。

考点三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

考点四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数关于y 轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数考点五、特殊位置点的特殊坐标: • 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;• 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; 考点七、用坐标表示平移:见下图二、经典例题 坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点点P (x ,y )在各象限 的坐标特点 象限角平分线上的点X 轴 Y 轴 原点 平行X 轴 平行Y 轴 第一象限 第二象限 第三象限 第四象限第一、 三象限 第二、四象限(x,0) (0,y) (0,0) 纵坐标相同横坐标不同 横坐标相同纵坐标不同 x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <(m,m) (m,-m) P (x ,y ) P (x ,y -P (x -a ,P (x +a ,P (x ,y +向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位知识一、坐标系的理解例1、平面内点的坐标是( )A 一个点B 一个图形C 一个数D 一个有序数对当堂检测:1.在平面内要确定一个点的位置,一般需要________个数据;在空间内要确定一个点的位置,一般需要________个数据.2.在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x<0, 在x 轴的正半轴上时,x>0点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y<0, 在y 轴的正半轴上时,y>0第一、三象限角平分线上的点的横纵坐标相同(即在y=x 直线上);坐标点(x ,y )xy>0第二、 四象限角平分线上的点的横纵坐标相反(即在y= -x 直线上);坐标点(x ,y )xy<0例1 点P 在x 轴上对应的实数是3 ,则点P 的坐标是 ,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是 , 例2 点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是 。

人教版七年级第七章平面直角坐标系单元测试精选(含答案)7

人教版七年级第七章平面直角坐标系单元测试精选(含答案)7

人教版七年级第七章平面直角坐标系单元测试精选(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.在平面直角坐标系中,点(-2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【来源】山东省日照市莒县2016-2017学年七年级下学期期末考试数学试题(WORD版)【答案】B2.如图:正方形ABCD中点A和点C的坐标分别为(-2,3)和(3,-2),则点B和点D的坐标分别为().A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)【来源】2018人教版数学七年级下册第七章平面直角坐标系单元测试题【答案】B3.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】D4.线段AB两端点坐标分别为A(–1,4),B(–4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为()A.A1(–5,0),B1(–8,–3)B.A1(3,7),B1(0,5)C.A1(–5,4),B1(-8,1)D.A1(3,4),B1(0,1)【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】C5.小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A.(-200,-150)B.(200,150)C.(200,-150)D.(-200,150)【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】C6.若点P(m,n)在第二象限,则点Q(m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】C7.一个学生方队,B的位置是第8列第7行,记为(8,7),则学生A在第二列第三行的位置可以表示为( )A.(2,1) B.(3,3) C.(2,3) D.(3,2)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】C8.点P(-|a|-1,b2+2)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B9.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,-b)在第二象限,则点B(-a,b)在第四象限D.若点P的坐标为(a,b),且a·b=0,则点P一定在坐标原点【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】D10.点A的坐标是(-2,5),则点A在()A.第一象限B.第二象限C.第三象限D .第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B11.如图,在平面直角坐标系中,矩形OABC ,OA=3,OC=6,将△ABC 沿对角线AC 翻折,使点B 落在点B′处,AB′与y 轴交于点D ,则点D 的坐标为( )A .(0,-92)B .(0,-94)C .(0,-72)D .(0,-74) 【来源】2016届山东省济南市中考三模数学试卷(带解析)【答案】D12.若点A(m ,n)在第二象限,那么点B(-m ,n+3)在( )A .第一象限B .第二象限;C .第三象限D .第四象限【来源】人教版七年级数学下册第七章平面直角坐标系单元测试【答案】A13.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园-玲珑塔-国家体育场-水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2),则终点水立方的坐标为( )A .(-2,-4)B .(-1,-4)C .(-2,4)D .(-4,-1)【来源】第七章平面直角坐标系单元练习题【答案】A二、填空题14.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A 点的位置,用(3,4)表示B 点的位置,那么用______表示C 点的位置.【来源】2016年北师大新版八年级数学上册同步练习:3.1 确定位置【答案】(6,1)15.若第四象限内的点P(x ,y)满足|x|=3,y 2=4,则点P 的坐标是________.【来源】2018年秋北师大版八年级数学上册第三章 位置与坐标检测卷【答案】(3,-2)16.第三象限内的点P(x ,y),满足5x =,29y =,则点P 的坐标是_________.【来源】湖北黄石江北中学2016-2017学年七年级(下)期中模拟数学试卷(含答案)【答案】(-5,-3).17.若点P (x ,y )满足xy <0,则点P 在第________象限.【来源】2017年秋北师大版八年级数学上册章末检测卷:第3章?位置与坐标【答案】二或四18.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(5,2)19.若点P (a,-b )在第二象限,则点Q (-ab,a+b )在第_______象限.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】三20.若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是________(写出一个即可).【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(15,12)或(15,-12)或(-15,12)或(-15,-12);21.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C在同一坐标系下的坐标________.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(-1,7)22.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母依次对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是________.【来源】人教版七年级下册数学练习:7.1.1有序数对【答案】APPLE23.如图,把“QQ”笑脸放在直角坐标系中,已知右眼A的坐标是(-2,3),嘴唇C点的坐标为(-1、1),则此“QQ”笑脸左眼B的坐标________.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】(0,3)24.若点P(m,n)在第三象限,则点Q(mn,m+n)在第________象限.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】四25.平面直角坐标系中,点P(3,-4)到x轴的距离是________.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】426.通过平移把点A(2,-1)移到点A′(2,2),按同样的平移方式,点B(-3,1)移动到点B′,则点B′的坐标是________.【来源】沪科版数学八年级上学期全册综合测试试卷【答案】(-3,4)27.同学们排成方队做操,李明在第10列第8行,用数对表示为________,小方所在的位置用数对表示为(8,7),她在第________列第________行.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(10,8) 8 728.若图中的有序数对(4,1)对应字母D ,有一个英文单词的字母顺序对应如图中的有序数对分别为(1,2),(5,1),(5,2),(5,2),(1,3),请你把这个英文单词写出来为________.【来源】第七章平面直角坐标系单元练习题【答案】HELLO29.已知点A(x -4,x +2)在y 轴上,则x 的值等于________.【来源】第七章平面直角坐标系单元练习题【答案】4三、解答题30.已知平面直角坐标系中有一点()M 2m 3,m 1-+.(1)点M 到y 轴的距离为1时,M 的坐标?(2)点()N 5,1-且MN//x 轴时,M 的坐标?【来源】山东省济宁市嘉祥县2017-2018学年七年级下学期期中水平测试数学试题【答案】(1) (﹣1,2)或(1,3)(2) (﹣7,﹣1)31.(1)已知图1是将线段AB 向右平移1个单位长度,图2是将线段AB 折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;(2)若长方形的长为a ,宽为b ,请分别写出三个图形中除去阴影部分后剩下部分的面积;(3)如图4,在宽为10m ,长为40m 的长方形菜地上有一条弯曲的小路,小路宽度为1m ,求这块菜地的面积.【来源】2017-2018学年人教版七年级数学下册同步测试题 5.4 平移【答案】(1)图形见解析.(2)三个图形中除去阴影部分后剩下部分的面积均为ab-b.(3) 390(m2).32.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.【来源】人教版七年级下册第七章《平面直角坐标系》全章测试含答案【答案】(1)食堂的位置是(-5,5),图书馆的位置是(2,5);(2)见解析;(3)240米.33.已知点P(2m+4,m-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.【来源】人教版七年级数学下册第7章平面直角坐标系单元提优测试题【答案】(1)点P(-12,-9)(2)P(0,-3)34.已知A(a-3,a2-4),求a的值及点A的坐标.(1)当点A在x轴上;(2)当点A在y轴上.【来源】2016——2017学年度江西省赣县区第二学期期中考试七年级数学试题【答案】(1) a=±2,点A的坐标为(-1,0)或(-5,0);(2) a=3,点A的坐标为(0,5).35.已知,射线BC∥射线OA,∠C=∠BAO=100°,试回答下列问题:(1)如图①,求证:OC∥AB;(2)若点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC,①如图②,若∠AOB=30°,则∠EOF的度数等于多少(直接写出答案即可);②若平行移动AB,当∠BOC=6∠EOF时,求∠ABO.【来源】湖南省长沙市青竹湖湘一外国语学校2017-2018学年七年级上期末试卷数学试题【答案】(1)证明见解析;(2)Ⅰ)∠EOF=5°;Ⅱ)∠ABO=48°或60°.36.如图是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)学校、商场和停车场分别在小明家的什么方位?(3)如果学校距离小明家400m,那么商场和停车场分别距离小明家多远?【来源】2017-2018学年八年级数学冀教版下册单元测试题第19章平面直角坐标系【答案】(1)距小明家距离相同的是学校和公园;(2)学校在小明家北偏东45°方向,商场在小明家北偏西30°方向,停车场在小明家南偏东60°方向;(3)停车场距离小明家800m.37.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】见解析38.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4) ,B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】这些点在同一直线上,在二四象限的角平分线上,举例见解析.39.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.【来源】2014-2015学年山西省大同市矿区十二校七年级下学期期末数学试卷(带解析)【答案】4.40.如图,A、B两点的坐标分别为(2,3)、(4,1).(1)求△ABO的面积;(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【来源】2017-2018学年北师大版八年级下册第三章图形的平移与旋转 3.1 图形的平移同步练习卷含答案【答案】(1)S△ABO=5;(2)A′(2,0),B′(4,-2),O′(0,-3).41.请写出点A,B,C,D的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】A(3,2),B(-3,4),C(-4,-3),D(3,-3)42.已知平面直角坐标系中A、B两点,根据条件求符合条件的点B的坐标.(1)已知点A(2,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标;(2)已知点A(0,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(1)点B的坐标为(-2,0)或(6,0);(2)点B的坐标为(-4,0)或(4,0)或(0,4)或(0,-4)43.在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A点到原点的距离是________.(2)将点C向x轴的负方向平移6个单位,它与点______重合.(3)连接CE,则直线CE与坐标轴是什么关系?(4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】(1)3;(2)D;(3)垂直;(4)直线CD与CE垂直,直线CD与FG垂直.44.写出如图格点△ABC各顶点的坐标,求出此三角形的周长.【来源】2017-2018学年山西农大附中八年级(上)期中数学试卷【答案】A(2,2)、B(-2,-1)、C(3,-2),面积9.5平方单位45.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.【来源】2016-2017学年福建省宁德市蕉城中学七年级(下)期末模拟数学试卷(带解析)【答案】(1)57°;(2)3.5cm.46.已知点P 的坐标为()2,a a -,且点P 到两坐标轴的距离相等,求a 的值.【来源】安徽省潜山市2018-2019学年度第一学期八年级数学期末教学质量检测【答案】a = 1.47.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B 向上平移5个单位到达点C ,求:(1)A 、B 两点间的距离;(2)写出点C 的坐标;(3)四边形OABC 的面积.【来源】第七章平面直角坐标系单元练习题【答案】(1) 5;(2) (3,2);(3)15.48.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A 点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜.【来源】2015年人教版初中数学七年级7.2.1练习卷(带解析)【答案】见解析49.已知:点P(2m +4,m -1).试分别根据下列条件,求出P 点的坐标.(1)点P 在y 轴上;(2)点P 在x 轴上;【来源】第七章平面直角坐标系单元练习题【答案】(1) P 点的坐标为(0,-3);(2) P 点的坐标为(6,0).50.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1,1),(3,1),(1,3),(1,1);(-1,3),(-1,5),(-3,3),(-1,3);(-5,1),(-3,-1),(-3,1),(-5,1);(-1,-1),(1,-1),(-1,-3),(-1,-1).(1)观察所得的图形,你觉得它像什么?(2)求出这四个图形的面积和.【来源】第七章平面直角坐标系单元练习题【答案】画图见解析;(1)风车;(2)8.。

平面直角坐标系复习专题

平面直角坐标系复习专题

平面直角坐标系复习专题平面直角坐标系本章的主要知识点:1.有序数对:有顺序的两个数a和b组成的数对,记作(a,b),注意先后顺序。

2.平面直角坐标系:2.1 历史:法国数学家XXX最早引入坐标系,用代数方法研究几何图形。

2.2 构成坐标系的各种名称。

2.3 各种特殊点的坐标特点。

3.坐标方法的简单应用:3.1 用坐标表示地理位置。

3.2 用坐标表示平移。

平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同。

平行于y轴(或纵轴)的直线上的点的横坐标相同。

各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同。

第二、四象限角平分线上的点的横纵坐标相反。

特殊位置点的特殊坐标:坐标轴上的点P(x,y)。

X轴Y轴原点。

连线平行于坐标轴的点。

平行X轴,纵坐标相同,横坐标不同。

平行Y轴,横坐标相同,纵坐标不同。

各象限的点P(x,y)的坐标特点。

象限 (m,m) (m,-m)第一、三象限角平分线上的点横纵坐标相同横纵坐标相同第二、四象限角平分线上的点横纵坐标相反横纵坐标相反坐标平面内的点到坐标轴的距离:点到x轴的距离为纵坐标的绝对值。

点到y轴的距离为横坐标的绝对值。

如点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|。

对称点的坐标特征:点P(m,n)关于x轴的对称点为P1(m,-n),即横坐标不变,纵坐标变为相反数。

点P(m,n)关于y轴的对称点为P2(-m,n),即纵坐标不变,横坐标变为相反数。

点P(m,n)关于原点的对称点为P3(-m,-n),即横、纵坐标都变为相反数。

判断题:1.坐标平面上的点与全体实数一一对应。

(错误)2.横坐标为0的点在轴上。

(正确)3.纵坐标小于0的点一定在轴下方。

(错误)4.到轴距离相等的点一定满足横坐标等于纵坐标。

(错误)5.若直线平行于轴,则上的点横坐标一定相同。

(正确)6.若在第二或第三象限,则点P(a,b)的纵坐标小于0.(正确)7.若在轴或第一、三象限,则点P(a,b)的横坐标和纵坐标都大于等于0.(正确)选择题:1.若点P(m,n)在第二象限,则点Q(-m,-n)在(B)第二象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章平面直角坐标系单元复习
班级姓名学号
一、阅读课本,回忆知识点
1.位置的确定
平面内确定一个物体的位置需要个数据,它们组成的数对叫做。

2.平面直角坐标系
在平面内画组成平面直角坐标系,这个平面叫做坐标平面,水平的数轴叫做x轴,垂直的叫做y轴,两轴的交点叫做。

有序实数对(a,b)与坐标平面内的点。

x轴和y轴将坐标平面分成四个象限,不属于任何象限。

平行于x轴德直线上的所有点的坐标相同,平行于y轴的直线上的所有点的坐标相同。

一三象限角平分线上的点横坐标与纵坐标,即x= ;二四象限角平分线上的点的
3.用坐标表示平移、对称
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(,));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向(或向)平移个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数b,相应的新图形就是把原图形向(或)平移个单位长度。

二、基础训练,理解知识点
1.七年级(1)班座位有7排8列,张艳的座位在2排4列,简记为(2,4),班级座次表上写着王刚(5,8),那么王刚的座位在__________
2.点A(3,-4)到y轴的距离为____ ___,到x轴的距离为_ ____。

3.(1)若点P(m,1)在第二象限,则Q(,-m,1)在。

(2)若点P的坐标(3-a,-a)在第四象限,则整数a的值为。

(3)若点P到x轴、y轴的距离分别为2、3,则点P的坐标为。

(4)若点P(3,m)到x轴的距离为4,则m的值为。

4.(1)若点A的坐标为(-2,3),则点A关于x轴的对称点A1的坐标是;关于y轴对称点A2的坐标是;关于原点的对称点A3的坐标是。

(2)若将点P向上平移3个单位后得到点(-2,4)则点P的坐标是,将点P向左平移4个单位后得到点的坐标是。

5.已知A B∥x轴,点A的坐标为(3,2),并且AB=5,则点B的坐标为。

M N -2
x y 2
3541-1
-3
26130C B
A -2
x y 2
341
-1
-3-40-3-2-12143D C B
A 三、精讲点拨,整合知识点
例1小月到动物园游玩,回到家后,利用平面直角坐标系画
出动物园地图,如图所示。

可是她忘记了在图中标出原点和x 轴、y 轴,只知道两栖动物的坐标为(4,1),你能帮她求出其他各景点的坐标? 例2如图所示,△A′B′C′是△ABC 经过平移得到的,△ABC 中任意一点P(x1,y1)平移后的对应点为P′(x 1+6,y1+4)。

(1)请写出三角形ABC 平移的过程; (2)分别写出点A′,B′,C′ 的坐标。

(3)求△A′B′C′的面积。

四、变式训练,拓展知识点 1. 如图所示,△BCO 是△BAO 经过某种变换得到的。

(1)图中A 与C 的坐标之间的关系是什么?
(2)如果△AOB 中任意一点M 的坐标为(x, y),那么它的对应
点N 的坐标是什么?
2.如图所示,C ,D 两点的横坐标分别为2,3,线段CD=1;B ,D 两点的横坐标分别为-2,3,线段BD=5;A ,B 两点的横坐标分
别为-3,-2, 线段AB=1
.(1)如果x 轴上有两点M (x 1, 0),N (x 2, 0) (x 1< x 2),那么线段MN 的长为多少?
(2)如果y 轴上有两点P (0, y 1), Q (0, y 2) (y 1<y 2),那么线段PQ 的长为多少?
3.如果点P (a+5,a-2)在x 轴上,那么P 点的坐标为 。

4.已知平面直角坐标系中,点A (0,3),点B 与点A 在同一坐标轴上,且AB=3,则点B 的坐标为 。

5.在平面直角坐标系中,A (-3,4)、B (-1,2),O 为原点,则△AOB 面积为 。

C 'B '
A 'P '(x 1+6,y 1+4)
P(x 1,y 1)-2
x
y
23541-5-1
-3
-40-4-3-2-1214
3
C
B
A
6.点A (3,a )在x 轴上,点B (b ,4)在y 轴上,则a= ,b= ,S △AOB = 。

变式:①已知A (3,a ),B (b ,4)C (3,-4)且A B ∥x 轴,B 、C 关于原点对称,S △AOB = 。

②已知A (3,a ),B (b ,4),且A B ∥x 轴,AB=5,S △AOB = 。

五、课时训练,检测知识点 1.已知两点A (a ,2),B (-1,b ):
(1)点A 到x 轴的距离是 ,到y 轴的距离是 ; (2)若点A 、B 关于x 轴对称,则a= ,b= ; (3)若点A 、B 关于y 轴对称,则a= ,b= ; (4)若线段A B ∥x 轴,则a ,b ; (5)若线段A B ∥y 轴,则a ,b ;
2.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是 。

3.已知点P 的坐标为(5,a ),且点P 在第二、四象限角平分线上,则a = 。

4.已知点M(a ,b),且a ·b >0,a+b <0,则点M 在第 象限。

5.△ABC 中,A(-4,-2),B(-1,-3),C(-2,-1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度,则对应点A ′、B ′、C ′的坐标分别为 、 、 。

6.已知直线A B ∥X 轴,点A 的坐标为(-2,3),点B 的坐标为(2,b ),则b = 。

7.点Q (x, y )在第四象限,且| x | = 3, | y | = 2 , 则点Q 的坐标是 。

六、课后练习,深化知识点
1.在直角坐标系中,点(2,1)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 2.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A.(-4,3) B.(-4,-3) C.(-3,4) D.(-3,-4) 3.点M (2,-3)关于y 轴的对称点N 的坐标是( )
A.(-2,-3)
B.(-2, 3)
C.(2, 3)
D.(-3,2) 4.已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为( ) A .(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 5.已知△ABC 在平面直角坐标系中的位置如图所示,将△ABC 先向下平移5个单位,再向左平移2个单位,则平移后C 点的坐标是( )
A .(5,-2)
B .(1,-2)
C .(2,-1)
D .(2,-2)
6.如图,在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶点,
构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A .(-3,1)
B .(4,1)
C .(-2,1)
D .(2,-1)
7.如果用(7, 2)表示七年级二班,则八年级四班可表示成______________。

8.由坐标原点O (0, 0),A (-2, 0),B (-2, 3)三点围成的三角形ABO 的面积为______。

9.点P (a ,b )在第四象限,则点Q (b ,-a )在第_______象限。


10.已知点P 在第二象限两坐标轴所成角的平分线上,且到x 轴的距离为3,则点P 的坐标为______________。

第5题
11.在同一坐标系中,图形a是图形b向上平移3个单位长度得到的,如果在图形a中点A坐标为(5,-3),则图形b中与点A对应的点A 的坐标为_______________。

12.已知线段AB=3,AB∥x轴,若点A坐标为(1, 2),则B点坐标为___________。

13.如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标。

14.如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).
(1)确定这个四边形的面积,你是怎么做的?
(2)如果把原来ABCD各个顶点的纵坐标保持不变,横坐
标增加2,所得的四边形面积又是多少?
15.如图在直角坐标系中第一次将△OAB变换成△OA1B1,第二次又变换△OA2B2第三次变换成△OA3B3,已知:A(1,3)A1(-2,-3)A2(4,3)A3(-8,3);B(2,0)B1(-4,0)
B2(8,0)B3(-16,0)
观察每次变化前后的三角形有何变化,找出其中的规律,按此变化规律变换成
△0A4B4则点A4的坐标为,点B4的坐标为。

若按第(1题)中找到的规律将△OAB进行了n次变换,得到的△OAnBn推测点An坐标为,点Bn坐标为。

相关文档
最新文档