(完整word版)电力电子必备知识点

合集下载

电力电子基础知识归纳

电力电子基础知识归纳

电力电子基础知识归纳
1. 电力电子的定义
电力电子是一门关于控制和转换电能的学科,研究通过电子器件和电子控制实现电能的有效转换和控制。

2. 电力电子器件
2.1 双向开关器件
- MOSFET(金属氧化物半导体场效应晶体管)
- IGBT(绝缘栅双极晶体管)
2.2 单向开关器件
- 可控硅(SCR)
- 双向可控硅(GTO)
- 快速开关二极管(FRED)
- 二极管
3. 电力电子应用领域
3.1 变频器
变频器是一种通过改变电源频率来控制电机转速的装置,广泛应用于工业驱动运动控制等领域。

3.2 逆变器
逆变器是一种将直流电能转换为交流电能的装置,用于太阳能发电、电动车等领域。

3.3 交流调压器
交流调压器是一种能够调节交流电压的装置,常用于家庭和办公室电器的稳压供电。

4. 电力电子系统的优势
- 高效率:电力电子系统能够提高能源利用效率,减少能源浪费。

- 高精度:电力电子系统可以实现精确的电能控制和调节。

- 可靠性:电力电子系统具有较高的可靠性和稳定性。

以上是对电力电子基础知识的简要归纳,希望对您有所帮助。

如需更详细的信息,请参考相关教材和资料。

大二电力电子技术基础知识点总结

大二电力电子技术基础知识点总结

大二电力电子技术基础知识点总结如下是大二电力电子技术基础知识点的总结:电力电子技术是电气工程领域的重要分支之一,它主要涉及电力电子器件和电力电子电路的设计与应用。

在大二的学习中,我们接触到了很多电力电子技术的基础知识点,这些知识点对于我们的学习和未来的工作都有着重要的意义。

下面是对这些知识点的总结:1. 电力电子器件电力电子器件是实现电力电子技术的基石,常见的电力电子器件有功率场效应管(MOSFET)、双极型晶体管(BJT)、绝缘栅双极型晶体管(IGBT)等。

这些器件具有不同的特性和应用场景,我们需要掌握它们的工作原理、特性参数以及选型和驱动方法。

2. 电力电子电路电力电子电路是电力电子技术的核心,其中包括直流-直流变换器、直流-交流变换器、交流-交流变换器等。

我们需要了解这些电路的结构和工作原理,掌握它们的控制方法、效率计算以及应用领域。

3. 开关功率器件开关功率器件是电力电子电路的关键组成部分,常见的开关功率器件有晶闸管(SCR)、双向可控硅(Triac)、发光二极管(LED)等。

了解开关功率器件的工作原理、特性和保护方法,能够更好地设计和应用电力电子电路。

4. 电力电子变换器电力电子变换器是实现电能的变换与调控的关键设备,常见的电力电子变换器有直流电压变换器、直流电流变换器、交流电压变换器等。

我们需要了解这些变换器的结构和动作原理,掌握它们的控制策略、效率计算以及在电力系统中的应用。

5. 短路保护与故障诊断在电力电子技术应用中,短路故障是常见的问题。

我们需要学习短路保护的原理和方法,能够设计和应用短路保护电路。

同时,故障诊断技术也十分重要,我们需要了解故障诊断的基本原理和方法,能够快速准确地分析和解决故障问题。

6. 可编程控制器(PLC)在电力电子技术中的应用近年来,可编程控制器在电力电子技术中的应用越来越广泛。

我们需要了解PLC的基本原理和应用技巧,能够利用PLC实现电力电子设备的自动控制和远程监控。

电力电子必备知识点

电力电子必备知识点

电力电子必背知识点1.电力电子电路中能实现电能的变换和控制的半导体电子器件称为电力电子器件(Power Electronic Device)。

2.电力电子器件的基本特性注:很重要,一定记住(1)电力电子器件一般都工作在开关状态。

(2)电力电子器件的开关状态由(驱动电路)外电路来控制。

(3)在工作中器件的功率损耗(通态、断态、开关损耗)很大。

为保证不至因损耗散发的热量导致器件温度过高而损坏,在其工作时一般都要安装散热器。

3.按器件的开关控制特性可以分为以下三类:①不可控器件:器件本身没有导通、关断控制功能,而需要根据电路条件决定其导通、关断状态的器件称为不可控器件。

如:电力二极管(Power Diode);②半控型器件:通过控制信号只能控制其导通,不能控制其关断的电力电子器件称为半控型器件。

如:晶闸管(Thyristor)及其大部分派生器件等;③全控型器件:通过控制信号既可控制其导通又可控制其关断的器件,称为全控型器件。

如:门极可关断晶闸管(Gate-Turn-Off Thyristor )、功率场效应管(Power MOSFET)和绝缘栅双极型晶体管(Insulated-Gate Bipolar Transistor)等。

4.前面已经将电力电子器件分为不可控型、半控型和全控型。

按控制信号的性质不同又可分为两种:①电流控制型器件:此类器件采用电流信号来实现导通或关断控制。

如:晶闸管、门极可关断晶闸管、功率晶体管、IGCT等;②电压控制半导体器件:这类器件采用电压控制(场控原理控制)它的通、断,输入控制端基本上不流过控制电流信号,用小功率信号就可驱动它工作。

如:代表性器件为MOSFET管和IGBT管。

5.几点结论(重要)1.晶闸管具有单向导电和可控开通的开关特性。

2.晶闸管由阻断状态转为导通状态时,应具备两个条件:从主电路看,晶闸管应承受正向阳极电压;从控制回路看,应有符合要求的正向门极电流。

3.晶闸管导通后,只要具备维持导通的主回路条件,晶闸管就维持导通状态,门极便失去控制作用,其阳极电流由外电路决定。

(完整word版)电力电子教材重点知识点总结

(完整word版)电力电子教材重点知识点总结

《电力电子技术》期末复习题第1章绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。

2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现,也叫斩波电路(4)交流变交流AC-AC:可以是电压或电力的变换,一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。

4、相控方式;对晶闸管的电路的控制方式主要是相控方式5、斩空方式:与晶闸管电路的相位控制方式对应,采用全空性器件的电路的主要控制方式为脉冲宽度调制方式。

相对于相控方式可称之为斩空方式。

第2章电力电子器件1 电力电子器件与主电路的关系(1)主电路:电力电子系统中指能够直接承担电能变换或控制任务的电路。

(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。

广义可分为电真空器件和半导体器件。

2 电力电子器件一般特征:1、处理的电功率小至毫瓦级大至兆瓦级。

2、都工作于开关状态,以减小本身损耗。

3、由电力电子电路来控制。

4、安有散热器3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。

(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。

(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。

(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。

4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。

如SCR晶闸管。

(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。

如GTO、GTR、MOSFET和IGBT。

(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。

电力电子复习提纲--南京工程学院

电力电子复习提纲--南京工程学院
③◆安全工作区: A、正偏安全工作区(FBSOA)——最大集电极电流、最大集射极间电压 和最大集电极功耗确定。 B、反向偏置安全工作区(RBSOA)——最大集电极电流、最大集射极间 电压和最大允许电压上升率 duCE/dt 确定。 ④在 1/2 或 1/3 额定电流以下的区段,通态压降具有负的温度系数;在以上 的区段则具有正温度系数,并联使用时也具有电流的自动均衡能力,易于并联。 (9)电力电子器件对触发脉冲的要求 ①Thysistor:幅值、宽度、门极安全触发区域、可靠性 ②GTO:幅值和陡度要求更高,关断加 5V 负偏压 ③GTR:开通处于准饱和,关断加 6V 负偏压 ④Power MOSFET:开通的驱动电压一般 10—15V,关断时施加-5—-15V
4
负偏压 ⑤IGBT:开通的驱动电压一般 15—20V,关断时施加-5—-15V 负偏压
(10)保护 ①过电压 A、外因:a、雷击 b、操作 B、内因:a、换相 b、关断 最常见内因过电压保护措施:RC 保护电路,C 两端电压不能突变,R 消耗
过电压能量 ②过电流:A、短路 B、过载 最常见过电流保护措施:快速熔断器(简称快熔)
5
第三章 整流电路
1、复习方法 (1)电路原理图 (2)工作原理 (3)波形分析 (4)定量计算 ①输出电压、电流的平均值和有效值②流过晶闸管电流的平均值、有效值③变 压器二次绕组电流④元器件和设备选取⑤功率因数⑥变压器二次绕组电流和输 出电压的谐波分析 (5)主要特点 2、基本概念: (1)相控和斩控 (2)自然换相点 (3)控制角 (4)导通角 (5)移相范围 (6)同步 (7)导电停止角 (8)换流或换相 (9)单拍和双拍 (10)直流磁化 (11)基波和谐波 (12)总谐波畸变率(THD) (13)电压或电流纹波因数 3、基本公式见附表: (1)阻感负载时,注意电感电流不能突变,电感反感应电动势阻止电流的变化, 由于电感的储能在电源电压变负后晶闸管会继续导通,输出电压出现负的部分。 负载电流随负载电感的大小而变化,通常情况下讨论负载电感很大(电感极大、

(完整word版)电力电子必备知识点(良心出品必属精品)

(完整word版)电力电子必备知识点(良心出品必属精品)

电力电子必背知识点1.电力电子电路中能实现电能的变换和控制的半导体电子器件称为电力电子器件(Power Electronic Device)。

2.电力电子器件的基本特性注:很重要,一定记住(1)电力电子器件一般都工作在开关状态。

(2)电力电子器件的开关状态由(驱动电路)外电路来控制。

(3)在工作中器件的功率损耗(通态、断态、开关损耗)很大。

为保证不至因损耗散发的热量导致器件温度过高而损坏,在其工作时一般都要安装散热器。

3.按器件的开关控制特性可以分为以下三类:① 不可控器件:器件本身没有导通、关断控制功能,而需要根据电路条件决定其导通、关断状态的器件称为不可控器件。

如:电力二极管(Power Diode);②半控型器件:通过控制信号只能控制其导通,不能控制其关断的电力电子器件称为半控型器件。

如:晶闸管(Thyristor)及其大部分派生器件等;③全控型器件:通过控制信号既可控制其导通又可控制其关断的器件,称为全控型器件。

如:门极可关断晶闸管(Gate-Turn-Off Thyristor )、功率场效应管(Power MOSFET)和绝缘栅双极型晶体管(Insulated-Gate Bipolar Transistor)等。

4.前面已经将电力电子器件分为不可控型、半控型和全控型。

按控制信号的性质不同又可分为两种:① 电流控制型器件:此类器件采用电流信号来实现导通或关断控制。

如:晶闸管、门极可关断晶闸管、功率晶体管、IGCT等;② 电压控制半导体器件:这类器件采用电压控制(场控原理控制)它的通、断,输入控制端基本上不流过控制电流信号,用小功率信号就可驱动它工作。

如:代表性器件为MOSFET管和IGBT管。

5.几点结论(重要)1.晶闸管具有单向导电和可控开通的开关特性。

2.晶闸管由阻断状态转为导通状态时,应具备两个条件:从主电路看,晶闸管应承受正向阳极电压;从控制回路看,应有符合要求的正向门极电流。

电力电子技术_基础知识

电力电子技术_基础知识

电力电子系统集成化研ቤተ መጻሕፍቲ ባይዱ成为热点,目前主要集中
于电力电子器件与控制电路的集成、磁性元件的集 成两大块。
三、电力电子技术的应用
电源
弧焊电源 电解、电镀电源 不停电电源(UPS) 恒频恒压电源 直流开关电源 充电电源 感应加热电源 脉冲电源、激光电源 。。。
数码产品广泛应用各类开关电源
新能源应用
风能、太阳能、潮汐能、地热能等应用
电网电源常见问题波形示意图
未来电力系统将大量应用电力电子 技术以提高电力品质和供电效率
风力、太阳能发电系统
风力发电
太阳能发电
三、电力电子技术的应用
照明
各类气体放电灯 电子镇流器 LED照明驱动器
西湖夜景
杭州湾大桥
集中运行中心
面向军事应用领域举例
电力电子技术与电能控制的关系
一、什么是电力电子学
典型的电力电子系统
电流采样
二、电力电子技术的发展与现状
电力电子器件的进步推动电力电子学的变革发展
1957年通用电气公司发明晶闸管,标志着电力电子技术的 诞生,相控变换技术广泛应用;
20世纪70年代后期,GTO、GTR、P-MOSFET迅速发
展,PWM控制技术推广应用; 20世纪80年代后期,IGBT开始推广应用,大功率变换进
入以IGBT+PWM技术为主流的时代;
20世纪90年代,为降低器件开关损耗,软开关技术开始推 广应用;
二、电力电子技术的发展与现状
进入21世纪以后
为了实现高频和低 EMI 的大功率变换,多电平变换 技术逐步推广应用;
船用操作变流器模块
配电模块
燃料电池

《电力电子技术》学习资料

《电力电子技术》学习资料

《电力电子技术》学习资料概述本文档旨在提供关于电力电子技术的研究资料,帮助读者了解该领域的基本概念和原理。

1. 电力电子技术简介- 电力电子技术是指利用电子器件和电力技术,将电能进行控制、变换和传输的技术领域。

- 电力电子技术广泛应用于电力系统、工业控制、电动车辆、电力传输等领域。

2. 电力电子技术的重要原理与器件2.1 可控硅器件- 可控硅器件是电力电子技术中最基本的器件之一。

- 可控硅器件可以实现对电能的方向、大小以及周期进行控制,广泛应用于电动机控制、电能变换等领域。

2.2 逆变器与变频器- 逆变器用于将直流电转换为交流电,常用于太阳能发电系统、UPS系统等。

- 变频器用于控制交流电机的转速和转矩,广泛应用于变频空调、工业驱动等领域。

2.3 共模电路- 共模电路用于电力系统的滤波和隔离。

- 共模电路能够有效抑制电力系统中的干扰信号和电磁波。

2.4 光伏逆变器- 光伏逆变器是将光伏电池所产生的直流电转换为交流电的装置。

- 光伏逆变器广泛应用于太阳能发电系统,为电网注入可再生能源。

3. 电力电子技术的应用3.1 电力系统- 电力电子技术在电力系统中起到重要作用,可以实现电力的传输、分配和控制。

- 电力电子技术能够提高电力系统的稳定性和效率。

3.2 工业控制- 电力电子技术在工业控制中应用广泛,如电动机控制、自动化生产线等。

- 电力电子技术可以实现对电力的精确控制和调节。

3.3 电动车辆- 电力电子技术是电动车辆关键技术之一。

- 电力电子技术可以实现电动车辆的电能转换和控制,提高能源利用效率。

3.4 可再生能源- 电力电子技术在可再生能源的应用中起到重要作用。

- 电力电子技术可以将风能、光能等可再生能源转换为可用的电能,推动可再生能源的开发利用。

总结本文档介绍了电力电子技术的基本概念、重要原理与器件,以及其在电力系统、工业控制、电动车辆和可再生能源中的应用。

通过学习电力电子技术,读者可以更深入了解和应用这一领域的知识。

电力电子技术知识点总结

电力电子技术知识点总结

电力电子技术知识点总结一、电力电子器件1. 晶闸管:晶闸管是一种具有双向导电性能的电子器件,可以控制大电流、大功率的交流电路。

其结构简单,稳定性好,具有一定的可逆性,可用作直流电压调节元件、交流电压调节元件、静止开关、逆变器等。

2. 可控硅:可控硅是一种具有双向导电性的半导体器件,具有控制开关特性,可用于控制大电流、大功率的交流电路。

可控硅具有可控性强,工作稳定等特点,适用于电力调节、交流电源、逆变器等领域。

3. MOSFET:MOSFET是一种以金属氧化物半导体栅极场效应晶体管为基础的器件,和普通的MOS晶体管相比,MOSFET在导通电阻上有较低的压降、耗散功率小、寄生电容小、开关速度快等优点,适用于开关电路、逆变器、电源调节等领域。

4. IGBT:IGBT是一种继承了MOSFET和双极晶体管的特点的半导体器件,具有高阻塞电压、低导通压降、大电流、耐脉冲电流等特点,适用于高频开关电路、变频器、电源逆变器、电机调速等领域。

5. 二极管:二极管是最基本的电子元件之一,具有正向导通和反向截止的特点,广泛用于整流、短路保护、开关电源等方面。

以上所述的电力电子器件是电力电子技术的基础,掌握了这些器件的特性和应用,对于电力电子技术的学习和应用具有重要的意义。

二、电力电子拓扑结构1. 变流器拓扑结构:变流器是电力电子技术中的一种重要装置,用于将直流电转换为交流电或者改变交流电的频率、电压和相数等。

常见的变流器拓扑结构包括单相全桥变流器、三相全桥变流器、单相半桥变流器、三相半桥变流器等。

2. 逆变器拓扑结构:逆变器是电力电子技术中的一种重要装置,用于将直流电转换为交流电,逆变器可以选择不同的拓扑结构和控制策略,以满足不同的电力系统需求。

常见的逆变器拓扑结构包括单相全桥逆变器、三相全桥逆变器、单相半桥逆变器、三相半桥逆变器等。

3. 母线型柔性直流输电系统:母线型柔性直流输电系统是一种新型电力电子系统,用于将大容量的交流电转换为直流电进行长距离输电。

电力电子期末知识点

电力电子期末知识点

电力电子期末知识点电力电子是研究将电能进行变换、控制和调节的技术领域,广泛应用于电力系统、交通运输、工业控制和家庭电器等领域。

本文将介绍电力电子的一些重要知识点。

一、电力电子器件 1. 二极管:是最基本的电力电子器件之一,具有单向导电性质,常用于整流电路。

2. 可控硅:也称为晶闸管,具有双向导电性质,可通过控制信号来控制其导通和截止。

3. 三极管:是一种放大器件,常用于交流电路中的放大和开关控制。

4. MOSFET:金属氧化物半导体场效应晶体管,具有高速度和低功耗特点,常用于高频开关电路。

二、电力电子转换器 1. 整流器:用于将交流电转换为直流电,常见的整流器包括单相和三相整流桥。

2. 逆变器:用于将直流电转换为交流电,常用于太阳能发电、UPS电源等领域。

3. DC-DC变换器:用于将直流电的电压进行变换,可实现电能调节和变压缩效果。

4. AC-DC变换器:用于将交流电的电压进行变换,常见的应用是电力系统中的变电站。

三、电力电子控制技术 1. 脉宽调制(PWM):通过改变信号的占空比来控制电力电子器件的导通时间,实现电能的调节。

2. 电流控制技术:通过对电流进行感知和控制,实现电力电子器件的精确控制。

3. 电压控制技术:通过对电压进行感知和控制,实现电力电子器件的精确控制。

4. 控制策略:根据不同的应用场景和需求,选择合适的控制策略,如电流环控制、电压环控制等。

四、电力电子应用案例 1. 交流电动机驱动:电力电子技术在交流电动机的驱动中广泛应用,可以提高效率和控制精度。

2. 可再生能源发电:电力电子技术在太阳能、风能等可再生能源的发电中发挥重要作用。

3. 电力系统调节:电力电子技术可以用于电力系统的调节和控制,如无功补偿、电压调节等。

4. 能量转换和储存:电力电子技术在能量转换和储存中扮演重要角色,如电动汽车、储能系统等。

综上所述,电力电子是一门研究电能变换、控制和调节的技术学科,包括电力电子器件、转换器、控制技术和应用案例等方面。

电力电子知识点总结

电力电子知识点总结

第一章电力电子技术是应用于电力领域的电子技术,也就是使用电力电子器件对电能进行变换和控制的技术。

电子技术包括信息技术和电力电子技术两大分支。

电力电子器件:半控器件:晶闸管( SCR)、门极可关断晶闸管(GTO)。

全控器件:电力晶体管(GTR)、绝缘栅双极晶体管(IGBT)、电力场效应晶体管(电力MOSFET)。

不可控器件:电力二极管(整流二极管)电力电子器件的分类:按照驱动电路信号的性质,分为两类:电流驱动型:晶闸管SCR、门极可关断晶闸管GTO、电力晶体管 GTR电压驱动型:电力场效应晶体管MOSFET、绝缘栅双极晶体管IGBT按照器件内部参与导电的情况分为两类:单极型器件:电力MOSFET双极型器件:电力二极管、晶闸管SCR、门极可关断晶闸管GTO、电力晶体管 GTR混合型器件:绝缘栅双极晶体管IGBT晶闸管正常工作时的特性:承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。

承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。

晶闸管一旦导通,门极就失去控制作用。

若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。

关断时间大于晶闸管的电路换向关断时间,才能可靠关断。

GTO能够通过门极关断的原因是其与普通晶闸管有如下区别:设计α2较大,使晶体管V2控制灵敏,易于GTO关断。

导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。

多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。

晶闸管非正常导通的几种情况:阳极电压升高至相当高的数值照成雪崩现象;阳极电压上升率过高;结温较高;光直接照射硅片,即光触发;第二章单向可控整流电路:单向半波可控整流电路:A电阻负载:相关概念:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用α表示,也称触发角或控制角。

晶闸管在一个电源周期中处于通态的电角度,用θ表示。

θπα=-通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式,简称相控方式。

(整理)电力电子教材重点知识点总结

(整理)电力电子教材重点知识点总结

《电力电子技术》复习题第1章绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。

2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现,也叫斩波电路(4)交流变交流AC-AC:可以是电压或电力的变换,一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。

4、相控方式;对晶闸管的电路的控制方式主要是相控方式5、斩空方式:与晶闸管电路的相位控制方式对应,采用全空性器件的电路的主要控制方式为脉冲宽度调制方式。

相对于相控方式可称之为斩空方式。

第2章电力电子器件1 电力电子器件与主电路的关系(1)主电路:电力电子系统中指能够直接承担电能变换或控制任务的电路。

(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。

广义可分为电真空器件和半导体器件。

2 电力电子器件一般特征:1、处理的电功率小至毫瓦级大至兆瓦级。

2、都工作于开关状态,以减小本身损耗。

3、由电力电子电路来控制。

4、安有散热器3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。

(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。

(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。

(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。

4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。

如SCR晶闸管。

(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。

如GTO、GTR、MOSFET和IGBT。

(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。

电力电子教材知识点部分总结

电力电子教材知识点部分总结

电力电子教材知识点部分总结电力电子是电力工程领域中的一个重要分支,也是电子工程的一个重要方向。

电力电子技术应用广泛,涉及到交流电气传输、电力调制、变频调速等众多领域。

要学好电力电子,需要了解不少的知识点。

本文就电力电子教材知识点部分进行总结。

1. 交流电路分析交流电路是由交流电源、电路元件和负载组成的电路,交流电路分析是电路基础。

电力电子中交流电路分析知识点需要掌握交流电路电压、电流的特性,相位、相角、频率、幅值等概念,掌握交流电路瞬时值、平均值、有效值和相位差的计算公式。

2. 稳压电路稳压电路是将电压经过稳定处理后保持不变的电路。

电力电子中稳压电路常用的元件为二极管和稳压集成电路,稳压电路的分类有电阻型稳压电路和Zener二极管稳压电路。

3. 开关电源开关电源是一种高效率、小体积、轻重量的电源。

开关电源采用交流电源输入,通过充电电路进行充电,再通过开关变换器和滤波器输出转换后直流电。

开关电源安全性高,稳定性好,应用范围广泛。

4. 电力变换器电力变换器主要用于交流电能转换,在交流电源和交流负荷之间完成电力转换功能。

电力电子中常用的电力变换器有单相桥式变流电路、三相桥式变流电路、斩波电路、谐振电路、滤波电路等。

5. 脉宽调制技术脉宽调制是指根据交流负载需要的输出信号来控制开关的时间或周期,从而控制输出电压的大小,从而实现交流电气传输、电机调速等功能。

电力电子中常用的脉宽调制技术有PWM调制和SPWM调制。

本文概述了电力电子教材中的五个知识点,涵盖了电力电子的基础知识、电路分析、开关电源、电力变换器等方面。

电力电子这个领域发展迅速,知识点也在不断更新,需要持续学习和掌握最新技术才能应用于实际工程中,为电力行业的发展做出贡献。

电工电子知识点总结

电工电子知识点总结

电工电子知识点总结引言电工电子是一个重要的技术领域,它涉及到电力的生成、传输、分配和使用等方面。

在现代社会,电力已经成为人们生活中不可或缺的一部分。

因此,了解电工电子的基本知识对于我们理解和应用电力技术至关重要。

本文将总结一些重要的电工电子知识点,希望能为读者提供有用的信息。

电路基础知识电压、电流和电阻•电压是电力的推动力量,单位为伏特(V)。

•电流是电力的传输载体,单位为安培(A)。

•电阻是电流流动的阻碍,单位为欧姆(Ω)。

电路中的欧姆定律欧姆定律是描述电路中电压、电流和电阻之间关系的基本定律。

根据欧姆定律,可以得出以下公式:电压 = 电流 × 电阻或V = I × R其中V代表电压,I代表电流,R代表电阻。

串联和并联电路•串联电路是指多个电器连接在同一条回路中,电流依次通过每个电器。

串联电路中,总电阻等于各个电阻的和。

•并联电路是指多个电器并联连接在回路中,电流分流通过各个电器。

并联电路中,总电阻等于各个电阻的倒数的和的倒数。

电机和发电机直流电机和交流电机•直流电机是一种能将直流电能转换成机械能的电动机。

它由电枢、磁场和集电刷组成,根据磁场类型不同,可分为永磁直流电机和励磁直流电机。

•交流电机是一种能将交流电能转换成机械能的电动机。

常见的交流电机有感应电动机和同步电动机。

发电机发电机是一种将机械能转换成电能的设备。

根据工作原理的不同,发电机可分为交流发电机和直流发电机。

电气安全知识避雷器和保护器•避雷器是一种用于保护电力设备和线路免受雷击等大气电压过大的装置。

它可将过大的电压导向地面,保护设备的安全运行。

•保护器是一种用于检测电路故障,并自动切断电力的装置。

常见的保护器有过载保护器、短路保护器和漏电保护器等。

绝缘和接地•绝缘是指用于隔离电力设备的绝缘材料,防止电流通过。

绝缘材料通常使用橡胶、塑料等。

•接地是将电力设备的金属外壳与地面连接,以提供一个安全的回路,防止电流通过人体造成触电。

电力电子技术知识点汇总

电力电子技术知识点汇总

电力电子技术1.以电力为处理对象的电子技术称为电力电子技术。

它是一门利用电力电子器件对电能进行控制和转换的学科。

2.电力交换分为:交直变换(AC-DC 整流)直交变换(DC-AC 逆变)交交变换(AC-AC 交交变换)直直变换(DC-DC 斩波)3.1957年美国的通用电气公司研制出第一个晶闸管。

4.电源:直流电源,恒压恒频交流电源,变压变频电源。

5.电源涉及不间断电源、电解电源、电镀电源、开关电源(SMPS)、计算机及仪器仪表电。

6.高压直流输电(HVDC)晶闸管控制电抗器(TCR)晶闸管投切电容器(SVC)有源电力滤波(APF)7.为了减小本身的损耗,提高效率,电力电子器件一般工作在开关状态。

8.低频时通态损耗电力电子器件功率损耗的主要成因;器件开关频率较高,开关损耗随增大而成为器件功率损耗主要因素。

9.电力二极管:螺栓型和平板型两种封装。

10.当施加的反向电压过大时,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就是反向击穿。

反向电流未被限制住,使得反向电流和反向电压的乘积超过了PN 结所容许的耗散功率,就会因热量散发不出去而导致PN结温度上升,直至过热而烧毁,这就是热击穿。

PN结的电荷量随外加电压而变化,呈现一定的电容效应。

11.正向平均电流IF(Av)是指电力二极管长期运行时,在指定的管壳温皮平均值取标散热条件下,其允许流过的最大工频正弦平波电流的平均值。

肖特基二极管是单极器件12.为保证可靠,安全触发,触发电路所提供的触发电压、电流和功率都限制在可靠触发区。

13.实际中,应对晶闸管施加足够长时间的反向电压,使其充分恢复对正向电压的阻断能力,才能使晶闸管可靠关断。

14.GTR一般采用共发射极接法。

为了保证安全,最高工作电压Ucem要比BUceo低的多。

15.当GTR的集电极电压升高至一次击穿电压临界值BUcEo时,集电极电流Ic会迅速增大,出现雪崩击穿,称之为一次击穿,一次击穿也称为电压击穿。

电力电子知识点总结

电力电子知识点总结

电力电子知识点总结一、电力电子的基本原理电力电子是运用半导体器件实现电能的变换、控制和调节的技术领域。

在电力电子领域中最常用的器件是晶闸管、可控硅、晶闸管二极管、IGBT等。

它们通过对电压和电流的控制,实现将电能从一种形式转换为另一种形式。

电力电子的基本原理可以分为电力电子器件、电力电子电路和电力电子系统三个方面。

1. 电力电子器件电力电子器件是实现电力电子技术的基础。

常见的电力电子器件有晶闸管、可控硅、三端闭管、IGBT等,在电力电子中起着至关重要的作用。

晶闸管是一种四层结构的半导体器件,能够控制电流的导通和截止,实现电能的控制和调节。

可控硅是一种三端器件,具有双向导通特性,广泛应用于交流电路中。

IGBT集结了MOS管和双极型晶体管的优点,具有高开关速度、低导通压降等特点,是目前应用范围最广泛的功率器件之一。

2. 电力电子电路电力电子电路是利用电力电子器件构成的电路,实现对电能的控制和调节。

常见的电力电子电路包括整流电路、逆变电路、斩波电路等。

整流电路能够将交流电转换为直流电,逆变电路能够将直流电转换为交流电,斩波电路能够实现对电压和频率的调节。

这些电路在各种电力电子设备中得到了广泛应用,如变频调速器、逆变焊接电源等。

3. 电力电子系统电力电子系统是由多个电力电子电路组成的系统,实现对电能的复杂控制和转换。

常见的电力电子系统包括交流电调压系统、柔性直流输电系统、电能质量调节系统等。

这些系统在能源转换、传输和利用方面发挥着关键作用,是现代电力系统中不可或缺的一部分。

二、电力电子的常见器件和应用电力电子领域中常见的器件有晶闸管、可控硅、IGBT等。

而在现代工业中,电力电子技术得到了广泛的应用,如变频调速器、逆变焊接电源、电动汽车充电设备等。

1. 变频调速器变频调速器是一种能够实现电机转速调节的设备,它利用电力电子技术对电机供电进行控制,实现对电机转速的调节。

通过变频调速器,可以实现电机的恒流恒功率调节,使得电动汽车、电梯、风力发电机等设备具有更加灵活和高效的性能。

(完整版)电力电子技术简答题重点

(完整版)电力电子技术简答题重点

(完整版)电力电子技术简答题重点1. 晶闸管导通的条件是什么?关断的条件是什么?答: 晶闸管导通的条件: 应在晶闸管的阳极与阴极之间加上正向电压。

应在晶闸管的门极与阴极之间也加上正向电压和电流。

晶闸管关断的条件: 要关断晶闸管, 必须使其阳极电流减小到维持电流以下,或在阳极和阴极加反向电压。

晶闸管维持的条件要维持晶闸管, 必须使其晶闸管电流大于到维持电流。

2. 变压器漏感对整流电路的影响(1)出现换相重叠角r,整流输出电压平均值Ud降低。

( 2)整流电路的工作状态增多( 3)晶闸管的di/dt 减小,有利于晶闸管的开通。

( 4)换相时晶闸管电压出现缺口,产生正的du/dt, 可能使晶闸管误导通,为此必须加吸收电路.( 5)换相使电网电压出现缺口,成为干扰源。

3. 什么是谐波,什么是无功功率,们的危害. 为建立交变磁场和感应磁通而需要的电功率成为无功功率,电力电子装置消耗无功功率,对公用电网的不利影响:( 1 )无功功率会导致电流增大和视在功率增加,导致设备容量增加;( 2)无功功率增加,会使总电流增加,从而使设备和线路的损耗增加( 3)无功功率使线路压降增加,冲击性无功负载还会使电压剧烈波动。

谐波是指电流中所含有的频率为基波的整数倍的电量,电力电子装置产生谐波,对公用电网的危害:( 1)谐波使电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率,大量的三次谐波流过中性线会使线路过热甚至发生火灾;( 2)谐波影响各种电气设备的正常工作,使电机发生机械振动、噪声和过热,使变压器局部严重过热,使电容器、电缆等设备过热、使绝缘老化、寿命缩短以至损坏;(3)谐波会引起电网中局部的并联谐振和串联谐振,从而使谐波放大会使危害大大增大,甚至引起严重事故;(4)谐波会导致继电保护和自动装置的误动作,并使电气测量仪表计量不准确;( 5)谐波会对领近的通信系统产生干扰,轻者产生噪声,降低通信质量,重者导致信息丢失,使通信系统无法正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子必背知识点1.电力电子电路中能实现电能的变换和控制的半导体电子器件称为电力电子器件(Power Electronic Device)。

2.电力电子器件的基本特性注:很重要,一定记住(1)电力电子器件一般都工作在开关状态。

(2)电力电子器件的开关状态由(驱动电路)外电路来控制。

(3)在工作中器件的功率损耗(通态、断态、开关损耗)很大。

为保证不至因损耗散发的热量导致器件温度过高而损坏,在其工作时一般都要安装散热器。

3.按器件的开关控制特性可以分为以下三类:①不可控器件:器件本身没有导通、关断控制功能,而需要根据电路条件决定其导通、关断状态的器件称为不可控器件。

如:电力二极管(Power Diode);②半控型器件:通过控制信号只能控制其导通,不能控制其关断的电力电子器件称为半控型器件。

如:晶闸管(Thyristor)及其大部分派生器件等;③全控型器件:通过控制信号既可控制其导通又可控制其关断的器件,称为全控型器件。

如:门极可关断晶闸管(Gate-Turn-Off Thyristor )、功率场效应管(Power MOSFET)和绝缘栅双极型晶体管(Insulated-Gate Bipolar Transistor)等。

4.前面已经将电力电子器件分为不可控型、半控型和全控型。

按控制信号的性质不同又可分为两种:①电流控制型器件:此类器件采用电流信号来实现导通或关断控制。

如:晶闸管、门极可关断晶闸管、功率晶体管、IGCT等;②电压控制半导体器件:这类器件采用电压控制(场控原理控制)它的通、断,输入控制端基本上不流过控制电流信号,用小功率信号就可驱动它工作。

如:代表性器件为MOSFET管和IGBT管。

5.几点结论(重要)1.晶闸管具有单向导电和可控开通的开关特性。

2.晶闸管由阻断状态转为导通状态时,应具备两个条件:从主电路看,晶闸管应承受正向阳极电压;从控制回路看,应有符合要求的正向门极电流。

3.晶闸管导通后,只要具备维持导通的主回路条件,晶闸管就维持导通状态,门极便失去控制作用,其阳极电流由外电路决定。

4.欲使晶闸管关断,必须从主电路采取措施,使晶闸管阳极电流下降至维持电流之下,通常还要施加一定时间的反向阳极电压。

6.晶闸管的正向特性IG=0时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。

随着门极电流幅值的增大,正向转折电压降低。

导通后的晶闸管特性和二极管的正向特性相仿。

晶闸管本身的压降很小,在1V 左右。

导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态。

Ih称为维持电流。

7.晶闸管的反向特性晶闸管上施加反向电压时,伏安特性类似二极管的反向特性。

晶闸管处于反向阻断状态时,只有极小的反相漏电流流过。

当反向电压超过一定限度,到反向击穿电压后,外电路如无限制措施,则反向漏电流急剧增加,导致晶闸管发热损坏。

1)维持电流IH:在室温下门极断开时,元件从较大的通态电流降至刚好能保持导通的最小阳极电流为维持电流IH 。

2)掣住电流IL :给晶闸管门极加上触发电压,当元件刚从阻断状态转为导通状态就撤除触发电压,此时元件维持导通所需要的最小阳极电流称掣住电流IL 。

对同一晶闸管来说,掣住电流IL 要比维持电流IH 大2~4倍。

8.通态平均电流─额定电流Ita 的计算方法:57.1)2~5.1(VT Ta I I9.通态电流临界上升率 di/dt 定义:晶闸管能承受而没有损害影响的最大通态电流上升率称通态电流临界上升率 di/dt 。

影响:门极流入触发电流后,晶闸管开始只在靠近门极附近的小区域内导通,随着时间的推移,导通区才逐渐扩大到PN 结的全部面积。

如果阳极电流上升得太快,则会导致门极附近的PN结因电流密度过大而烧毁,使晶闸管损坏。

10.断态电压临界上升率du/dt 定义:把在规定条件下,不导致晶闸管直接从断态转换到通态的最大阳极电压上升率,称为断态电压临界上升率du/dt 。

影响:晶闸管的结面在阻断状态下相当于一个电容,若突然加一正向阳极电压,便会有一个充电电流流过结面,该充电电流流经靠近阴极的PN结时,产生相当于触发电流的作用,如果这个电流过大,将会使元件误触发导通。

11.电力晶体管GTR 的二次击穿 一次击穿:集电极电压升高至击穿电压时,Ic 迅速增大,出现雪崩击穿。

只要Ic 不超过限度,GTR 一般不会损坏,工作特性也不变。

二次击穿:一次击穿发生时Ic 增大到某个临界点时会突然急剧上升,并伴随电压的陡然下降。

常常立即导致器件的永久损坏,或者工作特性明显衰变。

12.MOSFET的特点1.开关速度快,一般为10ns~100ns。

2.温度稳定性好,通态电阻具有正温度系数,可实现自动均流。

3.输入阻抗大、驱动功率小,因此驱动电路也较简单。

4.导通电阻大、通态压降大,因此在大电流时通态损耗较大。

13.散热问题电力半导体器件在电能变换、开关动作中会产生功率损耗,使得器件发热,结面温度上升。

但是,电力半导体器件均有其安全工作区所允许的工作温度(结面温度),无论任何情况下都不允许超过其规定值。

为此,必须要对电力半导体器件进行散热。

电力半导体器件的散热,一般有三种冷却方式:①自然冷却:只适用于小功率应用场;②风扇冷却:适用于中等功率应用场合,如IGBT应用电路;③水冷却:适用于大功率应用场合,如大功率GTO、IGCT及SCR等应用电路;14.IGBT:绝缘栅双极型晶体管,兼具功率MOSFET高速开关特性和GTR的低导通压降特性两者优点的一种复合器件。

IGBT的特点(1) 开关速度高,开关损耗小。

在电压1000V以上时,开关损耗只有GTR的1/10,与电力MOSFET相当。

(2) 相同电压和电流定额时,安全工作区比GTR大,且具有耐脉冲电流冲击能力。

(3) 通态压降比VDMOSFET 低,特别是在电流较大的区域。

(4) 输入阻抗高,输入特性与MOSFET类似。

(5) 与MOSFET和GTR相比,耐压和通流能力还可以进一步提高,同时保持开关频率高的特点。

15.整流电路的整流原理:利用整流管和晶闸管的单相导电开关特性,构成输出单一的电力变换电路,从而将输入的交流电能转换为输出的直流电能。

整流电路通常由整流变压器将电源电压变换为适宜的电压幅值,为负载提供需要的直流电压及合理的电压调整范围。

16.整流电路的基本类型对于n相半波整流电路而言,共有n条整流工作回路,各回路中均含有一个开关元件。

n条整流工作回路的电源电压有一定的相序,相邻两条整流工作回路的电源电压相位差均为2π/n半波整流电路的电源变压器次级绕组只通过单方向电流,变压器利用率低,且有的电路存在直流磁势,造成铁芯直流磁化。

对于n相(单相时n取2)桥式整流电路而言,共有n(n-1)条整流工作回路,各回路中均含有二个开关元件。

各整流工作回路的电源电压有一定的相序,相邻两条整流工作回路的电源电压相位差均为2π/n(n-1)。

17.在不可控整流电路中,整流管将按电源电压变化规律自然换相,自然换相的时刻称为自然换相点。

对于共阴极组接法的半波不可控整流电路而言,为高通电路,即总是相电压最高的一相元件导通。

所以,自然换相点在相邻两相工作回路电源电压波形正半周交点,输出电压波形为电源电压波形正半周包络线。

18.基本概念1.从自然换相点计起,到晶闸管门极触发脉冲前沿为止的时间间隔,以电角度表示,称为控制角α。

在自然换相点给予触发时控制角α=0,改变α便可以改变输出电压波形和平均值。

2 .控制角α的有效变化范围称为移相范围,移相范围决定于整流电路的类型和负载性质。

3. 晶闸管在一个电源周期内的导通时间,以电角度表示,称为导通角θ,在可控整流电路的分析中,应注意其移相范围和导通角θ与控制角α的关系。

4. 通过改变控制角α来调整输出电压的称为相位控制。

5. 触发脉冲和主电路电压在频率和相位上要有相互协调的配合关系,称为同步。

19. 1.电阻负载特点:电压、电流的波形形状相同。

2 .电感性负载(主要指电感与电阻串联的电路)特点:负载电流不能突变,波形分为连续和不连续两种情况。

3.反电势负载(整流输出供蓄电池充电或直流电动机,即负载有反电势)特点:只有当输出电压大于反电动势时才有电流流通,电流波形也呈较大的脉动。

20.主要研究内容和步骤(重要)1.根据开关元件的理想开关特性和负载性质,分析电路的工作过程。

2 .根据电路工作过程得出波形分析,包括输出电压ud、各晶闸管端电压uVT、负载电流id、通过各晶闸管电流iVT、变压器次级i2和初级电流i1等。

3.在波形分析的基础上,求得一系列电量间的基本数量关系,以便对电路进行定量分析。

在设计整流电路时,数量关系可作为选择变压器和开关元件的依据。

21.单相桥式与半波电路比较①、α的移相范围相等,均为0~180°;②、输出电压平均值Ud是半波整流电路的2倍;③、在相同的负载功率下,流过晶闸管的平均电流减小一半;④、功率因数提高了2倍。

单相全控桥式整流电路具有输出电流脉动小,功率因数高,变压器次级中电流为两个等大反向的半波,没有直流磁化问题,变压器的利用率高。

在大电感负载情况下,α接近π/2时,输出电压的平均值接近于零,负载上的电压太小。

且理想的大电感负载是不存在的,故实际电流波形不可能是一条直线,而且在α=π之前,电流就出现断续。

电感量越小,电流开始断续的α值就越小。

22.失控现象与续流二极管当控制角突然增大至180或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,称为失控。

为了防止失控的发生,必须消除自然续流现象:必须加续流二极管,以提供一条通路。

有续流二极管VDR时,续流过程由VDR完成,晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。

同时,续流期间导电回路中只有一个管压降,有利于降低损耗。

应当指出,实现这一功能的条件是VDR 的通态电压低于自然续流回路开关元件通态电压之和,否则不能消除自然续流现象,关断导通的晶闸管。

23. 实现有源逆变的条件为:一是负载侧有一个提供直流电能的直流电动势,电动势的极性对晶闸管而言为正向电压,在整流回路交流电源电压为负期间,提供晶闸管维持导通的条件;二是要求变流器控制角α>π/2,使变流器输出电压极性为负且维持电流连续,提供改变能流方向的条件。

逆变失败(逆变颠覆)变流器为逆变工作状态时,若发生换相失控,就会导致外接电动势通过晶闸管形成短路,或者发生输出平均电压和外接电动势顺向串联形成短路,这种情况称为逆变失败或称为逆变颠覆。

相关文档
最新文档