七年级数学有理数单元测试题_2

合集下载

人教版七年级数学上册《第二章有理数》单元检测卷带答案

人教版七年级数学上册《第二章有理数》单元检测卷带答案

人教版七年级数学上册《第二章有理数》单元检测卷带答案一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B04.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.1325.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.167.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数且满足1<<3,则x+y的值.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是;(2)数轴上表示3和﹣6的两点之间的距离是.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是.(2)①若|x﹣(﹣1)|=3,则x=;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=时,|x+1|+|x﹣2|+|x﹣3|有最小值.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.参考答案与试题解析一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【解答】解:∵ab<0,a+b>0∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c∴a>b∴数b对应的点为点M故选:A.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6当三个顶点分别是4,5,6时可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.3.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B0【解答】解:∵表格中A对应的十进制数为10,B对应的十进制数为11∴A×B=10×11由十进制表示为:10×11=6×16+14又表格中E对应的十进制为14∴用十六进制表示A×B=6E.故选:A.4.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.132【解答】解:(1010110)2=1×26+0×25+1×24+0×23+1×22+1×21+0×1=86.故选:C.5.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元【解答】解:应该先买鞋子花280现金,因为鞋子不能使用购物券,返200购物券;再买衣服花220现金+200购物券,可返200购物券再加100现金买化妆品.所以共计280+220+100=600.故选:B.6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.16【解答】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速∵后轴上有四个齿轮,齿数分别是36,24,16,12∴后轴上可以有4个变速∵变速比为2,1.5,1,3的有两组又∵前后齿轮数之比如果一致,则速度会相等∴共有3×4﹣4=8种变速故选:B.7.观察下列各式:31=332=933=2734=8135=24336=72937=218738=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.1【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…∴34n+1的个位数字是3,与31的个位数字相同34n+2的个位数字是9,与32的个位数字相同34n+3的个位数字是7,与33的个位数字相同34n的个位数字是1,与34的个位数字相同∴32004=3501×4的个位数字与34的个位数字相同,应为1.故选:D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9【解答】解:30÷4=7 (2)所以推测330的个位数字是9.故选:D.二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故答案为:wkdrc.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为170.【解答】解:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×21+0×20=128+32+8+2=170.故答案为:170.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=﹣1.【解答】解:f(2009)﹣f()=2008﹣2009=﹣1.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8.【解答】解:观察可得规律:2n的个位数字每4次一循环∵15÷4=3 (3)∴215的个位数字是8.故答案为:8.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【解答】解:根据题意得:1<xy﹣12<3则13<xy<15因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案为:±15或±9.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是4;数轴上表示3和﹣6的两点之间的距离是9.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为10或﹣14;.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【解答】解:(1)根据题意可知,因为数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示所以数轴上表示4和8的两点之间的距离是|8﹣4|=4,数轴上表示3和﹣6的两点之间的距离是|3﹣(﹣6)|=9.故答案为:4;9;(2)根据题意,得:|x﹣(﹣2)|=12∴|x+2|=12∴x+2=﹣12或x+2=12解得:x=﹣14或x=10故答案为:10或﹣14;(3)∵|x+1|+|x﹣3|表示x到﹣1和3的距离之和∴当x在﹣1和3之间时距离和最小,最小值为|﹣1﹣3|=4故|x+1|+|x﹣3|有最小值,最小值为4.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是6.(2)①若|x﹣(﹣1)|=3,则x=2或﹣4;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值.【解答】解:(1)表示4和﹣2两点之间的距离是|4﹣(﹣2)|=6故答案为:6;(2)①∵|x﹣(﹣1)|=3∴x+1=3或x+1=﹣3解得:x=2或x=﹣4故答案为:2或﹣4;②∵使x所表示的点到表示3和﹣2的点的距离之和为5∴|x﹣3|+|x+2|=5∵3与﹣2的距离是5∴﹣2≤x≤3∵x是整数∴x的值为﹣2,﹣1,0,1,2,3∴所有符合条件的整数x的积为0;(3)解:∵|x+1|+|x﹣2|+|x﹣3|表示数轴上有理数x所对应的点到﹣1、2和3所对应的点的距离之和∴当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值4.故答案为:2.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为|x+2|+|x﹣1|(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是﹣2、4②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的取值在不小于0且不大于2的范围时,|x|+|x﹣2|的最小值是2;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x﹣1|+|x|=(|x﹣3|+|x|)+(|x﹣2|+|x﹣1|)要使|x﹣3|+|x|的值最小,x的值取0到3之间(包括0、3)的任意一个数,要使|x﹣2|+|x﹣1|的值最小,x取1到2之间(包括1、2)的任意一个数,显然当x取1到2之间(包括1、2)的任意一个数能同时满足要求,不妨取x=1代入原式,得|x﹣3|+|x﹣2|+|x﹣1|+|x|=2+1+0+1=4;方法二:当x取在1到2之间(包括1、2)时,|x﹣3|+|x﹣2|+|x﹣1|+|x|=﹣(x﹣3)﹣(x﹣2)+(x﹣1)+x+=﹣x+3﹣x+2+x﹣1+x=4.。

人教版 七年级上册数学 有理数单元 正数和负数练习卷2(含答案)

人教版 七年级上册数学  有理数单元  正数和负数练习卷2(含答案)

试卷主标题姓名:__________ 班级:__________考号:__________一、选择题(共20题)1、 3. 实数、在数轴上的位置如图3所示,则与的大小关系是()(A)(B)(C)(D)无法确定2、的相反数是()A.5 B. C. D.3、下列计算结果为1的是( )A.(+1)+(-2)B.(-1)-(-2)C.(+1)×(-1)D.(-2)÷(+2)4、在5,,.这四个数中,小于0的数是()A.5 B. C. D.5、下列说法中错误的是( )A、一个正数的前面加上负号就是负数B、不是正数的数一定是负数C、0既不是正数,也不是负数D、正负数可以用来表示具有相反意义的量6、若,则的值为( )A.5 B.-5 C.5或1 D.以上都不对7、若,则对于数的论断正确的是( )A.一定是负数 B.可能是正数C.一定不是正数 D.可以是任何数8、若为有理数,则表示的数是( )A.正数 B.非正数 C.负数 D.非负数9、若,则的值是()A.1 B.-1 C.9 D.-910、若,那么一定是( )A.正数 B.负数 C.―1 D.±111、下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 412、如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作()A.-7 ℃ B.+7 ℃ C.+12 ℃ D.-12 ℃13、 -3的倒数是A.3 B.-3 C. D.14、若,则是()A.0 B.正数 C.非负数 D.非正数15、在0,,1,这四个数中负整数是A. B. 0 C. D. 116、如果向东走80 m记为80 m,那么向西走60 m记为A.-60 m B.60m C.-(-60)m D.m17、的倒数为()A.-2 B.2 C.D.18、大于﹣1.8且小于3的整数有()A.2个B.3个C.4个D.5个19、已知,则下列四个式子中一定正确的是( ).A. B. C. D.20、在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作 ( )A.+2米 B.-2米 C.+18米 D.-18米二、填空题(共11题)1、若7-3与+3互为相反数,则的值为________.2、比较大小:-6 -8.(填“<”、“=”或“>”)3、绝对值大于1而不大于3的整数有___________,它们的和是___________.4、如果,那么m-2的值是____________.5、若实数a、b满足,则=__________。

(必考题)初中数学七年级数学上册第二单元《有理数及其运算》测试题(有答案解析)(2)

(必考题)初中数学七年级数学上册第二单元《有理数及其运算》测试题(有答案解析)(2)

一、选择题1.若a >0,b <0,且a >|b|,那么a ,b ,-b 的大小关系是( ) A .-b <b <aB .b <a <-bC .b <-b <aD .-b <a <b2.5的相反数的倒数是( ) A .5-B .5C .15-D .153.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表: 十六进制 0 1 2 3 4 5 6 7 8 9 A B C D E F 十进制123456789101112131415例如,十进制中261610=+,用十六进制表示为1A :用十六进制表示:1D F C +=,19F A -=,则A E ⨯,用A E ⨯十六进制可表示为( )A .8CB .140C .32D .EO 4.若数轴上点A 表示的数是5-,则与它相距2个单位的点B 表示的数是( ) A .5±B .7-或3-C .7D .8-或35.截止2020年12月30日,全球新冠肺炎确诊病例累计超8000万例,其中“8000万”用科学记数法表示为( ) A .3810⨯B .7810⨯C .40.810⨯D .80.810⨯6.有理数a ,b 在数轴上的位置如图所示,则下列各式成立的是( )A .0b a ->B .0b ->C .a b >-D .0ab >7.已知a ,b ,c 为非零的实数,且不全为正数,则a b ca b c++的所有可能结果的绝对值之和等于( ) A .5B .6C .7D .88.按如图所示的运算程序,能输出结果为20的是( )A .5x =-,15y =-B .3x =,2y =-C .6x =,3y =D .1x =-,21y =-9.5-的相反数是( ) A .15-B .5-C .5D .1510.已知有理数a 在数轴上的位置如图,则|1|a a +-的值为( )A .1B .21a -C .1-D .2a11.据统计,2014年我国高新技术产品出口总额达40570亿元,将数据40570亿用科学计数法表示为( )元 A .4.057×109B .0.4057×1010C .40.57×1011D .4.057×101212.辽宁男篮夺冠后,从4月21日至24日各类媒体关于“辽篮CBA 夺冠”的相关文章达到810000篇,将数据810000用科学记数法表示为( ) A .40.8110⨯B .50.8110⨯C .48.110⨯D .58.110⨯二、填空题13.面对2020年突如其来的新冠疫情,党和国家及时采取“严防严控”措施,并对新冠患者全部免费治疗,据统计共投入约21亿元资金,21亿用科学记数法表示为______. 14.一个数用科学记数法表示为35.2810⨯,则这个数是______.15.数轴上的两点A 与B 表示的是互为相反数的两个数,且点A 在点B 的右边,A 、B 的两点间的距离为12个单位长度,则点A 表示的数是___. 16.化简:-(-2)=________,(-2)3=_________,|-212|=_________. 17.截至2020年1月26日0时,全国各级财政已下达疫情防控补助资金112.1亿元,112.1亿这个数用科学记数法可表示为__________.18.人的血管首尾相连的长度大约可达96000千米,96000千米用科学记数法表示为 _________米.19.||8a =,4b =-,则-a b 的值为__________. 20.若|a|=3,|b|=4且a b >,则a b +=_______.三、解答题21.下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题. 姓名 王芳 刘兵 张昕 李聪 江文 成绩8984与全班平均分之差2+6- 2-22.计算:|﹣2|﹣32+(﹣4)×(12-)3 23.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个). 星期一二三四五六日增减 +100250- +400 150- 100- +350 +150(2)产量最多的一天比产量最少的一天多生产多少个?(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元? 24.计算:(1)1(4)6(0.125)8-+---.(2)27(6)( 1.75)12-⨯-÷-. (3)()2151223643⎛⎫-÷⨯-- ⎪⎝⎭(用简便方法计算).25.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和6 (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一个动点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.26.计算: (1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷(3)1125100466()46311-⨯-⨯-⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据>0,b <0,得到b <a ,b <0<-b ,再根据a >|b|得到-b <a ,即可求解.解:∵a >0,b <0, ∴b <a ,b <0<-b , ∵a >|b| ∴-b <a , ∴b <-b <a . 故选:C 【点睛】本题考查了有理数的大小比较,理解绝对值,相反数的意义,有理数的大小比较方法是解题关键.2.C解析:C 【分析】只有符号不同的两个数互为相反数,两数相乘为1的数互为倒数. 【详解】解:5的相反数为5-,5-的倒数为15-,故5的相反数的倒数是15-. 故答案为:C . 【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.3.A解析:A 【分析】根据表格对应数据,先把16进制转换成十进制求结果,再把结果转换成十六进制,即可求出答案. 【详解】 解:∵A=10,E=14 ∴A×E=10×14=140 ∴140÷16=8⋯⋯12 ∵C=12 ∴A×E=8C 故答案选A . 【点睛】本题主要考察了不同进制之间的转化,把我们陌生十六进制转换成我们熟悉的十进制去计算是解题关键.4.B解析:B 【分析】根据B 点在A 点左侧和右侧分类讨论,加2或减2即可.解:当B 点在A 点左侧时,点B 表示的数是:-5-2=-7; 当B 点在A 点右侧时,点B 表示的数是:-5+2=-3; 故选:B . 【点睛】本题考查了数轴上表示的数,根据表示两个数的两点的位置进行分类讨论,根据距离进行加减是解题关键.5.B解析:B 【分析】先将8000万化成80000000,再用科学记数法表示即可. 【详解】解:8000万=80000000=7810⨯, 故选:B . 【点睛】本题主要考察了用科学记数法表示一个大于10的数,解题的关键是熟练掌握科学记数法的表示方法.6.A解析:A 【分析】根据数轴上数的位置判断式子的符号. 【详解】由数轴可知:a<0<b ,a b >, ∴b-a>0,-b<0,a<-b ,ab<0, ∴A 正确,B 、C 、D 错误; 故选:A . 【点睛】此题考查利用数轴比较数的大小,判断式子的符号,正确理解利用数轴比较有理数的大小是解题的关键.7.A解析:A 【分析】分,,a b c 中有一个正数两个负数、有两个正数一个负数、都是负数三种情况,从而可求出a b ca b c++的所有可能结果,再求出它们的绝对值之和即可得. 【详解】由题意,分以下三种情况:(1)当,,a b c 中有一个正数两个负数时,不妨设0,0,0a b c ><<,则1111a a b a b c a b c b c c--++=++=--=-; (2)当,,a b c 中有两个正数一个负数,不妨设0,0,0a b c >><,则1111a a b a b c a b c b cc -++=++=+-=; (3)当,,a b c 都是负数时,则1113a a b a b c a b c b c c ---++=++=---=-; 综上,a b ca b c++的所有可能结果为1,1,3--, 因此,它们的绝对值之和为1131135-++-=++=, 故选:A . 【点睛】本题考查了化简绝对值、有理数的加减运算,依据题意,正确分情况讨论是解题关键.8.D解析:D 【分析】根据x 与0的关系,判断出用哪种运算方法,求出每个输出结果各是多少,判断出能输出结果为20的是哪个即可. 【详解】A 、50x =-<,15y =-时,输出结果是:()515x y -=---=10,不符合题意;B 、30x =>,2y =-时,输出结果是:()2232x y +=⨯+-=4,不符合题意;C 、60x =>,3y =时,输出结果是:2263x y +=⨯+=15,不符合题意;D 、10x =-<,21y =-时,输出结果是:()121x y -=---=20,符合题意; 故选:D . 【点睛】本题考查了代数式的求值与有理数的加减乘除混合运算,熟练掌握运算法则是解本题的关键.9.C解析:C 【分析】直接利用只有符号不同的两个数叫做互为相反数,进而得出答案. 【详解】由相反数的定义可知,−5的相反数为5. 故选:C . 【点睛】此题主要考查了相反数,正确掌握定义是解题关键.10.A解析:A 【分析】根据数轴可知a-1是负数,去绝对值号为1-a ,按照有理数加减计算即可. 【详解】解:根据数轴知原式可化为:|1|11a a a a +-=+-=, 故选:A . 【点睛】此题考查数轴的的相关知识,根据数轴去绝对值号,涉及到有理数加减运算.11.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:40570亿=4.057×1012. 故选:D . 【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】 810000=58.110⨯, 故选:D . 【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.二、填空题13.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10继而用此形式来表示此数即可;【详解】∵21亿=2100000000∴故答案为:【点睛】本题考查了科学记数法的表示形式正确掌握科学记数 解析:92.110⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,继而用此形式来表示此数即可; 【详解】∵21亿=2100000000 ∴92100000000=2.110⨯ , 故答案为:92.110⨯ . 【点睛】本题考查了科学记数法的表示形式,正确掌握科学记数法的表示形式是解题的关键.14.5280【分析】科学记数法的标准形式为a×10n (1≤|a|<10n 为整数)本题数据中的a=528指数n 等于3所以需要把528的小数点向右移动3位就得到原数了【详解】=故答案为:5280【点睛】本题解析:5280 【分析】科学记数法的标准形式为a×10n (1≤|a|<10,n 为整数),本题数据“35.2810⨯”中的a=5.28,指数n 等于3,所以,需要把5.28的小数点向右移动3位,就得到原数了. 【详解】35.2810⨯=5.2810005280⨯=,故答案为:5280. 【点睛】本题考查写出用科学记数法表示的原数.将科学记数法a×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.15.6【分析】先由条件判定这两个数是6和-6然后根据点A 在点B 的右边即可确定点A 表示的数【详解】解:∵AB 之间的距离是12且A 与B 表示的是互为相反数的两个数∴这两个数是6和-6∵点A 在点B 的右边∴点A 表解析:6 【分析】先由条件判定这两个数是6和-6,然后根据点A 在点B 的右边即可确定点A 表示的数. 【详解】解:∵A ,B 之间的距离是12,且A 与B 表示的是互为相反数的两个数, ∴这两个数是6和-6, ∵点A 在点B 的右边, ∴点A 表示的数是6. 故答案是:6.【点睛】本题考查了相反数及数轴上两点间的距离,只有符号不同的两个数叫做互为相反数.16.-82【分析】根据有理数的相反数的定义有理数的乘方法则去绝对值符号法则计算即可求解【详解】解:-(-2)=2(-2)3=-8|-2|=2故答案为:2-82【点睛】考查了有理数的相反数乘方的求法绝对值解析:-8 21 2【分析】根据有理数的相反数的定义、有理数的乘方法则、去绝对值符号法则计算即可求解.【详解】解:-(-2)=2,(-2)3=-8,|-212|=212.故答案为:2,-8,212.【点睛】考查了有理数的相反数,乘方的求法,绝对值的性质,关键是熟练掌握相关定义、法则.17.【分析】科学记数法的表示形式为的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同【详解】1121亿=11210000000=1121×解析:101.12110⨯【分析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】112.1亿=1121000 0000=1.121×1010,故答案为:1.121×1010.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.6×107【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值≥10时n是正整数;当解析:6×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是非负整数.【详解】96000千米=96000000米=9.6×107米. 故答案为:9.6×107. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.12或-4【分析】根据绝对值的定义即可求出答案【详解】解:由题意可知:a =±8当a =8b =﹣4时a ﹣b =8+4=12当a =﹣8b =﹣4时a ﹣b =﹣8+4=﹣4故答案:12或-4【点睛】本题考查绝对值解析:12或-4 【分析】根据绝对值的定义即可求出答案. 【详解】解:由题意可知:a =±8,4b =-, 当a =8,b =﹣4时, a ﹣b =8+4=12, 当a =﹣8,b =﹣4时, a ﹣b =﹣8+4=﹣4, 故答案:12或-4. 【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.20.-1或-7【分析】根据a >b 得出ab 的值再代入计算即可【详解】解:∵∴a=±3b=±4又∵a >b ∴a=3b=-4或a=-3b=-4当a=3b=-4时a+b=3+(-4)=-1当a=-3b=-4时a+解析:-1或-7 【分析】根据3a =,b 4=,a >b ,得出a 、b 的值,再代入计算即可. 【详解】解:∵3a =,b 4=, ∴a=±3,b=±4, 又∵a >b ,∴a=3,b=-4或a=-3,b=-4, 当a=3,b=-4时,a+b=3+(-4)=-1, 当a=-3,b=-4时,a+b=(-3)+(-4)=-7, 因此a+b 的值为:-1或-7. 故答案为:-1或-7. 【点睛】本题考查了有理数的加法,绝对值的意义,掌握有理数加法的计算方法是正确计算的前提,根据绝对值的意义求出a、b的值是得出答案的关键.三、解答题21.分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近.【分析】由表格中数据可得出,平均分为90分,把表格完成,可以得出分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近.【详解】解:全班平均分为:84-(-6)=90(分)王芳的测试成绩与全班平均分之差为:89-90=-1(分);刘兵的数学测试成绩为:90+(+2)=92(分);张昕的数学成绩为:90+0=90(分);江文的数学成绩为:90+(-2)=88分;完成表格得【点睛】本题考查了有理数的加减法,熟练掌握运算法则是解答此题的关键.22.1 62 -【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12 -)3=2﹣9+(﹣4)×(﹣18)=2+(﹣9)+1 2=162 -.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)20100个;(2)650个;(3)7100元【分析】(1)把前三四天的记录相加,再加上每天计划生产量,计算即可得解;(2)根据正负数的意义确定星期三产量最多,星期二产量最少,然后用记录相减计算即可得解;(3)求出一周记录的和,然后根据工资总额的计算方法列式计算即可得解.【详解】解:(1)(+100-250+400-150)+4×5000=20100(个).故前四天共生产20100个口罩;(2)+400-(-250)=650(个).故产量最多的一天比产量最少的一天多生产650个;(3)5000×7+(100-250+400-150-100+350+150)=35500(个),35500×0.2=7100(元),答:本周口罩加工厂应支付工人的工资总额是7100元.【点睛】此题主要考查了正负数的意义及有理数的混合运算的应用,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(1)10-;(2)-12;(3)1-.【分析】(1)先去括号、再化小数为分数,最后运算即可;(2)先算乘方,然后按有理数乘除混合运算法则计算即可;(3)先算乘方,再算除法,然后运用乘法分配律计算即可.【详解】解:(1)1(4)6(0.125)8-+--- =114688--+ =114688-+- =-4-6=-10;(2)27(6)( 1.75)12-⨯-÷- =()7736()124-⨯-÷- =4217⎛⎫⨯-⎪⎝⎭=-12; (3)()2151223643⎛⎫-÷⨯-- ⎪⎝⎭=512 43643⎛⎫⨯⨯--⎪⎝⎭=512 12643⎛⎫⨯--⎪⎝⎭=512 121212643⨯-⨯-⨯=10-3-8=-1.【点睛】本题主要考查了含乘方的有理数混合运算,掌握有理数混合运算法则是解答本题的关键.25.(1)8;(2)见解析;MN的长度不会发生改变,线段MN=4.【分析】(1)数轴上两点之间的距离等于较大数与较小数的差;(2)根据中点的意义,利用线段的和差可得出答案.【详解】解:(1)AB=|﹣2﹣6|=8,答:AB的长为8;(2)MN的长度不会发生改变,线段MN=4,理由如下:如图,因为M为PA的中点,N为PB的中点,所以MA=MP=12PA,NP=NB=12PB,所以MN=NP﹣MP=12PB﹣12PA=12(PB﹣PA)=12 AB=12×8=4.【点睛】本题考查了数轴上两点之间的距离,数轴上线段中点的意义,熟练掌握两点间距离计算方法,灵活运用中点的意义是解题的关键.26.(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+- =183+=21(2)31(2)93--÷ =893--⨯=827--=35- (3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。

北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)

北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)

北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。

浙教版数学七年级上册第二章 有理数的运算单元测试卷(含答案)

浙教版数学七年级上册第二章 有理数的运算单元测试卷(含答案)

浙教版数学七年级上册第二章有理数的运算一、选择题1.下列各对数中,互为相反数的是( )A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.已知数549039用四舍五入法后得到的是5.490×105,则所得近似数精确到( ).A.十位B.百位C.千分位D.万位3.两数相加,如果和小于任何一个加数,那么这两个数( )A.同为正数B.同为负数C.一正数一负数D.一个为0,一个为负数4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.用“▲”定义一种新运算:对于任何有理数a和b,规定a▲b=ab+b2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A.−4B.4C.−8D.86.有理数a,b在数轴上的对应点如图所示,则下列式子中错误的是( )A.ab>0B.a+b<0C.a﹣b<0D.b﹣a<07.一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是( )A.26元B.44元C.56元D.80元8.若x、y二者满足等式x2−3y=3x+y2,且x、y互为倒数,则代数式x2−3(x+y)+5−y2−4xy的值为( )A.1B.4C.5D.99.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .1202110.计算机利用的是二进制数,它共有两个数码0,1,将一个十进制数转化为二进制,只需将该数写为若干个2n 的数字之和,依次写出1或0的系数即可,如十进制数字19可以写为二进制数字10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20,32可以写为二进制数字100000,因为32=32=1×25+0×24+0×23+0×22+0×21+0×20,则十进制数字70是二进制下的( )A .4位数B .5位数C .6位数D .7位数二、填空题11.2022年11月20日晚,卡塔尔世界杯正式开幕,仅两天时间,抖音世界杯总话题播放量高达21480000000次,其中数21480000000用科学记数法表示为  .12.计算(−1)2023÷(−1)2004=  .13.一个数的立方等于它本身,这个数是 14.如图所示的程序图,当输入﹣1时,输出的结果是  .15.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .16.如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和a ,即a =9+1+3+5+7+9=34;步骤2:计算前12位数字中奇数位数字的和b ,即b =6+0+2+4+6+8=26;步骤3:计算3a 与b 的和c ,即c =3×34+26=128;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即d =130;步骤5:计算d 与c 的差就是校验码X ,即X =130−128=2.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是 .三、解答题17.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 18.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?19.已知a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,求代数式(−ab)2024−3(c+d)−n+m2的值.20.在一条不完整的数轴上从左到右有A,B,C三点,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以C为原点,写出点A,B所对应的数,计算p的值;(2)若p的值是﹣1,求出点A,B,C所对应的数;(3)在(2)的条件下,在数轴上表示|﹣0.5|、(﹣1)3和A,B,C所对应的数,并把这5个数进行大小比较,用“<”连接.21.现定义一种新运算“*”,对任意有理数a、b,规定a*b=ab+a﹣b,例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值;(2)求(﹣3)*[(﹣2)*5]的值.22.目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.一户居民一个月用电量(单位:度)电价(单位:元/度)第1档不超过180度的部分0.5第2档超过180度的部分0.7(1)若该市某户12月用电量为200度,该户应交电费 元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?23.如图,已知数轴上有A,B两点,分别代表−40,20,两只电子蚂蚁甲,乙分别从A,B两点同时出发,甲沿线段AB以1个单位长度秒的速度向右运动,到达点B处时运动停止;乙沿BA方向以4个单位长度秒的速度向左运动.(1)A,B两点间的距离为 个单位长度;乙到达A点时共运动了 秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】A8.【答案】A9.【答案】B10.【答案】D11.【答案】2.148×101012.【答案】−113.【答案】0或±114.【答案】715.【答案】0或4或﹣416.【答案】417.【答案】(1)解:如图所示(2)50(3)-818.【答案】(1)守门员最后回到了球门线的位置(2)12米(3)54米19.【答案】解:∵a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,∴ab=1,c+d=0,m2=9,n=−1,∴(−ab)2024−3(c+d)−n+m2=(−1)2024−3×0−(−1)+9=1−0+1+9=11.20.【答案】(1)解:若以C为原点,∵AB=2,BC=1,∴B表示﹣1,A表示﹣3,此时,p=(﹣3)+(﹣1)+0=﹣4;(2)解:设B对应的数为x,∵AB=2,BC=1,则A点表示的数为x﹣2,C表示的数为x+1,p=x+x+1+x﹣2=﹣1;x=0,则B点为原点,∴A表示﹣2,C表示1;(3)解:如图所示:故﹣2<(﹣1)3<0<|﹣0.5|<1.21.【答案】(1)解:2*(﹣3)=2×(﹣3)+2﹣(﹣3)=﹣6+2+3=﹣1;(2)解:(﹣3)*[(﹣2)*5]=(﹣3)*[(﹣2)×5+(﹣2)﹣5]=(﹣3)*(﹣17)=(﹣3)×(﹣17)+(﹣3)﹣(﹣17)=51﹣3+17=65.22.【答案】(1)104(2)解:当0≤x≤180时,该户12月应交电费为0.5x元;当x>180时,该户12月应交电费为0.5×180+0.7(x−180),=90+0.7x−126,=(0.7x−36)(元).(3)解:∵104<125,∴x>180,∴0.7x−36=125,∴x=230.答:该户12月用电量为230度.23.【答案】(1)60;15(2)解:60÷(4+1)=12,−40+12=−28.答:甲,乙在数轴上的−28点相遇(3)解:两种情况:相遇前,(60−10)÷(4+1)=10;相遇后,(60+10)÷(4+1)=14,答:10秒或14秒时,甲、乙相距10个单位长度;(4)解:乙到达A点需要15秒,甲位于−40+15=−25,乙追上甲需要25÷(1+4)=5(秒)此时相遇点的数是−25+5=−20,故甲,乙能在数轴上相遇,相遇点表示的数是−20.。

【3套】人教版初中数学七年级上册 第1章 《有理数》单元测试题(2)

【3套】人教版初中数学七年级上册 第1章 《有理数》单元测试题(2)

人教版七年级数学上册第一章有理数单元训练试题含解析一.选择题(共6小题)1.下列说法:①有理数中,0的意义仅表示没有;②整数包括正整数和负整数;③正数和负数统称有理数;④0是最小的整数;⑤负分数是有理数.其中正确的个数()A.1个B.2个C.3个D.5个2.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2b B.a+1和b+1C.a+1和b﹣1D.2a和2b3.a﹣|a|的值是()A.0B.2a C.2a或0D.不能确定4.某种病毒近似于球体,它的半径约为0.000000005米,用科学记数法表示为()A.5×108B.5×109C.5×10﹣8D.5×10﹣95.下列说法正确的是()A.准确数18精确到个位B.5.649精确到0.1是5.7C.近似数18.0的有效数字的个数与近似数18相同D.由四舍五入将3.995精确到百分位是4.006.数轴上点A和点B表示的数分别是﹣1和3,点P到A、B两点的距离之和为6,则点P 表示的数是()A.﹣3B.﹣3或5C.﹣2D.﹣2或4二.填空题(共5小题)7.若|m|=3,|n|=2且m>n,则2m﹣n=.8.如果|x|=﹣x,那么x=.9.若|a|=3,|b|=5,且a、b异号,则a•b=.10.大于1的正整数m的三次方可“分裂”成若干个连续奇数的和,23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是1007,则m的值是.11.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的最小正整数),并且运算重复进行.例如:取n=26,则运算过程如图:那么当n=9时,第2019次“F运算”的结果是.三.解答题(共10小题)12.将下列各数分别填入相应的大括号里:3.14,﹣(+2),+43,﹣0.,﹣10%,,0,|﹣23|,﹣(﹣1)2整数集合:{…}负分数集合:{…}非负整数集合:{…}.13.(﹣)++|﹣0.75|+(﹣)+.14.简便计算:(﹣5)×(﹣3)+(﹣7)×+(﹣12)×.15.已知a与﹣3互为相反数,b与﹣互为倒数,求a﹣b的值.16.若x2=4,|y|=2,且x<y,求x+y和(x﹣y)2的值.17.定义新运算.a⊗b=a2﹣|b|,如3⊗(﹣2)=32﹣|﹣2|=9﹣2=7,计算下列各式.(1)(﹣2)⊗3;(2)5⊗(﹣4);(3)(﹣3)⊗(0⊗(﹣1))18.小聪学习了有理数后,对知识进行归纳总结.【知识呈现】根据所学知识,完成下列填空:(1)|﹣2|=2,|2|=2;(2)(﹣3)2=9,32=9;(3)若|x|=5,则x=;(4)若x2=4,则x=.【知识归纳】根据上述知识,你能发现的结论是:【知识运用】运用上述结论解答:已知|x+1|=4,(y+2)2=4,求x+y的值.19.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?20.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为|x+2|;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为:.②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x=.21.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.参考答案一.选择题(共6小题)1.解:①在有理数中,0的意义不仅表示没有,在进行运算时,0还表示正整数与负整数的分界等,故①错误;②整数包括正整数、负整数和0,故②错误;③整数和分数统称为有理数,故③错误;④整数包括正整数和负整数、0,因此0不是最小的整数,故错误;⑤所有的分数都是有理数,因此正确;综上,⑤正确,故选:A.2.解:∵a,b互为相反数,∴a+b=0.A中,﹣2a+(﹣2b)=﹣2(a+b)=0,它们互为相反数;B中,a+1+b+1=2≠0,即a+1和b+1不是互为相反数;C中,a+1+b﹣1=a+b=0,它们互为相反数;D中,2a+2b=2(a+b)=0,它们互为相反数.故选:B.3.解:当a≥0时,a﹣|a|=a﹣a=0;当a<0时,a﹣|a|=a+a=2a;故a﹣|a|的值是2a或0.故选:C.4.解:0.000000005=5×10﹣9.故选:D.5.解:A、准确数不存在精确问题,故本选项错误;B、5.649精确到0.1是5.6,故本选项错误;C、近似数18.0精确到十分位,18精确到个位,故本选项错误;D、由四舍五入将3.995精确到百分位是4.00,故本选项正确;故选:D.6.解:∵AB=|3﹣(﹣1)|=4,点P到A、B两点的距离之和为6,设点P表示的数为x,∴点P在点A的左边时,﹣1﹣x+3﹣x=6,解得:x=﹣2,点P在点B的右边时,x﹣3+x﹣(﹣1)=6,解得:x=4,综上所述,点P表示的数是﹣2或4.故选:D.二.填空题(共5小题)7.解:∵|m|=3,|n|=2且m>n,∴m=3,n=±2,(1)m=3,n=2时,2m﹣n=2×3﹣2=4(2)m=3,n=﹣2时,2m﹣n=2×3﹣(﹣2)=8故答案为:4或8.8.解:∵|x|=﹣x,∴x=非正数.故答案为:非正数.9.解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a、b异号,∴a=3,b=﹣5或a=﹣3,b=5.∴ab=﹣15.故答案为:﹣15.10.解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=1007,n=503,∴奇数1007是从3开始的第503个奇数,∵=495,=527,∴第503个奇数是底数为32的数的立方分裂的奇数的其中一个,即m=32.故答案为:32.11.解:由题意可知,当n=9时,历次运算的结果是:3×9+5=32,=1(使得为奇数的最小正整数为16),1×3+5=8,=1,…故32→1→8→1→8→…,即从第四次开始1和8出现循环,偶数次为1,奇数次为8,∴当n=9时,第2019次“F运算”的结果是8.故答案为:8.三.解答题(共10小题)12.解:整数集合:{﹣(+2),+43,0,|﹣23|,﹣(﹣1)2}负分数集合:{﹣0.,﹣10%}非负整数集合:{+43,0,|﹣23|}.故答案为:﹣(+2),+43,0,|﹣23|,﹣(﹣1)2;﹣0.,﹣10%;+43,0,|﹣23|.13.解:原式=﹣0.75+3+0.75﹣5.5+2=6﹣5.5=0.5.14.解:(﹣5)×(﹣3)+(﹣7)×(﹣3)+(﹣12)×3,=5×3+7×3﹣12×3=3×(5+7﹣12)=3×0=0.15.解:∵a与﹣3互为相反数,b与﹣互为倒数,∴a=3,b=﹣2.∴a﹣b=3﹣(﹣2)=3+2=5.16.解:∵x2=4,|y|=2,且x<y,∴x=﹣2,y=2.∴x+y=﹣2+2=0,(x﹣y)2=(﹣2﹣2)2=(﹣4)2=16.17.解:(1)(﹣2)⊗3=(﹣2)2﹣|3|=4﹣3=1;(2)5⊗(﹣4))=52﹣|﹣4|=25﹣4=21;(3)根据题中的新定义得:0⊗(﹣1)=0﹣1=﹣1,则(﹣3)⊗(0⊗(﹣1))=(﹣3)⊗(﹣1)=9﹣1=8.18.解:【知识呈现】(3)若|x|=5,则x=±5;(4)若x2=4,则x=±2.【知识归纳】根据上述知识,你能发现的结论是:绝对值等于一个正数的数有两个,平方等于一个正数的数有两个;【知识运用】根据题意得:x+1=4或﹣4,y+2=2或﹣2,解得:x=3或﹣5,y=0或﹣4,当x=3,y=0时,x+y=3;当x=3,y=﹣4时,x+y=﹣1;当x=﹣5,y=0时,x+y=﹣5;当x=﹣5,y=﹣4时,x+y=﹣9.综上所述,x+y的值是3,﹣1,﹣5,﹣9..故答案为:±5;±2;绝对值等于一个正数的数有两个,平方等于一个正数的数有两个.19.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)20.解:(1)数轴上表示﹣2和﹣5的两点之间的距离=|﹣2﹣(﹣5)|=3;数轴上表示数x和3的两点之间的距离=|x﹣3|;数轴上表示数x和﹣2的两点之间的距离表示为|x+2|;(2)①当﹣2≤x≤3时,|x+2|+|x﹣3|=x+2+3﹣x=5;②当x>3时,x﹣3+x+2=7,解得:x=4,当x<﹣2时,3﹣x﹣x﹣2=7.解得x=﹣3.∴x=﹣3或x=4.故答案为:(1)3;|x﹣3|;x;﹣2;(2)5;﹣3或4.21.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.人教版初中数学七年级上册第1章《有理数》单元测试题(一、单选题1.移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为()A. 0.387×109B. 3.87×108C. 38.7×107D. 387×1062.某市地铁一号与地铁二号线接通后,该市交通通行和转换能力成倍增长,该工程投资预算约为930000万元,这一数据用科学记数法表示为()A. 9.3×105万元B. 9.3×106万元C. 0.93×106万元D. 9.3×104万元3.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是()A. 25.30千克B. 24.70千克C. 25.51千克D. 24.82千克4.下列结论错误的是()A. 若a,b异号,则a b<0,<0B. 若a,b同号,则a b>0,>0C. D.5.如果x<0,y>0,x+y<0,那么下列关系式中,正确的是( )A. x>y>-y>-xB. -x>y>-y>xC. y>-x>-y>xD. -x>y>x>-y6.28 cm接近于( )A. 珠穆朗玛峰的高度B. 三层楼的高度C. 姚明的身高D. 一张纸的厚度7.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为()A. 3.5×106B. 3.5×107C. 35×105D. 0.35×1088.下列各式:-(-5)、-|-5|、-52、(-5)2、,计算结果为负数的有( )A. 4个B. 3个C. 2个D. 1个9.把(﹣5)﹣(+7)+(﹣3)+(﹣11)写成省略加号的代数和的形式,正确的是()A. ﹣5+7﹣3﹣11B. (﹣5)(+7)(﹣3)(﹣11)C. ﹣5﹣7﹣3﹣11D. ﹣5﹣7+﹣3+11二、填空题10.一个数的平方与这个数的立方相等,那么这个数是________.11.按要求取近似数:0.02049≈________(精确到0.01).12.绝对值小于的整数有________.13.填空:(1)-40÷(-5)=__________;【答案】8(1)(-36)÷6=________;(2)8÷(-0.125)=________;(3)________÷32=0.14.①若,则a与0的大小关系是a ________0.②若,则a与0的大小关系是a ________0.15.比较大小:- ________- .三、计算题16.计算:.17.18.(1)-17+3;(2)-32+ ÷(-3).四、解答题19.已知有理数a在数轴上的位置如图所示:试比较a,-a,|a|,a2和的大小,并将它们按从小到大的顺序,用“<”或“=”连接起来.20.卫星绕地球表面做圆周运动的速度约为7.9×103米/秒,则卫星运行8×103秒所走的路程约是多少?21.某地一天中午12时的气温是6°C,傍晚5时的气温比中午12时下降了4°C,凌晨4时的温度比傍晚5时还低4°C,问傍晚5时的气温是多少?凌晨4时的气温是多少?答案一、单选题1.【答案】B【解析】【解答】解:将3.87亿用科学记数法表示为:3.87×108故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2.【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】将930000用科学记数法表示为9.3×105.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】【解答】25+0.20=25.2;25−0.20=24.8∵25.2<25.3,∴A不符合题意;,24.7<24.8,∴B不符合题意;∵25.2<25.51,∴C不符合题意;∵25.2>24.82>24.8,∴D符合题意。

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

21.计算: (1)﹣20+(﹣14)﹣(﹣18)﹣|13|; (2) (1 1 3) (48) ;
68 (3)﹣32+(﹣ 1 )2×(﹣3)3÷(﹣1)25
3
1 22.已知数 3.3,-2,0, ,-3.5.
8 (1) 比较这些数的大小,并用“<”号连接起来; (2) 比较这些数的绝对值的大小,并将这些数的绝对值用“>”号连接起来; (3) 比较这些数的相反数的大小,并将这些数的相反数用“<”号连接起来.
法表示为( )
A.1.7×104
B.1.7×105
C.1.7×106
D.0.17×106
8.若 a b 0 ,则 a 和 b 的关系为( )
A.相等
B.互为倒数
9. 1 2 的倒数的绝对值是( ) 5
A.1 2 5
B.1 5 2
6. 1 2022 1 2023 的值是( )
C.互为相反数
a A.
b
B.b﹣a
C.a+b
D.ab
6.用四舍五入按要求对 0.04018 分别取近似数,其中正确的是( ).
A.0.4(精确到 0.1)
B.0.040(精确到百分位)
C.0.040(精确到 0.001)
D.0.0402(精确千分位)
7.据北京市通信管理局披露,截至 3 月 30 日,北京市已建设了 5G 基站数量超过 17000 个.将 17000 用科学记数
则此时蜗牛离地面的距离为 米.
15.气象部门测定,高度每增加 1 千米,气温大约下降 5℃,现在地面气温是 18℃,那么 4 千米高空的气温
,若开始输入 x 2 ,则最后输出的结果是 .
17.据统计,2021 年国庆小长假期间,我市累计接待游客 197.9 万人次,实现旅游总收入 969000000 元.数据 969000000

2021年华东师大版数学七年级上册第2章《有理数》单元检测卷(含答案)

2021年华东师大版数学七年级上册第2章《有理数》单元检测卷(含答案)

华东师大版数学七年级上册第2章《有理数》单元检测卷一、选择题1.如果水位升高3m 时,水位变化记做+3m ,那么水位下降3m 时,水位的变化记做( )A.-3mB.3mC.6mD.-6m2.据统计我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为( )A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10123.+(-3)的相反数是( )A.-(+3)B.-3C.3D.+(- 13) 4.数轴上的动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C.若点C 表示的数为1,则点A 表示的数为( )A.7B.3C.-3D.-25.下列说法正确的是( )A.任何有理数的绝对值一定是正数B.互为相反数的两个数的绝对值也互为相反数C.绝对值相等的两个数一定相等D.绝对值等于它本身的数是非负数6.-34,-56,-78这三个数的大小关系是( ) A.-78<-56<-34 B.-78<-34<-56 C.-56<-78<-34 D.-34<-56<-787.一天早晨的气温是-7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是( )A.-5℃B.-6℃C.-7℃D.-8℃8.若|m|=3,|n|=5,且m ﹣n >0,则m+n 的值是( )A.﹣2B.﹣8或8C.﹣8或﹣2D.8或﹣29.下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③23×(-错误!未找到引用源。

)÷(-1)=32;④(-4)÷12×(-2)=16. 其中计算正确的个数为( )A.4个B.3个C.2个D.1个10.在(-3)3,(-3)2,-(-3),-|-3|这四个数中,负数有( )A.1个B.2个C.3个D.4个11.已知实数x ,y 满足|x ﹣3|+(y+4)2=0,则代数式(x+y)2019的值为( )A.﹣1B.1C.2012D.﹣201812.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S -S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32014的值是( )A .32015-1B . 32014-1C .D .二、填空题13.计算:3-(-6)=_______14.已知一个数的倒数等于它本身,则这个数为____________15.若a=-78,b=-58,则a 、b 的大小关系是a b(填“>”“<”或“=”). 16.如果(a+2)2+|1﹣b|=0,那么(a+b)2015= .17.已知|x|=3,则x=_______;18.已知a 1,a 2,a 3,a 4,a 5,a 6,…,是一列数,已知第1个数a 1=4,第5个数a 5=5,且任意三个相邻的数之和为15,则第2019个数a 2019的值是________.三、解答题19.计算:434-(+3.85)-(-314)+(-3.15).20.计算:-1+5÷(-错误!未找到引用源。

人教版七年级数学(上)有理数单元测试(2)

人教版七年级数学(上)有理数单元测试(2)

人教版七年级数学(上)有理数单元测试(2)(总分:120分,时间90分)一、选择题:(每小题2分,共30分)1.数轴上点A 表示-4,点B 表示2,则表示A 、B 两点间的距离的算式是 ( ) (A )-4+2 (B )-4-2 (C ) 2―(―4) (D )2-4 2.3.高度每增加1千米,气温就下降2°C,现在地面气温是10°C ,那么7千米 高空的气温是 ( )(A )—14°C (B )—24°C (C )—4°C (D )14°C 4.5.计算()()931275129735--+++=+-+-是应用了( ) (A )加法交换律 (B )加法结合律(C )分配律 (D )加法的交换律与结合律 6.7.下列说法正确的是( )(A )-a 一定是负数; (B )│a │一定是正数; (C )│a │一定不是负数; (D )-│a │一定是负数 8.下列结论中正确的是( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数9.下列说法中正确的是( )A .有最小的负整数,有最大的正整数B .有最小的负数,没有最大的正数C .有最大的负数,没有最小的正数D .没有最大的有理数和最小的有理数10. 点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B 所表示的实数是( )A.1B. -6 C.2或-6 D. 不同于以上答案 11. 一个数是7,另一个数比它的相反数大3.则这两个数的和是 ( ) A.-3 B.3C.-10D.11 12.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数已知有理数a 大于有理数b ,则 ( )(A )a 的绝对值大于b 的绝对值 (B )a 的绝对值小于b 的绝对值 (C )a 的相反数大于b 的相反数 (D )a 的相反数小于b 的相反数 已知两个有理数的和比其中任何一个加数都小 ,那么一定是 ( ) (A )这两个有理数同为正数 (B )这两个有理数同为负数 (C )这两个有理数异号 (D )这两个有理数中有一个为零二、填空题(每小题2分,共32分)1.如果节约10度电记作+10度,那么浪费15度电记作 度。

华东师大新版 七年级上册数学 第2章 有理数 单元测试卷

华东师大新版 七年级上册数学 第2章 有理数 单元测试卷

华东师大新版七年级上册数学第2章有理数单元测试卷一.选择题(共10小题).1.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.+2.5B.﹣0.6C.+0.7D.﹣3.52.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.30 千克B.25.51 千克C.24.80 千克D.24.70 千克3.用﹣a表示的数一定是()A.负数B.正数或负数C.负整数D.以上全不对4.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的﹣3.6和x,则x的值为()A.4.2B.4.3C.4.4D.4.55.如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1B.0C.3D.46.下列各数中,既不是正数也不是负数的是()A.0B.﹣(﹣1)C.﹣D.27.下列说法中正确的个数有()①﹣4.2是负分数;②3.7不是整数;③非负有理数不包括零;④正有理数、负有理数统称为有理数;⑤0是最小的有理数A.1个B.2个C.3个D.4个8.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是()A.2018或2019B.2019或2020C.2020或2021D.2021或2022 9.有理数a、b、c在数轴上所对应的点如图所示,则下列结论正确的是()A.a+b<0B.a+b>0C.a+c<0D.b+c>010.如图,检测4个足球的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量角度看,最接近标准的是()A.B.C.D.二.填空题11.如果节约20元钱,记作“+20”元,那么浪费15元钱,记作元.12.某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作.13.如果﹣20%表示减少20%,那么+6%表示.14.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,中,整数是.15.在数轴上表示﹣10的点与表示﹣4的点的距离是.16.数轴上表示1的点和表示﹣2的点的距离是.17.如果向东运动8m记作+8m,那么向西运动5m应记作m.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:.负数集:.有理数集:.19.数轴上,如果点A所表示的数是﹣3,已知到点A的距离等于4个单位长度的点所表示的数为负数,则这个数是.20.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过秒后,M、N两点间的距离为12个单位长度.三.解答题21.把下列各数分类,并填在表示相应集合的大括号内:﹣11,,﹣9,0,+12,﹣6.4,﹣π,﹣4%.(1)整数集合:{…};(2)分数集合:{…};(3)非负整数集合:{…};(4)负有理数集合:{…}.22.为了有效控制酒后驾车,某天无为县交警大队的一辆警车在东西方向的通江大道上巡视,警车从某地A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)此时,这辆巡逻的汽车司机如何向队长描述他的位置?(2)如果警车行驶1千米耗油0.2升,油箱有油10升,现在警车要回到出发点A处,那么油箱的油够不够?若不够,途中至少需补充多少升油?23.一家水果店从果园购进10筐苹果,每筐以50kg为标准,超过标准记作正,不足标准记作负,现经过磅秤称量记录如下(单位:kg):+1,+1.5,﹣0.8,﹣2,0,+1.2,﹣0.5,﹣1,0,+2.(1)问该水果店一共购进苹果多少千克?(2)水果店招牌上写着:苹果单价4元/kg,优惠价3.5元/kg.若该水果店的苹果收购价为2元/kg,则该水果店所购苹果全部售完时共盈利多少元?24.某检修小组乘汽车检修公路道路.向东记为正,向西记为负.某天自A地出发.所走路程(单位:千米)为:+22,﹣3,+4,﹣2,﹣8,﹣17,﹣2,+12,+7,﹣5;问:①最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?②若每千米耗油0.05升,则今天共耗油多少升?25.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5﹣2﹣5+15﹣10+16﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.26.把下列各数填在相应的括号内:﹣19,2.3,﹣12,﹣0.92,,0,﹣,0.563,π正数集合{…};负数集合{…};负分数集合{…};非正整数集合{…}.27.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问:①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?参考答案与试题解析一.选择题1.解:|+2.5+=2.5,|﹣0.6|=0.6,|+0.7|=0.7,|﹣3.5|=3.5,3.5>2.5>0.7>0.6,故选:B.2.解:∵一种面粉的质量标识为“25±0.25千克”,∴合格面粉的质量的取值范围是:(25﹣0.25)千克~(25+0.25)千克,即合格面粉的质量的取值范围是:24.75千克~25.25千克,故选项A不合格,选项B不合格,选项C合格,选项D不合格.故选:C.3.解:a>0时,﹣a<0,是负数,a=0时,﹣a=0,0既不是正数也不是负数,a<0时,﹣a>0,是正数,综上所述,﹣a表示的数可以是负数,正数或0.故选:D.4.解:根据数轴可知:x﹣(﹣3.6)=8﹣0,解得x=4.4.故选:C.5.解:点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.6.解:0既不是正数也不是负数,故选:A.7.解:①﹣4.2是负分数是正确的;②3.7不是整数是正确的;③非负有理数包括零,原来的说法错误;④正有理数、0、负有理数统称为有理数,原来的说法错误;⑤没有最小的有理数,原来的说法错误.故说法中正确的个数有2个.故选:B.8.解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2020+1=2021,∴2020厘米的线段AB盖住2020或2021个整点.故选:C.9.解:由数轴知,﹣4<b<﹣3<﹣1<a<0<1<c<2,∴a+b<0,a+c>0,b+c<0,故选:A.10.解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.二.填空题11.解:∵节约20元钱,记作“+20”元,∴浪费15元钱,记作﹣15元.故答案为:﹣15.12.解:根据题意:收入记作“+”,则支出记作“﹣”,∴同一天支出水、电、维修等各种费用600元,应记作﹣600元.故答案为:﹣600元.13.解:“正”和“负”相对,如果﹣20%表示减少20%,那么+6%表示增加6%.14.解:0,﹣,2是整数,故答案为:0,﹣,2.15.解:在数轴上,表示﹣10的点与表示﹣4的点的距离是|﹣4﹣(﹣10)|=6.故答案为:616.解:∵|1﹣(﹣2)|=3,∴数轴上表示﹣2的点与表示1的点的距离是3.故答案为:3.17.解:正”和“负”相对,所以向东是正,则向西就是负,因而向西运动5m应记作﹣5m.故答案为:﹣5.18.解:分数集:5%、﹣2.3、、3.1415926、﹣;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.19.解:∵点A所表示的数是﹣3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是﹣3﹣4=﹣7.故答案为:﹣7.20.解:分两种情况,①当点N沿着数轴向右移动,则点M表示的数为(﹣2+5t),点N表示的数为(4+4t),由MN=12得,|(﹣2+5t)﹣(4+4t)|=12,解得,t=﹣6(舍去),或t=18;②当点N沿着数轴向左移动,则点M表示的数为(﹣2+5t),点N表示的数为(4﹣4t),由MN=12得,|(﹣2+5t)﹣(4﹣4t)|=12,解得,t=﹣(舍去),或t=2;故答案为:2或18.三.解答题21.解:(1)整数集合:{﹣11,﹣9,0,+12…};(2)分数集合:{,﹣6.4,﹣4%…};(3)非负整数集合:{0,+12…};(4)负有理数集合:{﹣11,,﹣9,﹣6.4,﹣4%…}.故答案为:(1)﹣11,﹣9,0,+12;(2),﹣6.4,﹣4%;(3)0,+12;(4)﹣11,,﹣9,﹣6.4,﹣4%.22.解:(1)10+(﹣9)+7+(﹣15)+6+(﹣5)+4+(﹣2)=﹣4(千米).答:他在出发点的西方,距出发点4千米;(2)总耗油量(10+|﹣9|+7+|﹣15|+6+|﹣5|+4+|﹣2|+4)×0.2=62×0.2=12.4(升),12.4﹣10=2.4(升).答:不够,途中至少需补充2.4升油.23.解:(1)50×10+(1+1.5﹣0.8﹣2+0+1.2﹣0.5﹣1+0+2)=501.4(kg);答:该水果店一共购进苹果501.4千克;(2)501.4×(3.5﹣2)=752.1(元),答:该水果店所购苹果全部售完时共盈利752.1元.24.解:①(+22)+(﹣3)+(+4)+(﹣2)+(﹣8)+(﹣17)+(﹣2)+(+12)+(+7)+(﹣5)=45+(﹣37)=8千米,所以,不能回到出发点,在A地东边8千米处;②|+22|+|﹣3|+|+4|+|﹣2|+|﹣8|+|﹣17|+|﹣2|+|+12|+|+7|+|﹣5|=22+3+4+2+8+17+2+12+7+5=82千米,82×0.05=4.1升.25.解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.26.解:正数集合{2.3,,0.563,π…};负数集合{﹣19,﹣12,﹣0.92,﹣…};负分数集合{﹣0.92,﹣…};非正整数集合{﹣19,﹣12,0 …}.故答案为:{ 2.3,,0.563,π…};{﹣19,﹣12,﹣0.92,﹣…};{﹣0.92,﹣…};{﹣19,﹣12,0 …}.27.解:(1)如图所示:(2)CD=3.5﹣1=2.5,BC=1﹣(﹣2)=3;(3)MN=|a﹣b|;(4)①依题意有2t﹣t=3,解得t=3.故t为3秒时P,Q两点重合;②依题意有2t﹣t=3﹣1,解得t=2;或2t﹣t=3+1,解得t=4.故t为2秒或4秒时P,Q两点之间的距离为1.故答案为:2.5,3;|a﹣b|.。

人教版数学七年级上册第1章 有理数 单元检测题(二)

人教版数学七年级上册第1章 有理数 单元检测题(二)

七年级上册第1章单元检测(二)一.选择题1.在﹣6,12,﹣(﹣5),﹣|﹣3|,﹣12,0这六个数中,负数的个数有()A.0个B.1个C.2个D.3个2.下列计算正确的是()A.(﹣)2=B.23=2×3=6C.﹣32=﹣3×(﹣3)=9D.﹣23=﹣83.根据a×b=c×d(字母表示的数均不为0),改写成比例正确的是()A.c:a=d:b B.c:a=b:d C.a:b=c:d D.a:c=b:d 4.2019年暑期爆款国产动漫《哪吒之魔童降世》票房已斩获4930000000,开启了国漫市场崛起新篇章,4930000000用科学记数法可表示为()A.49.3×108B.4.93×109C.4.93×108D.493×1075.已知a,b互为相反数,c,d互为倒数,m的绝对值为1,x是数轴上到原点的距离为1的点表示的数,则x2018﹣cd+﹣1的值为()A.3B.2C.1D.06.a、b是有理数,它们在数轴上的对应点的位置如图所示,下列说法正确的有()个.①|a+b|=|a|﹣|b|;②﹣b<a<﹣a<b;③a+b>0;④|﹣b|<|﹣a|.A.1B.2C.3D.47.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④不仅是有理数,而且是分数;⑤是无限不循环小数,所以不是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个8.下列各组数中,数值相等的是()A.﹣22和(﹣2)2B.﹣和(﹣)2C.(﹣2)2和22D.﹣(﹣)2和﹣9.有两个正数a,b,且a<b,把大于等于a且小于等于b所有数记作[a,b],例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,610.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1二.填空题11.在﹣8,2020,3,0,﹣5,+13,,﹣6.9中,正整数有个.12.绝对值大于4.5而小于7的所有整数的和等于.13.若|x|=3,|y|=2,且y<0,则x+y=.14.已知a、b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|2﹣a|+|b+2|的结果是.15.对有理数a、b,定义运算★如下,a★b=,则﹣5★6=.三.解答题16.计算:(1)12﹣(﹣18)+(﹣7)﹣20;(2)﹣5﹣9+17﹣3;(3)(﹣1)3﹣[2﹣(﹣3)2]÷(﹣);(4)(﹣7)×(﹣5)﹣90÷(﹣15)+3×(﹣1).17.2020年春节将至,某商场计划购进一批鼠年吉祥物“鼠来宝”,生产厂家订价为每个“鼠来宝“60元,由于临近春节,生产厂家进行促销活动,商场以八折的价格购进,结果比计划多购进了100个“鼠来宝”.(1)该商场购进这批“鼠来宝”共花费多少元?(2)该商场将每个“鼠来宝”在进价的基础上提高50%进行销售.由于“鼠来宝”深受人们的喜欢,所以很快售完,商场以同样的进价又购进了300个“鼠来宝”,并以同样的售价进行销售,到小年了,还有第二次购进的30%的“鼠来宝”没卖出去,求此时商场获利多少元?(3)在(2)的条件下,过完小年商场将剩下的“鼠来宝”以售价的五折进行降价处理,那么商场将两次购进的“鼠来宝”全部销售完后共获利多少元?18.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.(1)在图1的数轴上,AC=个长度单位;数轴上的一个长度单位对应刻度尺上的cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.19.发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352;例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(﹣11)=.探究:一个两位数,十位上的数字是m,个位上的数字是n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出计算结果中十位上的数字.20.对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.(1)填空:(﹣2020]=,(﹣2.4]=,(0.7]=;(2)如果a,b都是整数,且(a]和(b]互为相反数,求代数式a2﹣b2+4b的值;(3)如果|(x]|=3,求x的取值范围.参考答案一.选择题1.解:﹣(﹣5)=5,﹣|﹣3|=﹣3,﹣12=﹣1,所以这六个数中,负数为﹣6,﹣|﹣3|,﹣12.故选:D.2.解:A、(﹣)2=,所以A选项错误;B、23=2×2×2=8,所以B选项错误;C、﹣32=﹣3×3×3=﹣9,所以C选项错误;D、﹣23=﹣2×2×2=﹣8,所以D选项正确.故选:D.3.解:∵a×b=c×d(字母表示的数均不为0),∴改写成比例正确的是a:c=d:b或c:a=b:d.故选:B.4.解:4930000000=4.93×109.故选:B.5.解:∵a,b互为相反数,c,d互为倒数,m的绝对值为1,x是数轴上到原点的距离为1的点表示的数,∴a+b=0,cd=1,m=±1,x=±1,∴m2=1,x2018=1,∴x2018﹣cd+﹣1=1﹣1++1﹣1=1﹣1+0+1﹣1=0,故选:D.6.解:根据有理数a、b在数轴上的对应点的位置可知,a<0,b>0,且|a|<|b|,∴a+b>0,因此③正确;∵|a|=|﹣a|,|b|=|﹣b|,而|a|<|b|,∴|﹣a|<|﹣b|,因此④不正确;∵a<0,b>0,且|a|<|b|,∴a+b=|b|﹣|a|>0,因此①不正确,根据绝对值和相反数的意义可得,﹣b<a<﹣a<b;因此②正确,故选:B.7.解:①没有最小的整数;②有理数包括正数、0和负数;③非负数就是正数和0;④是无理数;⑤是无限循环小数,所以是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数,故其中错误的说法的个数为5个.8.解:∵﹣22=﹣4,(﹣2)2=4,﹣22≠(﹣2)2,∴选项A不符合题意;∵﹣=﹣,(﹣)2=,﹣≠(﹣)2,∴选项B不符合题意;∵(﹣2)2=4,22=4,(﹣2)2=22,∴选项C符合题意;∵﹣(﹣)2=﹣,﹣=﹣,﹣(﹣)2≠﹣,∴选项D不符合题意.故选:C.9.解:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴的一切值中属于整数的有=2,=3,=4,=5,=6.故选:B.10.解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1+1+1=1,二.填空题11.解:正数有:2020,,+13,,故答案为:4.12.解:绝对值大于4.5而小于7的所有整数为﹣5,﹣6,5,6,之和为0.故答案为:0.13.解:∵|x|=3,|y|=2,且y<0,∴x=±3,y=﹣2,∴x+y=3+(﹣2)=1或x+y=(﹣3)+(﹣2)=﹣5.故答案为:1或﹣5.14.解:由有理数a、b、c在数轴上的位置,可得,﹣2<b<﹣1,2<a<3,所以有a+b>0,2﹣a<0、b+2>0,因此|a+b|﹣|2﹣a|+|b+2|=a+b﹣(a﹣2)+b+2=a+b﹣a+2+b+2=2b+4,故答案为:2b+4.15.解:∵a★b=,∴﹣5★6==﹣30.故答案为:﹣30.三.解答题16.解:(1)原式=12+18﹣7﹣20=30﹣27=3;(2)原式=﹣5﹣﹣9﹣+17+﹣3﹣=﹣5﹣9+17﹣3﹣﹣+﹣=﹣﹣+﹣=﹣=﹣;(3)原式=﹣1﹣(2﹣9)×(﹣2)=﹣1﹣(﹣7)×(﹣2)=﹣1﹣14=﹣15;(4)原式=35+6﹣3=38.17.解:(1)设该商场购进这批“鼠来宝”共花费x元,由题意得,解得x=24000(元),答:该商场购进这批“鼠来宝”共花费24000元;(2)该商场第一次购进“鼠来宝”的数量:(个),实际进价60×80%=48(元),所以48×(1+50%)×[500+300×(1﹣30%)]﹣48×(500+300)=12720(元).答:此时商场获利12720元;(3)48×(1+50%)×50%×300×30%=3240(元),12 720+3 240=15 960(元).答:商场共获利15 960元.18.解:(1)AC=4﹣(﹣5)=9(个长度单位),数轴上的一个长度单位对应刻度尺上的5.4÷9=0.6(cm);故答案为:9;0.6.(2)依题意有1.8=0.6(b+5),解得b=﹣2,即数轴上点B所对应的数b为﹣2;(3)设点Q所表示的数是x,依题意有x﹣(﹣5)=2(﹣2﹣x),解得x=﹣3.故点Q所表示的数是﹣3.19.解:尝试:(1)43×11=473;(2)69×11=759;(3)98×(﹣11)=﹣1078;探究:(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是m,m+n,n,验证:这个两位数为10m+n,根据题意得:(10m+n)×11=(10m+n)(10+1)=100m+10(m+n)+n,则若m+n<10,百位、十位、个位上的数字分别是m,m+n,n;(2)若m+n≥10,十位上数字为m+n﹣10.故答案为:尝试:(1)473;(2)759;(3)﹣1078.20.解:(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)∵a,b都是整数,且(a]和(b]互为相反数,∴a﹣1+b﹣1=0,∴a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b=2(a﹣b)+4b=2(a+b)=2×2=4;(3)当x<0时,∵|(x]|=3,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵|(x]|=3,∴x>3,∴3<x≤4.故x的范围取值为﹣3<x≤﹣2或3<x≤4.故答案为:﹣2021,﹣3,0.。

浙教版2021—2022学年七年级数学(上):第2章 有理数的运算 单元达标测试卷(二)含答案解析

浙教版2021—2022学年七年级数学(上):第2章  有理数的运算 单元达标测试卷(二)含答案解析

浙教版七年级(上)第二单元达标测试卷(二)数 学(考试时间:100分钟 满分:120分)学校: 班级: 考号: 得分:一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据相关部门统计,2020年全国普通高校毕业生约8340000人.将8340000用科学记数法表示应为( ) A .583.410⨯B .58.3410⨯C .68.3410⨯D .70.83410⨯2.下列四个实数中,是负数的是( ) A .-(-1)B .(-1)2C .|-1|D .(-1)33.已知a ,b 是有理数,()a b a b +=-+,a b a b -=-,若将a ,b 在数轴上表示,则图中有可能( ) A .B .C .D .4.若2x =,3y =,且x ,y 异号,则x y +的值为( ) A .5B .5或1C .1D .1或-15.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻的可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度),根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )A C -C D -E D -F E -G F -B G -100米 80米60-米50米70-米20米A .240-米B .240米C .390米D .210米6.若a <0<b <c ,则( ) A .a +b +c 是负数 B .a +b -c 是负数 C .a -b +c 是正数D .a -b -c 是正数7.若数轴上点A 表示的数是5-,则与它相距2个单位的点B 表示的数是( ) A .5±B .7-或3-C .7D .8-或38.3的倒数是( ) A .13B .3-C .13-D .13±9.计算10099(2)(2)-+-所得的结果是( ) A .2-B .2C .992-D .99210.下列计算中,正确的是( ). A .1515-=- B .4.5 1.7 2.5 1.8 5.5--+= C .()22--=D .()1313-÷-=11.定义运算2a b ab a b =--★,如13132132=⨯-⨯-=★,则24-★的值为( ) A .8B .-8C .16D .-1612.如图所示是计算机程序计算,若开始输入2x =-,则最后输出的结果是( )A .4-B .14-C .64-D .16-二、填空题(本大题共6小题,每小题3分,共18分) 13.将59800000用科学记数法表示为__________.14.若实数a ,b 满足()2120a b ++-=,则b a =_____________.15.如图是一数值转换机,若输入的x 为﹣4,y 为6,则输出的结果为_____.16.如图所示的运算程序中,若输入的x 值为-2,则输出的y 的值为 ______.17.已知3x =,2y =,且x y y x -=-,则x y +=______. 18.已知()2210a b -++=,则()2003a b +=______.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.小慧坐公交车从家里出发去学校,他从家门口的公交站上年,上车后发现车上连自己共座了9人,之后经过A 、B 、C 3个站点,他观察到上下车情况如下(记上车为正,下车为负):()()()5,3,3,4,2,5A B C +-+-+-.(1)若公交车费每人每趟2元,则公交车在A 、B 、C 这3个站点共收入多少元? (2)经过A 、B 、C 这3个站点后,车上还有多少人? 20.计算:(1)﹣7+(+20)﹣(﹣5)﹣(+3);(2)512.5()()84-÷-⨯-;(3)3777(1)()48128--÷-;(4)3(2)-+(﹣2)×(23+1)﹣12÷(﹣4).21.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“-”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)−2,+5,−2,−3,−2,+6请回答:⑴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?⑵若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到的乘客所给车费共多少元?⑶若小王的出租车每千米耗油0.3升,每升汽油6元.不计汽车的损耗,那么小王这天下午是盈利(或亏损)多少钱?22.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km ):(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米? (2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费10元,超过3km 的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元? 23.有理数,,a b c 均不为0,且0a b c ++=,设a b c x b cc aa b=+++++,试求代数式19992098x x -+的值.24.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且24(1)0a b ++-=,现将A ,B 之间的距离记作BA ,定义AB a b .(1)求,a b 的值; (2)求AB 的值;(3)设点P 在数轴上对应的数是x ,当2PA PB -=时,求x 的值参考答案二、选择题(本大题共12小题,每小题3分,共36分。

2024年七年级数学上册《有理数及其运算》单元测试及答案解析

2024年七年级数学上册《有理数及其运算》单元测试及答案解析

第2章 有理数及其运算(单元培优卷 北师大版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。

1.有理数2−的相反数是( ) A .2B .12C .2−D .12−2.13与14的和的倒数是( )A .7B .517C .17D .1433.32−的绝对值是( )A .23−B .32−C .23D .324.下列说法正确的个数为( ) ①有理数与无理数的差都是有理数; ②无限小数都是无理数; ③无理数都是无限小数;④两个无理数的和不一定是无理数; ⑤无理数分为正无理数、零、负无理数. A .2个B .3个C .4个D .5个5.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲 亚洲欧洲 非洲南美洲最低海拔/m415− 28−156− 40−其中最低海拔最小的大洲是( ) A .亚洲B .欧洲C .非洲D .南美洲6.数轴上的点M 和点N 分别表示3−与4,如果把点N 向左移动6个单位长度,那么点N 现在表示的数比点M 表示的数( ) A .大2B .大1C .小2D .小17.如果把一个人先向东走5m 记作5m +,那么接下来这个人又走了6m −,此时他距离出发点有多远?下面选项中正确的是( ) A .6m −B .1m −C .1mD .6m8.在0.65,58,35,916这四个数中,最大的是()A .0.65B .58C .35D .9169.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ). A .822.9310×B .922.9310×C .82.29310×D .92.29310×10.一个天平配有重量分别为1,5,25,125,625克的砝码各5个,则为了准确称出重量为2024克的某物品(砝码只能放一侧),所需砝码数量的值为( )A .11B .12C .13D .14二、填空题:共6题,每题3分,共18分。

(常考题)人教版初中数学七年级数学上册第一单元《有理数》测试(包含答案解析)(2)

(常考题)人教版初中数学七年级数学上册第一单元《有理数》测试(包含答案解析)(2)

一、选择题1.13-的倒数的绝对值()A.-3 B.13-C.3 D.132.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍3.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定4.计算:11322⎛⎫⎛⎫-÷-÷-⎪ ⎪⎝⎭⎝⎭的结果是()A.﹣3 B.3 C.﹣12 D.125.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样7.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,38.下列结论错误的是( )A .若a ,b 异号,则a ·b <0,ab <0 B .若a ,b 同号,则a ·b >0,a b>0 C .a b -=a b-=-a bD .a b--=-ab9.6-的相反数是( ) A .6B .-6C .16D .16-10.已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2± B .±1 C .2±或0 D .±1或0 11.把实数36.1210-⨯用小数表示为() A .0.0612B .6120C .0.00612D .61200012.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.3-的平方的相反数的倒数是___________. 14.若230x y ++-= ,则x y -的值为________. 15.数轴上A 、B 两点所表示的有理数的和是 ________.16.在括号中填写题中每步的计算依据,并将空白处补充完整: (-4)×8×(-2.5)×(-125) =-4×8×2.5×125 =-4×2.5×8×125______ =-(4×2.5)×(8×125)______ =____×____ =____.17.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0. 18.气温由﹣20℃下降50℃后是__℃.19.一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ . 20.绝对值小于4.5的所有负整数的积为______.三、解答题21.计算 (1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯ 22.计算:()22131********⎛⎫-+--⨯--⎪⎝⎭. 23.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭24.某超市对2020年下半年每月的利润用下表作了记录: 月份 7月 8月 9月 10月 11月 12月 盈亏(万元) 盈12盈16盈8亏6亏4盈14正、负数表示(2)计算该商场下半年6个月的总利润额. 25.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 26.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯-【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3, 故答案为:C . 【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.2.A解析:A 【分析】根据题意列出乘法算式,计算即可. 【详解】设一个因数为a ,另一个因数为b ∴两数乘积为ab 根据题意,得1110202a b ab = 故选A . 【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.3.B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h > 故选B . 【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.C解析:C 【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案. 【详解】原式﹣3×(﹣2)×(﹣2) =﹣3×2×2 =﹣12, 故选:C . 【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.5.B解析:B 【分析】根据有理数的减法运算法则对各小题分析判断即可得解. 【详解】①减去一个数等于加上这个数的相反数,故本小题正确; ②互为两个相反数的两数相加得零,故本小题正确; ③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个. 故选B . 【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.6.B解析:B 【解析】 【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为53.1810,所以B选项正确;C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.7.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.9.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.10.C解析:C【分析】根据题意得到a与b同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-; 当0a <,0b >时,原式110=-+=. 故选:C . 【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.11.C解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】6.12×10−3=0.00612, 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.D解析:D 【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误. 【详解】A 选项:3710--=-,故错误;B 选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C 选项:1122()21333---=-+=-,故错误; D 选项运算正确. 故选:D . 【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:19-【分析】根据倒数,相反数,平方的概念可知. 【详解】−3的平方是9,9的相反数是-9,-9的倒数是19- 故答案为19-. 【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.14.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性 解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可. 【详解】 解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =, ∴235-=--=-x y , 故答案为: 5.- 【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.15.-1【解析】由数轴得点A 表示的数是﹣3点B 表示的数是2∴AB 两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1 【解析】由数轴得,点A 表示的数是﹣3,点B 表示的数是2, ∴ A ,B 两点所表示的有理数的和是﹣3+2=﹣1, 故答案为-1.16.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律 乘法结合律 -10 1000 -10000 【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可. 【详解】 (-4)×8×(-2.5)×(-125) =-4×8×2.5×125=-4×2.5×8×125(乘法交换律) =-(4×2.5)×(8×125)(乘法结合律) =-10×1000 =-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000. 【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.17.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < > 【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可. 【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<-> 故答案为:<,<,<,> 【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.18.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70 【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算. 【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.20.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题21.(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.22.13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.23.(1)6;(2)58. 【分析】(1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.24.(1)填表见解析;(2)40万元.【分析】(1)根据“盈利记为正,则亏损就记为负”直接写出答案即可;(2)把该商场下半年6个月的利润相加即可.【详解】解:(1)盈利记为正,亏损就记为负,填表如下:=36-10+14=40(万元)∴该商场下半年6个月的总利润额为40万元.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.同时 还考查了有理数的加法运算.25.(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 26.(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.。

北师大版七年级数学上册第二章有理数及其运算单元练习题2(附答案)

北师大版七年级数学上册第二章有理数及其运算单元练习题2(附答案)

北师大版2018七年级数学上册第二章有理数及其运算单元练习题2(附答案)1.若x、y为有理数,下列各式成立的是()A.、、x、3=x3B.、、x、4=、x4C.x4=、x4D.、x3=、、x、32.两个有理数的和为负数,那么这两个数一定( )A.都是负数B.绝对值不相等C.有一个是0 D.至少有一个负数3.如果,则内应填的实数是A.B.C.D.4.﹣的相反数的倒数是()A.1B.﹣1C.2 016D.﹣2 0165.若一个数的绝对值的相反数是-,则这个数是( )A.-B.C.-或D.7或-76.计算17、2×[9、3×3×(、7)]÷3的值为( )A.、31B.0C.17D.1017.有理数m,n在数轴上的位置如图所示,则下列判断错误的是( )A.n<-1B.m>n C.n>-1>m>0D.m>0>-1>n8.下面是我省四个地市2017年12月份的日均最低温度:﹣10℃(太原),﹣14℃(大同),﹣5℃(运城),﹣8℃(吕梁).其中日均最低温度最高的是()A.吕梁B.运城C.太原D.大同9.下列运算中正确的是(、A.B.C.D.10.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为米.11.现规定一种运算a*b=ab+a-b,其中a,b为有理数,则3*(-5)的值为___.12.我们知道,|x+3|+|x-6|的最小值是__________。

13.计算234⎛⎫--⎪⎝⎭= __________.14.2﹣3=_____、15.写出下列运算中每一步所依据的运算律或法则:(-0.4)×(-0.8)×(-1.25)×2.5=-(0.4×0.8×1.25×2.5)(第一步)=-(0.4×2.5×0.8×1.25)(第二步)=-[(0.4×2.5)×(0.8×1.25)](第三步)=-(1×1)=-1.第一步:____________;第二步:____________;第三步:____________.16.若|x|=2,则x3=________.17.近年来℃国家重视精准扶贫℃收效显著℃据统计约6500万人脱贫℃6500万人用科学记数法可表示为____________人℃18.某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为______.19.-0.5的相反数的倒数是__________.20.现有一组有规律排列的数:1、、1、、、、、、、1、、1、、、、、、…其中,1、、1、、、、、、这六个数按此规律重复出现,问:、1)第50个数是什么数?、2)把从第1个数开始的前2017个数相加,结果是多少?、3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?21.计算:(1)(﹣19)﹣(+21)﹣(﹣5)+(﹣9);(2)20﹣(﹣7)﹣|﹣2|;(3)﹣3﹣(﹣0.5+1);(4)(﹣8)×;(5).22.已知A、B是数轴上的两个点,点A表示的数为13,点B表示的数为、5、动点P从点B 出发,以每秒4个单位长度的速度沿数轴向右匀速运动,设运动时间为秒.、1、BP= 、点P表示的数(分别用含的代数式表示);、2、点P运动多少秒时,PB=2PA、、3、若M为BP的中点,N为PA的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.23.计算:(﹣3)2﹣()2×+6÷|﹣|3.26.已知|a、1|、(b、2)2、0、求(a、b)2017、a2018的值.27.某水果店销售香蕉,前一天未卖完的香蕉会有部分由于不新鲜而损耗,未损耗的水果第二天继续销售,当天结束时,若库存较前一天减少,则记为负数,若库存较前一天增加,则记为正数.10月1日至10月5日的经营情况如下表:(1)10月3日卖出香蕉千克.(2)问卖出香蕉最多的一天是哪一天?(3)这五天经营结束后,库存是增加了还是减少了?变化了多少?答案1.D【解析】分析:分别利用有理数的乘方运算法则分析得出答案.详解:A、(-x)3=-x3,故此选项错误;B、(-x)4=x4,故此选项错误;C、x4=-x4,此选项错误;D、-x3=(-x)3,正确.故选D.点睛:正数的任何次幂都是正数.负数的奇数次幂是负数,偶数次幂是正数.0的任何次幂都是0.2.D【解析】试题解析:A、不能确定,例如:-5+2=-3℃.B、不能确定,例如:-8+8=0℃.C、不能确定,例如:-5+2=-3℃.D、正确..故选D℃3.B【解析】分析:已知两个因数的积及其中一个因数,求另外一个因数,用积除以已知因数.也可以用倒数的知识解题.详解:∵□×(-)=1,∴□=1÷(-)=-.故选:B.点睛:本题考查了倒数的意义,除法的意义.4.C【解析】解:﹣的相反数是,的倒数是2016.故选C.5.C【解析】【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为的数是,而或的绝对值都是,∴这个数是或.故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.6.A【解析】【分析】先算括号内的乘法运算,再算括号内的加法运算得到原式=17-2×72÷3,然后进行乘除运算.最后进行减法运算.【详解】解:原式=17-2×(9+63)÷3=17-2×72÷3=17-144÷3=17-48=-31.故选:A.本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.7.C【解析】【分析】先根据m、n的位置判断出m、n的取值范围,再对各选项进行逐一判断即可.【详解】解:∵由m、n的位置可知,m<-1,0<n<1,∴A、n<-1,故本选项正确;B、m>n,故本选项正确;C、n<-1<m<0,故本选项错误;D、m>0>-1>n,故本选项正确.故选:C.【点睛】本题考查的是数轴的特点,熟知数轴上各点的坐标特点是解答此题的关键.8.B【解析】分析:根据负数大小比较原则:绝对值大的反而小得出结论.详解:最低温度从小到大排列为:-14、-10、-8、-5、所以最高为:-5、(运城),故选:B、点睛:本题主要考查了有理数的大小比较,属于基础题型,熟练掌握两个负数大小比较原则.9.D【解析】【分析】根据有理数的加减法法则进行分析解答即可.A选项中,因为3.58-(-1.58)=3.58+1.58=5.16,所以A中计算错误;B选项中,因为(-2.6)-(-4)=-2.6+4=1.4,所以B中计算错误;C选项中,因为,所以C中计算错误;D选项中,因为,所以D中计算正确.故选D.【点睛】熟知“有理数的减法法则:减去一个数等于加上这个数的相反数”是解答本题的关键. 10.1.22×10﹣6℃【解析】试题分析:0.00000122℃1.22×10-6℃故答案为:1.22×10-6℃点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|℃10℃n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.-7【解析】分析:将a=3,b=-5代入运算公式即可得出答案.详解:3*(-5)=3×(-5)+3-(-5)=-15+3+5=-7.点睛:本题主要考查的是有理数的计算法则,属于基础题型.明确计算法则是解题的关键.12.9【解析】试题解析:当x℃6时,|x+3|+|x-6|=x+3+x-6=2x-3℃9℃当-3≤x≤6时,|x+3|+|x-6|=x+3+6-x=9℃|x+3|+|x-6|=-x-3+6-x=-2x+3℃9℃由上可得,|x+3|+|x-6|的最小值是9点睛:要明确数轴的特点,可以将绝对值符号去掉,利用数形结合的思想即可求解.13.9 16 -【解析】分析:先算乘方,再取相反数.详解:234⎛⎫--⎪⎝⎭=916-.点睛:易错辨析:(-2)2=4,-(-2)2=-4,22=4,-22=-4.14.【解析】【分析】根据负整指数幂的运算法则可得:,因此2﹣3=.【详解】因为所以2﹣3=,故答案为:.【点睛】本题主要考查负整指数幂的运算法则,解决本题的关键是要熟练掌握负整指数幂的运算法则.15.乘法法则乘法交换律乘法结合律【解析】【分析】根据有理数的乘法,即可解答.【详解】写出下列运算中每一步所依据的运算律或法则:、−0.4、×、−0.8、×、−1.25、×2.5、−、0.4×0.8×1.25×2.5)(第一步)、−、0.4×2.5×0.8×1.25)(第二步)、−[、0.4×2.5、×、0.8×1.25、](第三步)、−、1×1、、−1、第一步:乘法法则;第二步:乘法交换律;第三步:乘法结合律.故答案为:乘法法则;乘法交换律;乘法结合律.【点睛】本题考查了了有理数的乘法,解决本题的关键是熟记有理数的乘法运算法则、16.±1【解析】【分析】根据绝对值的意义先化简绝对值可得:x=±2,再分别将x=±2代入x3先进行乘方运算,再进行乘法计算即可求解.【详解】因为|x|=2,所以x=±2,当x=2时,x3=×23=1,当x =-2时,x 3=×(-2)3=-1, 故答案为: ±1. 【点睛】本题主要考查绝对值的意义和有理数乘方运算,解决本题的关键是要熟练掌握绝对值的化简和乘方运算法则. 17.76.510【解析】试题解析:65000000=6.5×107, 故答案为:6.5×107.点睛:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数. 18.5.7×107【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 详解:将57000000用科学记数法表示为:5.7×107. 故答案为:5.7×107.点睛:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 19.2【解析】-0.5的相反数是0.5,0.5的倒数是2, 故答案为:2.20.(1) 第50个数是﹣1 (2) 1 、3、 261个【解析】分析:(1)首先根据这列数的排列规律,可得每6个数一个循环:1、﹣1、、﹣、、﹣;然后用50除以6,根据余数的情况判断出第50个数是什么数即可;(2)首先用2017除以6,求出一共有多少个循环,以及剩下的数是多少;然后用循环的个数乘以1+(﹣1)++(﹣)+()+(﹣),再加上剩下的数,即可得出结论;(3)首先求出1、﹣1、、﹣、、﹣六个数的平方和是多少;然后用520除以六个数的平方和,根据商和余数的情况,判断出一共有多少个数的平方相加即可.详解:(1)这列数每6个数一个循环:1、﹣1、、﹣、、﹣;∵50÷6=8…2,∴第50个数是﹣1.(2)∵2017÷6=336…1,1+(﹣1)++(﹣)+()+(﹣)=0,∴从第1个数开始的前2017个数的和是:336×0+1=1.(3)∵=12,520÷12=43…4,而且,∴43×6+3=261,即共有261个数的平方相加.点睛:本题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数每6个数一个循环:1、﹣1、、﹣、、﹣,而且每个循环的6个数的和是0.21.(1)﹣44;(2)25;(3)﹣5;(4)﹣3;(5)2.【解析】试题分析:按照有理数的混合运算顺序进行运算即可.试题解析:原式原式原式原式原式22.、1、、、、2、3、、9、、、3、、、、、、、、、、、、9.【解析】试题分析:(1)根据BP=速度×时间可表示出BP的长,点P表示的数为-5+4t、(2) 分点P在AB之间运动时和点P在运动到点A的右侧时两种情况列出方程求解即可;(3) 分点P在AB之间运动时和点P在运动到点A的右侧时两种情况,利用中点的定义和线段的和差求出MN的长即可.解:、1)由题意得,BP=4t,点P表示的数是-5+4t、、2、当点P在AB之间运动时,由题意得,PB=4t、PA=13-、-5+4t、=18-4 t、、PB=2P A、、4t=2、18-4 t、、、t=3;当点P在运动到点A的右侧时,由题意得,PB=4t、P A=-5+4t-13=4 t-18、、PB=2P A、、4t=2、4 t-18、、、t=9;综上可知,点P运动多3秒或9秒时,PB=2P A.、3)当点P在AB之间运动时,由题意得,PB=4t、PA=18-4 t、∵M为BP的中点,N为P A的中点,、、,、MN=MP+NP=2t+9-2t=9;当点P在运动到点A的右侧时,由题意得,PB=4t、P A=4 t-18、∵M为BP的中点,N为P A的中点,、、,、MN=MP-NP=2t-、2t-9、=9;综上可知,线段MN的长度不发生变化,长度是9.点睛:本题考查了数轴和一元一次方程的应用,用到的知识点是数轴上两点之间的距离,根据题意画出图形,分两种情况进行讨论是解答本题的关键.23.28【解析】【分析】按运算顺序先分别进行平方运算、立方运算,然后再进行乘除法运算,最后进行加减法运算即可得.【详解】原式=9、===.【点睛】本题考查了有理数的混合运算,掌握运算法则,确定好运算顺序是解题的关键.±24.y x的4次方根为2【解析】试题分析:根据非负数的意义,求出x、y的值,然后代入求解即可.x-=0试题解析:因为()22所以x-2=0,y-4=0解得x=2,y=4所以x y=42=(±2)4±.所以y x的4次方根为225.(1)6;6;20;20(2)①25②4(3)a2b【解析】试题分析:(1)按算术平方根的定义进行计算即可得到空格处的数;(2)分析(1)中所得结果可知:当时,,按照所得规律进行计算即可;(3)按照所得规律可知:,再结合即可得到结论.试题解析:(1),;,;(2)由(1)中的计算结果可知:当时,,∴①;②;(3)∵,,∴.26.0【解析】分析:根据非负数的性质列式求出a、b,根据乘方法则计算即可.详解:∵|a-1|+(b+2)2=0,∴a-1=0,b+2=0,解得:a=1,b=-2,∴(a+b)2017+a2018=(1-2)2017+12018=-1+1=0.点睛:本题考查的是非负数的性质,掌握当几个非负数和为0时,则其中的每一项都必须等于0是解题的关键.27.(1)46(2)卖出香蕉最多的一天为10月5日(3)库存减少了,减少了7千克.【解析】试题分析:(1)(2)(3)利用正负数表示的意义,计算出库存.试题解析:(1)46.(2)10月1日卖出的香蕉为55-4-1=50;10月2日:45-(-2)-4=43;10月3日:50-(-8)-12=46;10月4日:50-2-2=46;10月5日:50-(-3)-1=52.故卖出香蕉最多的一天为10月5日.(3)4+(-2)+(-8)+2+(-3)=-7.答:库存减少了,减少了7千克。

第2章 有理数的运算 综合检测卷(含答案) 初中数学人教版(2024)七年级上册

第2章  有理数的运算  综合检测卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024年新教材)七年级(上)综合检测卷第2章《有理数的运算》考试时间:100分钟总分值:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.计算:2+(﹣6)=( )A.4B.﹣4C.8D.﹣82.﹣2024的倒数是( )A.﹣2024B.2024C.D.3.横冲国际滑雪场某一天的最高气温为1℃,最低气温为﹣9℃,则这天的最高气温比最低气温高( )A.﹣10℃B.﹣8℃C.8℃D.10℃4.据国家统计局发布,2023年全国固定资产投资(不含农户)50.3万亿元,同比增长3.0%.其中数据“50.3万亿”用科学记数法表示为( )A.5.03×1014 B.5.03×1013 C.0.503×1014 D.5.03×10125.不改变原式的值,将6﹣(﹣3)+(﹣7)﹣(+2)中的减法改成加法,并写成省略加号的形式是( )A.6+3﹣7+2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣26.下列计算不正确的是( )A.﹣1.5×(﹣3)=4.5B.(﹣1.2)×(﹣7)=﹣8.4C.﹣8×(﹣1.3)=10.4D.0×(﹣1.6)=07.两个非零有理数的和为零,则它们的商( )A.1B.﹣1C.0D.不能确定8.下列各数中,结果相等的是( )A.23和32B.(﹣2)3和﹣23C.(﹣3)2和﹣32D.|﹣2|3和(﹣2)39.对于有理数a、b,定义一种新运算“※”,规定:a※b=|a|﹣|b|﹣|a﹣b|,则2※(﹣3)等于( )A.﹣2B.﹣6C.0D.210.数轴上的两点所表示的数分别为a,b,且满足ab>0,a+b<0,下列结论正确的是( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>0二.填空题(共6小题,满分18分,每小题3分)11.比﹣27大3的数是 .12.底数是﹣2,指数是4的幂可以写成 .13.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.14.将数2 024.624四舍五入取近似值,精确到个位为 .15.计算(﹣2)÷6×的结果是 .16.在数4、﹣6、3、﹣2、1中,任意取3个不同的数相乘,其中乘积最大是 .三.解答题(共9小题,满分72分,每小题8分)17.(8分)计算:(1)(﹣7)+13﹣5;(2)(﹣)﹣(﹣)﹣|﹣1|.18.(6分)如果a、b互为相反数,c、d互为倒数,m的绝对值为5,求的值.19.(6分)先阅读第(1)小题,再计算第(2)小题:(1)计算:﹣1+(﹣5)+24+(﹣3)解:原式=(﹣1﹣)+(﹣5﹣)+(24+)+(﹣3﹣)=﹣1﹣﹣5﹣+24+﹣3﹣=﹣1﹣5﹣3+24﹣﹣+﹣=15﹣=13(2)计算(﹣15)+(﹣19)+14+(﹣1).20.(10分)计算:(1);(2).21.(6分)阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).22.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.23.(8分)某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图,增加粮食记作“+”,减少粮食记作“﹣”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化精况的一半,求7号这天仓库粮食变化情况.24.(10分)①如果a,b,c是有理数且abc≠0,计算代数式的值;②如果有理数a+b+c=0且abc≠0,计算代数式的值.25.(10分)阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数.所以,当a≥0时,|a|=a,当a≤0时,|a|=﹣a.根据以上阅读完成:(1)|3.14﹣π|= ;(2)|x+y|=x+y,则x+y ;(3)计算:.参考答案一.选择题1.B.2.C.3.D.4.B.5.D.6.B.7.B.8.B.9.B.10.B.二.填空题11.﹣24.12.(﹣2)4.13.8.14.2025.15..16.48.三.解答题17.解:(1)原式=6﹣5=1;(2)原式=﹣﹣=﹣=0.18.解:∵a、b互为相反数,c、d互为倒数,m的绝对值为5,∴a+b=0,cd=1,m=±5,当a+b=0,cd=1,m=5时,;当a+b=0,cd=1,m=﹣5时,;所以原式的值为﹣7或3.19.解:(﹣15)+(﹣19)+14+(﹣1)=﹣15﹣﹣19﹣+14+﹣1﹣=﹣15﹣19+14﹣1﹣﹣+﹣=﹣21﹣=﹣2220.解:(1)=﹣8×(﹣+﹣)×6=﹣48×(﹣+﹣)=﹣48×(﹣)﹣48×﹣48×(﹣)=8﹣36+4=﹣24;(2)=﹣1﹣[2﹣(﹣8)]×(﹣)×=﹣1﹣10×(﹣)×=﹣1+=.21.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.22.解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.23.解:(1)﹣4+2﹣6+5+3﹣7=﹣7答:前6天,仓库粮食减少7袋;(2)设7号粮食变化x袋,由题意得,,解得:x=﹣2答:7号粮食减少2袋.24.解:①当a、b、c中没有负数时,都是正数,则原式=1+1+1+1=4;当a、b、c中只有一个负数时,不妨设a是负数,则原式=﹣1+1+1﹣1=0;当a、b、c中有2个负数时,不妨设a、b是负数,则原式=﹣1﹣1+1+1=0;当a、b、c都是负数时,则原式=﹣1﹣1﹣1﹣1=﹣4,综上所述,代数式的值是4或﹣4或0;②当有理数a+b+c=0且abc≠0时,a、b、c中至少有1个正数,有1个负数.则代数式的值是:0.25.解:(1)|3.14﹣π|=π﹣3.14;故答案为:π﹣3.14;(2)|x+y|=x+y,则x+y≥0,故答案为:≥0;(3)原式=1﹣+﹣+﹣+⋯+﹣=1﹣=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(上)第1单元《有理数》单元测试3(含答案)
考生注意:1、本卷共有29个小题,共100分+30分
2、考试时间为90分钟
一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)
1、下列说法正确的是()
A 整数就是正整数和负整数
B 负整数的相反数就是非负整数
C 有理数中不是负数就是正数
D 零是自然数,但不是正整数
2、下列各对数中,数值相等的是()
A -27与(-2)7
B -32与(-3)2
C -3×23与-32×2
D ―(―3)2与―(―2)3
1,-3.5,-0.01,-2,-212各数中,最大的数是()
3、在-5,-
10
1
A.-12
B.-
10
C.-0.01
D.-5
4、如果一个数的平方与这个数的差等于0,那么这个数只能是()
A.0 B.-1 C.1 D.0或1
5、绝对值大于或等于1,而小于4的所有的正整数的和是()
A. 8
B. 7
C. 6
D. 5
6、计算:(-2)100+(-2)101的是()
A. 2100
B. -1
C. -2
D. -2100
7、比-7.1大,而比1小的整数的个数是()
A. 6
B. 7
C. 8
D. 9
8、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )
A.1.205×107B.1.20×108 C.1.21×107 D.1.205×104
9、下列代数式中,值一定是正数的是( )
A.x2 B.|-x+1| C.(-x)2+2 D.-x2+1
10、已知8.62=73.96,若x2=0.7396,则x的值等于()
A. 86. 2
B. 862
C. ±0.862
D. ±862
二、填空题(本题共有9个小题,每小题2分,共18分)
11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上
将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。

12、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为_________。

13、某数的绝对值是5,那么这个数是。

134756≈(保留四个有效数字)
14、最小的自然数的绝对值是。

1的点表示的有理数是。

15、数轴上和原点的距离等于3
2
16、计算:(-1)6+(-1)7
=____________。

17、如果a 、b 互为倒数,c 、d 互为相反数,且m=-1,则代数式2ab-(c+d )+m 2=_______。

18、+5.7的相反数与-7.1的绝对值的和是 。

19、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车。

三、解答题(50分)
20、计算:(本题共有8个小题,每小题3分,共24分)
(1)8+(―4
1)―5―(―0.25) (2)―82+72÷36
(3)721×143÷(-9+19) (4)25×43+(―25)×21+25×(-41)
(5)(-79)÷241+9
4×(-29) (6)(-1)3-(1-21)÷3×[3―(―3)2]
(7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)
21、(5分)一天小明和冬冬利用温差来测量山峰的高度。

冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?
22、(6分)有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。

例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)
现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。

运算式如下:
(1)
(2)
(3)
另有四个有理数3,-5,7,-13,可通过运算式
(4) 使其结果等于24。

23、4分)下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数)。

现在的北京时间是上午8∶00
(1)求现在纽约时间是多少?
(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?
24、(6分)画一条数轴,并在数轴上表示:3.5和它的相反数,-2
1和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来。

25、(6分)体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.
问:(1)这个小组男生的达标率为多少?(
达标人数达标率总人数
) (2)这个小组男生的平均成绩是多少秒?
26、(7分)有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n 。

若a 1=2
1,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”。

试计算:a 2=______,a 3=____,a 4=_____,a 5=______。

这排数有什么规律吗?由你发现的规律,请计算a 2004是多少?
四、提高题(本题有3个小题,共20分)
1、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。

(4分)
2. 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5
与-2两数在数轴上所对的两点
之间的距离。

试探索:(1)求|5-(-2)|=______。

(2)找出所有符合条件的整数x ,使得|x+5|+|x-2|=7这样的整数是___________。

(3)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有写出最小值如果没有说明理由。

(8分)
3、若a 、b 、c 均为整数,且∣a -b ∣3+∣c -a ∣2=1,求∣a -c ∣+∣c -b ∣+∣b -a ∣的值(8分) 试题答案
一、 选择题: 每题2分,共20分
1:D 2:A 3:C 4:D 5:C
6:D 7:C 8:A 9:C 10:C
二、 填空题(本题共有9个小题,每小题2分,共18分)
11:+2;-1;地下第2层;地面上第9层. 12:-5,+1 13: ±5;1.348×105 14:0
15: ± 3.5 16:0 17:3 18 :1.4 19:12
三、 解答题:
20: 计算:(本题共有8个小题,每小题3分,共24分)
① 3 ②-80 ③21/16 ④ 0
⑤ -48 ⑥ 0 ⑦5x-9 ⑧ -2a-7
21:解: (4-2)÷0.8×100=250(米)
22:略
23: ①8-(-13)=21时 ②巴黎现在的时间是8-(-7)=15时,可以打电话.
24:解:数轴略;-3.5<-3<-2<-1<-0.5<1<3<3.5
25: ①成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%
②-0.8+1-1.2+0-0.7+0.6-0.4-0.1=-1.6
15-1.6÷8=14.8秒
26 a 2=2,a 3=-1,a 4=1/2,a 5=2。

这排数的规律是:1/2,2,-1循环. a 2004=-1
四、 提高题(本题有3个小题,共20分)
1:A-A.B-B.C-C 是相对面,填互为相反数.
2: ①7
②画出数轴,通过观察:-5到2之间的数
都满足|x+5|+|x-2|=7,这样的整数有-5,-4,-3,-2,-1,0,1,2
③猜想对于任何有理数x ,|x -3|+|x -6|有最小值=3.因为
当x 在3到6之间时, x 到3的距离与x 到6的距离的和是3,并且是最小的.
当x <3和x >6时, x 到3的距离与x 到6的距离的和都>3.
3:解: ∵∣a -b ∣3+∣c -a ∣2=1,并且a 、b 、c 均为整数
∴∣a -b ∣和∣c -a ∣=0或1
∴当∣a -b ∣=1时∣c -a ∣=0,则c=a, ∣c -b ∣=1
∴∣a -c ∣+∣c -b ∣+∣b -a ∣=0+1+1=2
当∣a -b ∣=0时∣c -a ∣=1,则b=a, ∣c -b ∣=1
∣a -c ∣+∣c -b ∣+∣b -a ∣=1+1+0=2
A B C C A B。

相关文档
最新文档