小学五年级doc小数的巧算_2
(完整word版)小数的速算与巧算
五年级奥数教案第一讲小数的速算与巧算第一课时教学内容:运算定律的简单运用教学目的:通过教学使学生进一步掌握乘法的交换律、结合律、乘法对加法的分配律,等运算定律.并利用这些运算定律进行巧算与速算。
教学重点:进一步理解并能运用运算定律进行计算.教学难点:在理解的基础上进行灵活运用。
教学过程:一复习运算定律1、乘法的交换律 a×b=b×a2、乘法的结合律(a×b)×c=a×(b×c)3、乘法的分配律 (a+b)×c=a×c+b×c乘法的分配律,不公适用两个加数的和,也适用于两个数的差,而且适用于多个数的和。
也可以逆向使用。
如果把乘号改成除号,不能逆向使用。
二、一些特殊的计算5×2=10 25×4=100 125×8=10000。
5×2=1 0.25×4=1 0。
125×8=1三、运用定律例1 1.25×(1.7×8)因为1.25与8的乘积为10。
=1。
25×8×1.7 先去括号,利用乘法的交换律和结合律,=10×1.7 求出1。
25与8的积.再乘1。
7.=17例2 0。
25×32×12。
5 看到25想到4,看到125想到8,=0。
25×4×8×12.5 把32看成为4与8的乘积.=0.25×4×(8×12。
5)分别求出0。
25与4的积,12。
5与8的积.=1×100100例3 12。
5×(10+0。
8)因为12。
5与0.8的乘积为整十数,=12.5×10+12。
5×0。
8 直接运用乘法的分配律。
=125+10=135例4 (20-0。
4)×2。
5 直接运用乘法的分配律=20×2。
五年级小数的速算与巧算2
小数的巧算2小数“巧”算的基本途径还是灵活应用小数四则运算的法则、运算定律,使题目中的数尽可能转化为整数。
在某种意义上讲,“化整”是小数运算技巧的灵魂。
当然,根据小数的特点,在乘除运算中灵活运用小数点的移位:两数相乘,两数中的小数点反向移动相同的位数,其积不变(如0.8×1.25=8×0.125);两数相除,两数中的小数点同向移动相同的位数,其商不变(如0.16÷0.04=16÷4),也是常见的简化运算方法。
另外,某些特殊小数相乘化整,应熟记于心,如上面的8×0.125=1;0.5×2=0.25×4=1;0.75×4=3;0.625×16=10等等。
同学们在平时做题时留心积累这些“窍门”会大大提高自己的运算能力。
一、例题讲解小数点的移位法则例1:计算2005×18-200.5×80+20050×0.1例2:计算75×4.7+15.9×25练习(1)计算1.25×3.14+125×0.0257+1250×0.00229 (2)计算22.8×98+45.6换成相同的乘数例3:999.90.280.666680⨯+⨯ 例4:计算999.9×0.28-0.6666×370练习1、999.90.27 6.66630.5⨯-⨯2、5.211111666660.8⨯+⨯3、3.631.443.9 6.4⨯+⨯找相同的乘数例5:计算7.816×1.45+3.14×2.184+1.69×7.816 练习:3.73 2.638.37 3.73 3.73⨯+⨯-添括号或去括号凑整数例6:320÷1.25÷8 例7: 18÷(31.25×0.9)+99.36练习:1、220÷0.25÷42、520÷12.5÷83、8÷(21.25÷1.25)4、40×(31.25×0.75)整体表示小数的和或者差1、(20.450.56)(0.450.560.84)(20.450.560.84)(0.450.56) ++⨯++-+++⨯+2、(5 2.12 4.53)(2.12 4.53 6.8)(2.12 4.53)(5 2.12 4.53 6.8) ++⨯++-++++凑整和分解数1、1.1 2.2 3.3 4.4 5.5 6.67.78.89.911.1113.1315.1517.1719.19+++++++++++++2、2012201.220.12 2.012+++二、课堂练习1、计算37.5-1.53-0.25-1.222、计算2.5×1.25×3.23、计算3.74×2.85+8.15×3.74-3.744、计算2.4×7.6+7.6×6.5+7.6×1.15、计算8÷(31.25×0.4)+99.366、计算20.05×39+200.5×4.1+40×10.0257、计算:15.48×35-154.8×1.9+15.48×84 8、计算:0.9+9.9+99.9+999.9+9999.9+99999.9+999999.9 9、计算2006+200.6+20.06+2.006 10、计算:(4.8×7.5×8.1)÷(2.4×2.5×2.7)11、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.1912、计算(2+3.15+5.87)×(3.15+5.87+7.32)-(2+3.15+5.87+7.32)×(3.15+5.87)13、计算(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)作业:1.计算:100-9.9-8.8-7.7-6.6-5.5-4.4-3.3-2.2-1.1 2.计算 1.25×17.6+36÷0.8+2.64×12.5。
五年级小数的巧算
五年级小数的巧算1、计算2005×18-200.5×80+20050×0.1 (乘法性质和提取公因式)2、计算75×4.7+15.9×25 (先拆分,再提取公因式)3、计算3.51×49+35.1×5.1+49×5.1(乘法性质、提取公因式、特例49×51=(50-1)×(50+1)=2500-1,平方差公式)4、计算7.816×1.45+3.14×2.184+1.69×7.816 (重点将 2.184分拆成10-7.816)5、计算38.3×7.6+11×9.25+427×0.24(把427拆分成383+44,再提取公因式)6、计算(8.4×2.5+9.7)÷(1.05÷1.5+8.4÷0.28)7、计算、(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)(换元法)8、若A=9.876543×3.456789, B=9.876544×3.456788,试比较A、B的大小。
(换元法与乘法分配率)9、如果362-(321.2-□×5.78)+1.3×5.6÷0.07=347.1,那么□=?(逆运算)10、计算41.2×8.1+53.7×1.9+1.1×92.5(同 4题)练习题一、加、减法算式11、计算37.5-1.53-0.25-1.22 (添括号)二、乘、除法算式12、计算2.5×1.25×3.2 (拆分,凑整)三、加、减、乘、除混合运算13、计算3.74×2.85+8.15×3.74-3.74 (提取公因式)14、计算3.6×31.4+43.9×6.4 (拆分再提取公因式)15、计算8÷(31.25×0.4)+99.3616、计算20.05×39+200.5×4.1+40×10.02517、计算18.3×0.25+5.3÷0.4-7.1318、计算2005÷0.375-0.375÷1949+3.75÷2.419、计算(123456789.1)2-123456789×123456789.2(换元法)20、已知9.4×〔□-(1.54-0.31)〕=0.47,求□=?21、计算2006+200.6+20.06+2.00622、比较A、B的大小。
小数的巧算
小数的巧算1.分解凑整法:将一个数适当的分解为n 个数,运用乘法的交换律,结合律或乘法分配凑整进行计算.2.运用商不变的性质:被除数和除数同时扩大或缩小相同的倍数.(零除外),商不变. 3.运用积不变的性质:一个因数扩大若干倍(零除外),另一个因数同时缩小相同的倍数,积不变.4.运用乘除法性质,改变运算顺序和运算方法:①a÷b÷c=a÷(b×c)=a÷(b×c)=a÷c÷b ②a×b÷c=a÷c×b ③( c bc ac ba )一、分解凑整法例1 12.5×0.7×0.25×8×4练习1 8×2.5×1.25×0.5×0.4 练习2 64×1.25×0.25×0.05二、去添括号法例2 121×7÷25×100÷11练习1 8.4×13÷2.1 练习2 336÷496×222÷336×496÷222第2 页共4 页例3 3.6÷(1.2÷1.5)三、乘法分配律法例 4 312.5×12.3-31.25×23 练习 14.2×26+0.42×640+42练一练:1.0.125×2.5×64×0.5 2.0.25×1.25×4×0.8 3.4.8×(1.9÷1.2) 4.378÷265×194÷378×265÷194 5.27000÷125 6.3.9÷(1.3×5) 7.7.3×1.2+12×0.27 8.372×2.8+12.8×289.4.3÷1.3+8.4÷1.3-2.3÷1.3 10.0.16×320+6.8×16一.初步训练:1.1.31×12.5×0.25×16 2.0.98×101 3.2.5×64×1.25×0.5 4.4.8÷(2.4÷30)5.4800000÷125÷25÷32 6.396÷243×468÷396×243÷468 7.75×4.67+7.5×53.3 8.4.2×0.3+42×0.07 9.7.28×333+72.8×66.710.7.2÷18+2.8÷18+8÷18二深入训练: (1)4.7+3.91÷(22-19.7) (2)92.8×0.25×8(3)1.56×1.7+0.44×1.7-0.7 (4)20-[7.8+(6.2-1.38÷0.23)] (5)10.5+(10.5+10.5)×10.5 (6)49.5×99+49.5(7)4500÷125 (8)3.84×7.6-3.84×6.6。
小数巧算
小数的巧算姓名小数的计算技巧指小数运算的速算与巧算。
它除了可以灵活运用整数四则计算中我们已经学过的许多速算与巧算的方法外,还可以利用小数本身的特点。
计算时要注意审题,善于观察题目中数字的特征,灵活地运用小数的性质及运算性质、运算技巧,确定合理简便的算法。
一、常用的运算定律。
1、加法交换律:2、加法结合律:3、乘法交换律:4、乘法结合律:5、乘法分配律:二、常用的运算性质。
1、积不变性质:若一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,则积不变。
2、商不变性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。
三、速算及巧算的一般方法。
可以运用数的分解、合并,改变原来的运算顺序而达到简算的目的。
有时也运用四则运算的定律、性质或利用和、差、积、商的变化规律,使计算简便。
例1 计算:5.32+2.06+19.4+1.84+7.68例2 计算:1-0.1-0.01-0.001-……-0.000000001 【0.888888889】例3 计算:7.63-4.98+5.26+1.89 【9.8 】例4 计算:(1)80×25×2×1.25×0.5×0.4 (2)64×12.5×0.25×0.05 【1000,10】例5 计算:0.56×9.8 【5.488】例6 计算:0.125÷(3.6÷80)×0.18 【0.5】想一想,下面各题怎样计算比较简便?(1)4.92÷0.25÷0.4 (2)47.85÷6.38×0.638(3)36.363÷(1.2121×4)(4)(0.6×1.38)÷(13.8×4.8)例7 计算:312.5×12.3-312.5×6.9+312.5 【2000】例8 计算:2000×199.9-1999×199.8 【399.8】例9 计算:12.9÷0.72+43.5÷3.6 30例10 计算:45.3×3.2+578×0.68+12×9.25 649例11 计算:(1)2.5+3.2+7.5+2.8=16(2)18.6-9.3-1.6-2.7 =5例12 计算:6.25×0.16+264×0.0625+5.2×6.25+0.625×20 =62.5例13 计算:0.125×0.25×0.5×64=1例14 计算:(1)0.525÷13.125÷4×85.2(2)(4.8×7.5×8.1)÷(2.4×2.5×2.7)=18一般应用题(一)知识要点:一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。
从课本到奥数(五年级)第一讲小数的简便运算.doc
从课本到奥数(五年级)第一讲小数的简便运算简便运算,就是用比较简捷、巧妙的方法计算出算式的得数。
一道计算题的简便算法常常不止一种。
小数的简便运算一般分为两个方面:(1)利用加、减、乘、除法的运算性质巧算;(2)巧用特殊数之间四则运算时表现出的一些特性巧算。
计算时,仔细观察算式的特点,观察算式中数与数之间的关系,确定正确的简便运算方法,简捷、巧妙地计算出算式的得数。
难题点拨①计算:⑴ 0.125 × 400⑵2.5×10.8点拨:观察上面两道算式,算式⑴中,400 可以写成8× 50:算式⑵中, 10.8 以写成10+0.8 。
这两道题都可以利用特殊数之间四则运算时表现出的一些特殊巧算。
0.125 × 400 =0.125 ×8×50=1×50=50 2.5 ×10.8=2.5 ×( 10+0.8 =2.5 ×10+2.5 × 0.8=25+2=27 可)想一想做一做1. =12 0.125 ×96=0.125 ×(100-4 )2.=0.125 ×100-0.125 ×41.25 ×88=1.25 ×(=12.5-0.580+8 )=1.25 ×80+1.25× 8=100+10=1103. 0.25 ×40.4 =0.25 ×( 40+0.4 ) =12.5 ×(10+0.8) =0.25 × 40+0.25× 0.4=10+0.1 =10.14.12.5 × 10.8= 125+10=135难题点拨②计算: 199.7 × 19.98-199.8 ×19.96点拨:观察算式发现, 19.98 扩大到它的 10 倍就是 199.8 ,因此我们先将减号前面的部分写成 19.97 ×199.8 ,再利用乘法的分配律巧算。
小学五年级奥数题大全及答案(更新版)
小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
五年级奥数小数巧算
实用文档小数的速算与巧算【知识概述】小数的简便计算出了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。
1、凑整法简算:例1 计算:0.125×0.25×0.5×64练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25 (3)1.25×882、拆拼法简算:例2 计算:(1)1.25×1.08 (2)7.5×9.9实用文档练习:(1)2.5×10.4 (2)3.8×0.99 (3)1991+199.1+19.91+1.9914、转化法简算:例4 5.7×9.9+0.1×5.7练习:(1)4.6×99+4.6 (2)7.5×101-7.5不用计算,根据已知条件直接写出下面题的结果。
已知0.26×4.5=1.17计算:2.6×4.5=() 0.26×45=() 0.026×0.45=()) 45 260 0.45 2.6×=()×=(实用文档例5 1240×3.4+1.24×2300+12.4×430 练习:4.65×32-2.5×46.5-70×0.4655、设数法简算:例6 (2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)练习:(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)6、数形结合法简算:例7 计算:1.999×2003-1.998×2004 练习:19.94×2010-19.93×2011实用文档A训练用简便方法计算下面各题25 ×12.5×0.82.5 (2)×0.042(1)1.9××0.2×(4)×0.125 99×73.2+73.2 3()16.08100+100.1 +99.9+99.8+99.60.1250.25(5)×4.73××320 )6(2.9 2.11847.91007()×+×+×84训练B实用文档21 27+1.9×6.3(2)×(1)4.7×2.8+3.6×9.42.7 ×160×+12.5)1250×0.037+0.12543.75(3)×4.8+62.5×0.48 (360 -×13.23.6×232-36)(5训练C(1)1.23×245-1.22×246(2)(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)-(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)实用文档分数的巧算55111?(3.8?1)?71333387?79?790?66661计算 2、、计算1 99524322?3?2537.9?6、计算35554、有一串数1, 4, 9, 16,25,36……它们是按一定规律排列的,那么其中第2000个数与第2001个数相差多少?2220112012?、计算52255836354?7)(9??(?1?)?(??)计算、6计算 7、7979971111794415?3727?计算①②45261212010??20102012②计算①20122011111314?41??5173?计算计算1583445实用文档1513?5???1075.?76?.25?990975?①②88841161333?????5?3.75735?16.2?62.?5730?③12747678组合图形面积能根据各种组合图形的条理解计算组合图形面积的多种方法;教学目标:在自主探索活动中,解决生活中组合图形的实际问能运用所学的知识,件,有效地选计算方法并进行正确的解答;题。
五年级上册趣味数学教案
五年级上册趣味数学教案授课教师:张志奎小数的巧算(1)训练目标巧算也就是简便运算,在小数的四则运算中,可以根据数的特点,通过数的分解、合并改变原来的运算顺序,从而达到简便计算的目的。
一道计算题的简便算法常常不止一种,有时也运用四则运算的定律、性质或利用和、差、积、商的变化规律,使计算简便。
典型例题例题计算:4.25-1.64+8.75-9.36=?分析与解答利用变换律(在同一级运算中,改变运算顺序,结果不变)和减法的运算性质(一个数分别减去两个数等于这个数减去这两个数的和),即可巧妙解答该题。
解:原式=(4.25+8.75)-(1.64+9.36)=13-11=2基础练习1. 计算。
(1)18.63+5.68+41.37+10.2+29.8(2)3.18+4.57+2.82+5.43提高练习1. 计算。
48.576- (38.576+6.75)2. 计算。
12+12.1+12.2+12.3+12.4+……+12.8+12.93. 计算。
(1+0.43+0.29)×(0.43+0.29+0.87)-(1+0.43+0.29+0.87)×(0.43+0.29)小数的巧算(2)训练目标巧算也就是简便运算,在小数的四则运算中,可以根据数的特点,通过数的分解、合并改变原来的运算顺序,从而达到简便计算的目的。
一道计算题的简便算法常常不止一种,有时也运用四则运算的定律、性质或利用和、差、积、商的变化规律,使计算简便。
典型例题例题计算:200.5×0.82-20.05×4.5-20.05×3.7=?分析与解答:这道题不能直接用乘法分配律,但是观察后,我们发现因数的数字组成是一样的,小数点的位置不同,先用积不变的性质定律整理后,再用乘法分配律计算。
解:原式=20.05×8.2-20.05×4.5-20.05×3.7=20.05×(8.2-4.5-3.7)=20.05×0= 0基础练习1. 计算。
小学五年级doc小数的巧算
小数的巧算1.1.25×0.32×2.52.272.4×6.2+2724×0.383.7311792544.0⨯⨯+⨯⨯4.2.89⨯4.68+4.68⨯6.11+4.685.99999÷5+9999÷5+999÷5+99÷5+9÷5二进制与十进制的运算1. 把下列二进制数转化为十进制数(1)11011 (2)111012.把下列十进制数转化为二进制数(1)967 (2)8643.二进制的加减法运算(1)11011+110001 (2)10101011-1001014.二进制的乘除法运算(1)110001×1011 (2)10100010÷10015.二进制数的混合运算(1)(101+11)×1010 (2)111×1001+1001×110质数与合数1. 360有多少个约数?2.求不大于60,且只有10个约数的正整数3.一个长方体的长,宽,高是连续的三个自然数,这个长方体的体积是91080,求这个长方体的长,宽,高是多少?表面积是多少?4.有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三个数的乘积是42560,求这三个自然数5.求自然数M ,它能被2和25整除,且共有6个约数。
余数的特性和剩余定理的应用1. 今天是星期一,再过7575天是星期几?2. 算式()131715131715⨯+的得数的个位数是多少?3.有连续的三个自然数a 、1a +、2a +,它们恰好分别是9、8、7的倍数,求这三个自然数中最小的数至少是多少?4.一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?5.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?整除的特性1. 求一个首位数字为5的最小六位数,使这个数能被9整除,且各位数字均不相同。
五年级奥数小数的巧算学生版
速算与巧算巧算也是简便运算,在数的运算中根据数的特点及数与数之间的特殊关系,恰当地利用四则运算中的定律、性质或利用和、差、积、商的变化规律,通过数的分解、合并改变原来的运算顺序,不但可以提高运算速度,还能使计算又准又快,锻炼思维,提高运算的技能技巧,达到事半功倍的效果。
小数的速算与巧算一小数的简便计算除了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
1、凑整法简算就是要求计算的小数通过移位,拆减等,把这类数化成2×5=10,4×25=100,8×25=200,8×125=1000等相加或者相乘的数。
例1计算:0.125×0.25×0.5×64练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25 (3)1.25×882、拆拼法简算就是把某个数进行拆分,然后分别与乘数相乘,达到简便运算的效果。
例2(1)计算:1.25×1.08 (2)计算:7.5×9.9练习:(1)2.5×10.4 (2) 3.8×0.99 (3)1991+199.1+19.91+1.9913、转化法简算就是把相同的因数提取出来,再把剩下的乘数相加或相减,以达到简便运算的目的。
例3 计算:5.7×9.9+0.1×5.7练习:(1)4.6×99+99×5.4 (2)7.5×101-7.54、扩大或缩减法就是将因式中相同数字的乘数通过扩大或者缩小,另一个乘数缩小或者扩大相同倍数,使其中某个乘数相同,达到简便运算的效果。
小学五年级奥数题大全及答案(更新版)
小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0 试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
第一讲 小数巧算二
contents 目录第一讲 小数巧算二 01页第二讲 生活中的小数 07页第三讲 除法我最快 13页第四讲 因数与倍数 21页第五讲 质数与合数 29页第六讲 加乘原理进阶 37页第七讲 期中复习第八讲 多边形的面积三 45页第九讲 公因数与公倍数 53页第十讲 分数比较大小 63页第十一讲 乔治的火车 71页第十二讲 割补法巧算面积一79页第十三讲 割补法巧算面积二87页第十四讲 鲨鱼的牙齿 93页第十五讲 期末复习第一讲 小数巧算二1、乘法分配律2、提取公因数知识精讲小数的四则混合运算和整数四则混合运算的顺序是相同的,计算时要注意先算乘除法,后算加减法,有括号的要先算括号内的,在小数的四则混合运算中,乘法分配律是常见的一种巧算方法.例如:()2.540.4 2.54 2.50.410111⨯+=⨯+⨯=+=.例1 计算:(1)1.25×8.88; (2)2.5×4.4.练1 计算:(1)2.5×4.88; (2)12.5×0.82.例2 计算:(1)7.6×10.1; (2)4.75×9.9.练2 计算:(1)2.5×1.02; (2)12.5×9.8.知识精讲当算式中含有共同的因数时,可以逆用乘法分配律,把公因数提取出来,这就是提取公因数.在小数计算中,同样也可以通过提取公因数来简化计算.例如:2.7×4.6+2.7×5.4=2.7×(4.6+5.4)=2.7×10=27.例3 计算:2.4×6.5+2.4×4.3+7.6×10.8.练3 计算:2.2×3.5+2.2×2.1+5.6×7.8.例4 计算:(1)3.6×9.9+0.36; (2)0.47×0.46-4.7×0.045.练4 计算:(1)8.4×10.1-0.84; (2)20.18×5.7+201.8×0.43.挑战极限计算:19.94×20.17-19.93×20.18.第二讲生活中的小数错中求解知识精讲错中求解的这类题型一般是采用倒推的方法,从错误的结果入手分析造成错误的主要原因. 在加减法中,利用和与差的变化规律反求加数或者被减数、减数;在乘除法中,利用积与商的变化规律反求出因数或者被除数、除数.例1 小高在计算一道小数加法计算题时,把一个加数的十分位上的6看成了9,另一个加数百分位上的9看成了6,那么错误的答案和正确的答案之间相差多少?练1 萱萱在计算一道小数加法计算题时,把一个加数的百分位上的2看成了5,另一个加数十分位上的1看成了7,那么错误的答案和正确的答案之间相差多少?例2 亮亮在计算一道小数减法计算题的时候,把被减数的十分位上的3看成了5,把减数百分位上的1看成7,那么错误的答案和正确的答案之间相差多少?练2 佳佳在计算一道小数减法计算题的时候,把被减数百分位上的9看成了6,把减数十分位的0看成8,那么错误的答案和正确的答案之间相差多少?例3 墨莫在计算小数乘法算式的时候,把其中的一个因数1.7看成是17,计算的结果比实际的结果大19.89,那么正确的乘积应该是多少?练3 萌萌在计算一道小数乘法算式的时候,把其中的一个因数2.3看成是23,计算的结果比实际的结果大31.05,那么正确的乘积应该是多少?例4 阿呆在写一个两位小数时,不小心把小数点漏了,结果得到的数比原数大72.27,那么这个两位小数是多少?练4 阿瓜读一个一位小数时,不小心漏读了小数点,结果比原来多6.3,那么原来的小数是多少?挑战极限买3支铅笔和2支钢笔共用11.45元,如果买2支铅笔和3支钢笔则共用16.8元,那么买1支铅笔和1支钢笔各用多少元?第三讲除法我最快1、整除的概念和特殊数的整除特性2、数字求和法3、多个数的整除问题知识精讲如果整数a除以整数b(0b ),除得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作b a.如果除得的结果有余数,我们就说a不能被b整除,也可以说6不能整除a.如果自然数a和b都能被自然数c整除,那么,它们的和“a+b”或差“a- b”也能被c 整除. 例如:60能被5整除,40能被5整除,它们的和60+40=100及差60-40=20也能被5整除.知识精讲(1)能被2,5整除的数的特性:个位数字能被2或5整除;(2)能被4,25整除的数的特性:末两位能被4或25整除;(3)能被8,125整除的数的特性:末三位能被8或125整除.例1 (1)判断下面6个数的整除性:23480,34375,97500,5880,7538,6512,哪些数能被4整除?哪些数能被125整除?(2)爸爸买了一张写字桌,发票上破了一个洞,上面只剩下“148”,其中方框表示破了的洞. 爸爸记得这张写字桌的价格是整数元,并且是8的倍数,请问:这张写字桌的价格可能是多少元呢?练1 (1)判断下面6个数的整除性:3415,7560,3400,45235,5886,7300,哪些数能被8整除?哪些数能被25整除?(2)在370的方框内填入数字,使它能被125整除,那么方框内可以填入的数字是多少? 知识精讲能被3,9整除的数的特性:各位数字之和能被3或9整除.以一个三位数为例说明一下:一个三位数ABC ,可以拆成()10010999ABC A B C A B A B C =++=++++,因为“999A B +”是3的倍数,所以只要让“()A B C ++”是3的倍数就可以,故得出结论:如果一个数的各位数字之和能被3或9整除,那么这个数就能被3或9整除.对于一个数位特别多的数来说,用数字求和法比较麻烦,可以直接用“弃三法”或“弃九法”来计算,即可以先抛弃数字3或9的倍数,然后再把剩余的数字求和.例2 (1)判断下面6个数的整除性:87563,31209,64653,403659,198954,1112884,些数能被3整除?哪些数能被9整除?(2)173是一个四位数,张老师说:“我在方框内填入1个数字,使得这个四位数能被9整除.”请问:张老师在方框中填入的数字可能是多少?练2 (1)判断下面6个数的整除性:3124,31206,382113,527689101,55554444,12030456,哪些数能被3整除?哪些数能被9整除?(2)在52后面添上一个一位数,使得组成的三位数是3的倍数. 请问:添上的这个一位数可能是多少?知识精讲我们已经学习了如何利用“整除特征”解决单个数的整除问题. 如果涉及多个数的整除问题,我们应该先单独考虑,再找到能同时满足题意的答案,例如:一个数既能被5整除,又能被3整除,可先看满足被5整除的数的特性,确定尾数,再看能被3整除的数的特性.若一个数能被45整除,由45=5×9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.注意虽然45=3×15,但是在考虑能否被45整除时,不能只考虑被3和15整除,因为15同时满足既是5的倍数,又是3的倍数,但是15不是45的倍数,所以把一个大数分拆成两个数时,这两个数一定要互质.例3 一个六位数134ABC 能同时被2、3、5整除. 请问:这个六位数最大是多少? 练3 一个五位数55ABC 能同时被2、3、5整除. 请问:这个五位数最大是多少?例4 王厂长给72名工人发完工资后,将总钱数记在一张纸上. 但是记账的那张纸破了两个洞,上面只剩下“345”,其中方框表示破了的洞. 王厂长记得每名工人的工资都一样,并且都是整数元. 请问:这72名工人的总工资有可能是多少元呢?练4 五位数397能被15整除,请问:这个五位数最大是多少?挑战极限判断1234567891011……484950这个多位数能否被9整除?第四讲因数与倍数1、因数与倍数的定义2、因数个数定理知识精讲一、因数与倍数的定义b b≠,如果a b,我们就称a是b的因数,b是a的因数和倍数的定义:对整数a和()0倍数.在算式24=4×6中,24是4和6的倍数,4和6是24的因数,根据定义,我们很容易找到一个数的所有因数,例如对12:因为12=1×12=2×6=3×4,可知12可以被1、2、3、4、6、12整除,那么它的因数有1、2、3、4、6、12,共6个.找一个数的因数的方法,可以列乘法算式,从1开始一对一对地找. 一个数的因数个数是有限个,最小的因数是1,最大的因数是这个数本身.找一个数的倍数的方法,用这个数和任意一个自然数(不为0)相乘,所得的乘积就是这个数的倍数. 一个数的倍数个数是无限个,最小的倍数就是这个数本身.从上面“12”的分拆可以看出,因数具有“成对出现....”的特征,也就是:最大因数对应最小因数、第二大因数对应第二小因数等. 所以在写一个数的所有因数时,可以逐对写出. 另外如果计算较大因数不太方便,可以转而计算与其成对的较小因数.例1 松鼠妈妈摘了36颗松子,现在要把这些松子平均分堆(至少分成2堆),要求每堆不能少于4颗. 请问:共有多少种不同的分法?练1 李师傅要把一根长40米的木材平均锯成小段(至少据成2段),要求每段至少长3米.请问:共有多少种不同的锯法?例2 334455的第二大因数是多少?第三大因数是多少?练2 345678的第二大因数是多少?第三大因数是多少?知识精讲二、找因数个数通过枚举的方法可以逐对写出一个数的所有因数,从而算出它的因数个数. 但是对很大的数,例如20120000,用枚举来计算个数便很麻烦,所以我们要采用新的方法计算.以72为例,首先采用校举可知72共12个因数,分别为1,72;2、36;3、24;4、18;6、12;8、9. 因为72的因数能整除72,而72的所有质因数也都能整除72,所以对72进行质因数分解,有:32=⨯,那么72的所有因数应当由若干个2与若干个3构成. 显7223然,2有0个到3个共4种选择;3有0个到2个共3种选择,根据乘法原理,72的因数共4×3=12个,见下表(注意00、):2131==从72的这个例子,我们可以总结出计算因数个数的一个简单做法:因数个数:等于质因数的指数加1再相乘.例:2357a b c M =⨯⨯⨯,M 的因数个数为:(1)(1)(1)(11)a b c +⨯+⨯+⨯+.若一个数是质数,那么它只有两个因数,就是1与自身.一个数的因数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数,所以平方数有奇数个因数,根据上面关于因数个数的知识我们可以知道,有奇数个因数的数一定是平方数,有偶数个因数的数一定不是平方数............................... 例3 下列各数分别有多少个因数?(1)23; (2)64; (3)75; (4)225.练3 下列各数分别有多少个因数?(1)18; (2)47; (3)243; (4)196.例4 在不超过800的正整数中,有多少个数有奇数个因数?有多少个数有偶数个因数? 练4 在不超过400的正整数中,有多少个数有奇数个因数?有多少个数有偶数个因数? 挑战极限3600共有多少个因数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?第五讲 质数与合数1、质数与合数的定义2、分解质因数知识精讲一、质数与合数的定义什么是质数?每一个数都能写成若干个数相乘的形式,考虑到任何一个数都能写成若干个1乘它本身的形式,所以不考虑1作为乘数的情况:6=2×3,8=2×4=2×2×2,12=2×6=3×4=2×2×3……这些数都能拆成若干个不为1的数相乘的形式,我们把这样的数称为合数,而像2,3,7……这些不能拆成若干个不为1的数相乘的形式的数,我们称之为质数. 如果说得形象一点,质数就是“拆不开”的数,合数就是拆得开的数.严格说来,质数就是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数. 注意,1既不是质数也不是合数.例1 (1)自然数N 是一个两位数,它是一个质数,而且N 的个位数字与十位数字相差2,这样的自然数有哪些?(请全部写出)(2)自然数N 是一个两位数,它是一个质数,而且N 的个位数字与十位数字都是质数,这样的自然数有哪些?(请全部写出)练1 (1)有这样的两位质数,个位和十位交换之后还是质数,这样的质数有哪些?(请全部写出)(2)用数字2、3和5,可以得到不同的一位数、两位数和三位数,这些数中质数有哪些?(请全部写出)例2 (1)两个不同的质数的和是21,那么这两个质数可能是多少?(请全部写出)(2)三个互不相同的质数的和是22,那么这三个质数的乘积可能是多少?(请全部写出) 练2 (1)两个不同的质数的和是28,那么这两个质数的乘积可能是多少?(请全部写出)(2)三个互不相同的质数的和是24,那么这三个质数的乘积可能是多少?(请全部写出) 知识精讲二、分解质因数我们知道了质数与合数的概念,每个合数都可以写成几个质数相乘的形式,比如30=2×3×5. 其中质数2、3、5,我们称之为30的质因数,那么这个分拆的过程就叫做分解质因数. 同学们请注意:分解式应该把质因数按从小到大的顺序写好,每个数分解质因数的形式是唯一的.我们一般使用短除法来分解质因数. 如下图所示,我们将30分解质因数,在计算的过程中要善用各种特殊数的整除特性.100在分解质因数时可以写成:22=⨯;280在分解质因数时可以写成100253=⨯⨯. 这种写法更简洁更方便,其中位于质因数右上角,表示质因数个数的数叫作280257指数,如:这里280的分解式中5和7的指数都是1,写的时候可以省略.例3 请把下面的数分解质因数:(1)100;(2)88;(3)75;(4)360.练3 请把下面的数分解质因数:(1)40;(2)63;(3)175;(4)150.例4 甲、乙、丙三人的年龄乘积为84,其中甲、乙的年龄和正好等于丙的年龄,且甲比乙大. 请问:这三人的年龄分别是多少岁?练4 大毛、二毛、三毛这三人去图书馆买书,已知他们买书的本数刚好是3个相邻自然数,且乘积是210. 请问:三人共买了多少本书?挑战极限甲、乙两人的年龄和为一个两位质数,这个数的个位数字与十位数字的和是13,甲比乙大13岁,那么乙今年多大?第六讲加乘原理进阶1、标数法2、染色法知识精讲如果完成一件事有几类方式,在每一类方式中又有不同的方法,那么把每类的方法数相加就得到所有的方法数,这就是加法原理. 如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法,那么把每步的方法数相乘就得到所有的方法数,这就是乘法原理.对于加乘原理,要深刻理解它的基本思想和基本原则.加法原理又叫分类计数原理,在分类时要注意不重不漏. 可以用树形图来帮助理解加法原理,树形图的每一次分叉,就是在分类,要计算总的方法数,就是把每一个分枝下的方法数加起来,这便是加法原理;树形图虽然有助于我们解决加法原理问题,但是有时候树形图过于复杂,可操作性差,此时,我们就把树形图加以简化,保留其加法原理核心,用数字来表示其各个分支,我们称之为标数法,标数法是加法原理的重要运用,有利于帮助我们解决较为复杂的加法原理问题.例1 如图所示,鑫鑫想从A地去B地玩,那么有多少条最短路线?练1 如图所示,墨莫要从A地飞到B地,那么有多少条最短路线可以选择?例2 在如图的街道示意图中,只能沿着格线前进,C处因施工不能通行,那么从A到B的最短路线有多少条?练2 “五一”长假就要到了,小新和爸爸决定去动物园玩. 如果A点因为施工无法通行,那么聪明的小朋友,你能找出几条从家到动物园的最短路线呢?知识精讲乘法原理又叫分步计数原理,在分步时要注意“前不影响后”. 染色问题是应用乘法原理最常见的一类题型,染色的时候,要尽量避免“隔”着染,一定不要“跳”着染,而且,第一步要尽量去染“接触最多”的那一部分,这样,才能够使得后面的染色过程尽量避开“前影响后”.例3 如图,用四种颜色对四个部分进行染色,要求相邻部分不同色,那么有多少种不同的染色方法?练3 如果用四种颜色对如图所示的四个区域进行染色,要求相邻部分不同色,那么有多少种不同的染色方法?例4 如图,把A、B、C,D、E这五部分用4种不同的颜色染色,每部分只染一种颜色且相邻的部分不能使用同一种颜色. 请问:这幅图共有多少种不同的染色方法?练4 用3种颜色去涂如图所示的蝴蝶的5个区域,要求每相邻两个区域不同色,那么一共有多少种涂法?挑战极限用四种颜色对如图所示的区域进行染色,要求有线段连接的两个圆圈不同色,那么共有多少种不同的染法?第八讲多边形的面积三1、三角形反求底高问题2、梯形底高反求问题3、特殊图形的面积求法知识精讲回顾基本直线形的面积公式:正方形的面积=边长×边长;长方形的面积=长×宽;平行四边形的面积=底×高;三角形的面积=底×高÷2;梯形的面积=(上底+下底)×高÷2.在三角形中:(1)反求高:高=三角形面积×2÷底;(2)反求底:底=三角形面积×2÷高.这种反求的方法,在几何问题中是经常会遇到的.需要注意的是,反求三角形的底或高时,切记首先三角形面积要“×2”.例1 如图,在平行四边形ABCD中,三角形BEF的面积为44平方厘米,BF长为11厘米,FC长为3厘米. 请问:平行四边形ABCD的面积是多少平方厘米?练1 如图,直角梯形ABCD的上底是6厘米,下底是10厘米,三角形ACD的面积是21平方厘米. 请问:梯形ABCD的面积是多少平方厘米?知识精讲在梯形中:(1)反求高:高=梯形的面积×2÷(上底+下底);(2)反求上底:上底=梯形的面积×2÷高-下底;(3)反求下底:下底=梯形的面积×2÷高-上底.需要注意的是,反求梯形的底或高时,切记首先梯形面积要“×2..”.例2 如图,梯形ABCD的上底是3厘米,下底是13厘米,梯形ABCD的面积是48平方厘米. 请问:三角形ABE的面积是多少平方厘米?练2 如图,直角梯形ABCD的高是6厘米,下底是12厘米,梯形ABCD的面积是51平方厘米. 请问:三角形ABE的面积是多少平方厘米?知识精讲如果只知道正方形的对角线长,不知道边长,该如何求出正方形的面积呢?如下图,我们把正方形沿对角线剪成两个一样的等腰直角三角形,再拼接成一个大的等腰直角三角形,总面积没有发生改变,由此可以得出正方形面积公式:正方形面积=对角线的平方÷2.类似地,只知道等腰直角三角形的斜边长,不知道直角边长,也能求出等腰直角三角形的面积:等腰直角三角形的面积=斜边的平方÷4.从图中我们也可以看出,等腰直角三角形斜边上的高等于斜边的一半,而且斜边上的高还把等腰直角三角形分成了两个一模一样的小等腰直角三角形.例3 两个等腰直角三角形如图所示摆放,恰好拼成一个直角梯形,已知较小的等腰直角三角形斜边长为8厘米. 请问:这个直角梯形的面积是多少平方厘米?练3 如图所示是一个由正方形ABCD和等腰直角三角形BCE组成的梯形,BD长4厘米. 请问:这个梯形的面积是多少平方厘米?例4 四个等腰直角三角形拼成如图所示的平面图形,已知最小的等腰直角三角形斜边长为2厘米. 请问:该图形的面积是多少平方厘米?练4 三个等腰直角三角形拼成如图所示的平面图形,已知最小的等腰直角三角形斜边长为4厘米. 请问:该图形的面积是多少平方厘米?挑战极限如图,梯形ABCD 的上底AD 长5厘米,下底BC 长12厘米,腰CD 的长为8厘米. 过B 向CD 作出的垂线BE 的长为9厘米,那么梯形ABCD 的面积是多少平方厘米?第九讲 公因数与公倍数 1、短除法 2、分解质因数3、公因数与公倍数的应用 知识精讲一、短除法公因数就是几个数公共的因数,其中最大的一个称为最大公因数;公倍数就是几个数公共的倍数,其中最小的一个称为最小公倍数. 特别的,1为所有数的公因数.1、2、3和6都是24和30的公因数,6是最大公因数. 可以发现1、2、3和6都是6的因数.12和18的公倍数有36、72、108、……,36是最小公倍数. 可以发现36、72、108及其他公倍数都是36的倍数.通常,我们把两个数a ,b 的最大公因数记为(a ,b );a ,b 的最小公倍数记为[]a b ,.三个数a ,b ,c 的最大公因数记为(a ,b ,c );a ,b ,c 的最小公倍数记为[]a b c ,,. 如:14和21的最大公因数是7,记作:(14,21)= 7;14和21的最小公倍数是42,记作:[]142142=,. 15、10、21的最大公因数是1,记作:(15,10,21)=1;15、10、21的最小公倍数是210,记作:[]151021210=,,. 若两个数互质,那么它们的最大公因数就是1,最小公倍数就是它们的乘积;若两个数成倍数关系,那么它们的最大公因数就是较小的那个数,最小公倍数就是较大的那个数.在现实生活中我们常常关心几个数的最大公因数和最小公倍数,那么我们怎样来求几个数的最大公因数和最小公倍数呢?除了直接枚举之外,最常用的方法是“短除法".例1 填空:(1)16与24共有________个公因数; (2)(12,18)=________ ,[12,18] =________; (3)(15,30)=________,[15,30] =________; (4)(6,7,8)=________,[6,7,8] = ________. 练1 填空:(1)30与50共有________个公因数; (2)(6,9)=________,[6,9] =________; (3)(5,8)=________,[5,8] =________; (4)(4,5,6,7)=________,[4,5,6,7] =________. 知识精讲二、分解质因数法分解质因数法比较实用,也利于我们分析数的构成.例2 利用分解质因数法找出下列各组数的最大公因数和最小公倍数.(1)120和200(2)25、30和40练2 利用分解质因数法找出下列各组数的最大公因数和最小公倍数.(1)512和80(2)32、60、84和256知识精讲三、公因数与公倍数的应用学习了如何求公因数与公倍数,接下来看一下在实际生活中如何运用公因数与公倍数解决问题.例3 老师在班上发水果,一共有78个苹果,95个梨,平均分给班上的学生,最后剩下6个苹果,5个梨,请问:班里可能有多少名学生?练3 把一块长80厘米,宽64厘米的长方形铁板,剪成面积相等的小正方形而无剩余,小正方形的边长都是整厘米数. 请问:小正方形的边长可能是多少厘米?例4 小高每6天去一趟图书馆,豆豆每4天去一趟图书馆,已知6月1日两人在图书馆遇到了. 请问:下一次两人在图书馆遇到是6月几日?练4 有一个电子钟,每走8分钟亮一次灯,每到整点响一次铃,中午12点整,电子钟既响铃又亮灯. 请问:下一次既响铃又亮灯是几点钟?挑战极限两个自然数不成倍数关系,它们的最大公因数是18,最小公倍数是216,其中一个数是54.请问:另一个数是多少?第十讲分数比较大小1、通分比大小2、交叉相乘法3、分数比较大小的应用知识精讲一、通分子、通分母我们知道分数的意义是:把“1”平均分成若干份,表示这样的一份或几份的数. 易知:如果两个分数分母相同,分子越大分数越大.如果两个分数分子相同,分母越大分数越小.如果两个分数分子和分母都不同,我们应该怎么比较它们的大小呢?最常用的方法是利用分数的基本性质把它们化成分母相同或分子相同的分数.例1(1)把4个数713114110201560、、、,由小到大排列起来;(2)把4个数,510255013275177、、、由小到大排列起来.练1 (1)把4个数1331612315459030、、、由小到大的排列起来;(2)把4个数5631111352、、、由小到大的排列起来.例2 (1)在不等式1121243>>的方框中填入一个自然数,使得不等式成立;(2)在不等式3515529>>的方框中填入一个自然数,使得不等式成立.练2 (1)在不等式1151296>>的方框中填入一个自然数,使得不等式成立;(2)在不等式236513<<的方框中填入一个自然数,使得不等式成立.知识精讲二、交叉相乘法比较1316和2127的大小,可以先把它们通分,变成分母相同的分数:13271627⨯⨯和21162716⨯⨯,然后再比较分子的大小:13272116⨯>⨯,所以1321 1627>.因为最后比较的是两个乘积,因此这个方法也被称为“交叉相乘法”. 要比较两个分数,只需要将这两个分数的分子分别与另一个分数的分母相乘,比较两个乘积的大小,分子所在....的乘积大....,则分数就大...... 例如比较58和813的大小,因为51388⨯>⨯,58的分子所在的乘积大,所以58 813 >.例3 比较下列分数的大小:(1)817与1120;(2)1316与1922.练3 比较下列分数的大小:(1)1519与1317;(2)1621与1419.知识精讲三、分数比较大小的应用除了我们介绍的方法外,比较分数大小还有许多其它的巧妙方法,但这些巧妙方法都需要我们多观察,看出题目中分数的特点,针对分数的特点来使用.例4 (1)若甲的45等于乙的56,那么甲、乙谁比较大?(2)已知891091011a b c+=+=+,把a、b、c由小到大排列起来.(3)已知345276X Y Z⨯=⨯=⨯,把X、Y、Z由小到大排列起来.练4 (1)若甲的67等于乙的78,那么甲、乙谁比较大?(2)已知57117913a b c+=+=+,把a、b、c由小到大排列起来.(3)已知7107394X Y Z⨯=⨯=⨯,把X、Y、Z由小到大排列起来.挑战极限(1)把3个数9151971316、、由小到大排列起来.(2)把3个数191431117、、由小到大排列起来.第十一讲乔治的火车1、火车过桥2、火车与人的相遇和追及知识精讲我们之前已经学习了基本行程问题,明确了速度、时间和路程这三个量之间的关系:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小数的巧算1.1.25×0.32×2.52.272.4×6.2+2724×0.383.7311792544.0⨯⨯+⨯⨯4.2.89⨯4.68+4.68⨯6.11+4.685.99999÷5+9999÷5+999÷5+99÷5+9÷5二进制与十进制的运算1. 把下列二进制数转化为十进制数(1)11011 (2)111012.把下列十进制数转化为二进制数(1)967 (2)8643.二进制的加减法运算(1)11011+110001 (2)10101011-1001014.二进制的乘除法运算(1)110001×1011 (2)10100010÷10015.二进制数的混合运算(1)(101+11)×1010 (2)111×1001+1001×110质数与合数1. 360有多少个约数?2.求不大于60,且只有10个约数的正整数3.一个长方体的长,宽,高是连续的三个自然数,这个长方体的体积是91080,求这个长方体的长,宽,高是多少?表面积是多少?4.有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三个数的乘积是42560,求这三个自然数5.求自然数M ,它能被2和25整除,且共有6个约数。
余数的特性和剩余定理的应用1. 今天是星期一,再过7575天是星期几?2. 算式()131715131715⨯+的得数的个位数是多少?3.有连续的三个自然数a 、1a +、2a +,它们恰好分别是9、8、7的倍数,求这三个自然数中最小的数至少是多少?4.一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?5.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?整除的特性1. 求一个首位数字为5的最小六位数,使这个数能被9整除,且各位数字均不相同。
2.如果六位数1992□□能被105整除,那么这个六位数是多少?3.一个六位数12A34B 能被88整除,这个六位数是多少?4.能被11整除,首位数字是4,其余各位数字均不相同的最大和最小六位数分别是多少?5.某个数只有1和0,且能被225整除,这个数最小是多少?集合与容斥原理1.某年级的课外学科小组分为数学、语文、外语小组,参加数学小组的有23人,参加语文小组的有27人,参加外语小组的有18人;同时参加数学、语文两个小组的有4人,同时参加数学、外语小组的有7人,同时参加语文、外语小组的5人,三个小组都从参加的有2人。
问:这个年纪参加课外学科小组的共有多少人?2.某班有50名学生,都报名参加了语文、数学或英语三门学科的比赛,已知35人参加晕比赛,40人参加数学竞赛,37人参加英语比赛。
问:至少有多少人参加了三种比赛?3.六年级有60人爱好数学,50人爱好语文,42人爱好体育,30人既爱好数学又爱好语文,20人既爱好语文又爱好体育,35人既爱好体育又爱好数学,有18人三方面都爱好。
请问这个年级中数学、语文、体育三方面至少爱好一项的学生有多少名?4. 初一(2)班26个男同学中,有13人喜欢打篮球,9人喜欢踢足球,12人喜欢打排球,并且2个男同学即喜欢打排球又喜欢踢足球,2个男同学既喜欢打篮球又喜欢踢足球,但没有一个男同学是三种球都喜欢的。
问有多少男同学喜欢既打篮球又喜欢打排球?5. 盛夏的一天,10个同学去冷饮店,向服务员交了一份需要冷饮的清单,要可乐、果汁和凉茶的各有5人;可乐、果汁都要的有3人;可乐、凉茶都要的有2人;果汁、凉茶都要的有2人,三样都要的只有1人,那么有多少人一样饮料都没药?完全平方数1. 一个小于400的三位数,它是平方数,它的前两个数字组成的两位数还是个平方数,其个位数也是个平方数,满足条件的三位数有1.证明()153+⨯n 不是平方数。
()为自然数n2.如果a 、b 为自然数,那么6415⨯ab 是否可能是个平方数?3.若自然数a 与378的积是完全平方数,那么a 最小是多少?最大公约数和最小公倍数1.甲、乙、丙三班同学去公园划船,甲班49人,乙班56人,丙班42人,把各班同学分别分成小组,分乘若干条小船,使每条船上人数相等,最少要有多少条船?2.有若干名学生上体育课,内容是学习篮球、排球和足球。
规定每二人合用一只排球,每三人合用一只足球,每四人合用一只篮球,共用了26只球。
问有多少名学生。
3.大雪后的一天,大亮和爸爸共同步测一个圆形花圃的周长,他俩的起点和走的方向完全相同,大亮每步长54厘米,爸爸每步长72厘米,由于两人脚印有重合的,所以各走完一圈后雪地上只留下60个脚印,求花圈的周长。
4.在一根绳上做记号,每5米画记号,后因为一些原因,改为每6米画一个记号。
由于记号有重合,最后留下了100个记号,问,这根绳有多长?5. 有一段公路要排电线杆,每两根的距离为45米,后来因为某些原因,每两根的距离要改为60米,除了起点的一根不动,再过多远又有一根不需要移动?时钟问题1.8时到9时之间,在什么时刻时针与分针重合?2.现在是3时,再过多长时间,时针和分针恰在“12”字两边,并且与“12”字距离相等?3.某人下午6点多外出时,看了看手表两指针夹角为110°,下午7点前回家时发现两指针夹角仍为110°,问:他外出多长时间?4.一只钟的时针与分针均指在8与10之间,且钟面上的“9”字恰好在时针与分针的正中央,问这时是什么时刻?5.小华与妈妈8点多钟外出,临出门时他一看钟,时针与分针是重合的,下午2点多钟回到家,一进门看到时针与分针方向相反,正巧成一条直线,他们外出了多少时间?周期问题1. 接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8⨯9=72,在9后面写2,9⨯2=18,在2后面写8,……得到一串数字:1 9 8 92 8 6……这串数字从1开始往右数,第1989个数字是什么?2.流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,13.甲、乙、丙、丁、戊五人玩扑克牌,某人把“大王”插在54张扑克牌的中间,从上面数下去是第30张,甲想要抓到“大王”,应该从第几张抓起?(每人依次抓1张)4. 黑珠、白珠共102颗,穿成一串,排列如下图:这串珠子中,最后一颗珠子应该是_____色的,这种颜色的珠子在这串中共有_____颗.5. 在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_____和_____这两个数字上.代换法解应用题1.买2张新课桌和3只方凳要付210元,现买同样的课桌3张和方凳2只要付280元。
问:买一张课桌和一只方凳用多少钱?2.一辆货车正好装12麻袋大米和25袋面粉,取下3袋大米后空下的地方正好装5袋面粉。
问:这辆车全装面粉比全装大米多放几袋?3.5辆玩具摩托车与3辆玩具汽车的价钱相等,每辆玩具汽车比摩托车贵8元。
求两种玩具的单价各是多少元?4.3筐梨的价钱和2筐苹果的价钱相等,一筐苹果比一筐梨贵12元。
苹果、梨一筐各多少钱?5.用大、小两台水泵抽水,大水泵抽4小时,小水泵抽3小时,一共抽水156吨。
小水泵5小时的抽水量等于大水泵2小时的抽水量。
求两水泵的抽水量。
逻辑推理1.甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?2. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.3. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.4. 四位运动员分别来自北京、上海、浙江和吉林,在游泳、田径、乒乓球和足球四项运动中,每人只参加了一项,且四人的运动(3) 李勇和北京运动员、乒乓球运动员三人同住一个房间;(4) 郑永禄不是北京运动员,年龄比吉林运动员和游泳运动员两人的年龄小;(5) 浙江运动员没有参加游泳比赛.根据这些条件,请你分析一下:这四名运动员各来自什么地方?各参加什么运动?5. 五年级四个班举行数学竞赛,小明猜测(3)班第一名,(2)班第二名,(1)班第三名,(4)班第四名;小华猜测名次排列顺序是(2)班、(4)班、(3)班、(1)班.已知(4)班是第二名,其他各班的名次小明和小华都猜错了,这次竞赛的名次是怎样排列的? 立体图形与面积1. 如图,三角形ABC 的面积是24平方厘米,且DC=2AD ,E 、F 分别是AF 、BC 的中点,那么阴影部分的面积是多少?2. 如图,这个长方形的长是9厘米,宽是8厘米,A 和B 是宽的中点,求长方形内阴影部分的面积。
3. 如图棱长是2分米的正方体,沿与AB 棱垂直的方向切3刀,沿与BC 棱垂直的方向切4刀,沿与BF 棱垂直的方向切5刀,共得到大小长方体120个。
问这120个长方体的表面积之和是多少平方分米。
4..小明小制作时把6个棱长分别为1、2、3合部分用胶固定粘牢,再把所有外露的部分涂上油漆,交给老师,所有涂上油漆部分的面积是多少平方分米?5.一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积?行程问题1. 甲车以40千米/小时的速度从A 站向B 站开出,2小时后,乙车以20千米/小时的速度从B 站向A 站开出, 两车相遇时,相遇点离两站的中点50千米。
A 、B 两站相距多少千米?2.甲、乙两车同时从A 、B 两地出发相向而行,两车在离B 地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A 地48千米处第二次相遇,A 、B 之间的距离是多少?3.A 、B 是一圆形道路的一条直径的两个端点,现有甲、乙两人分别从A 、B 两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇;当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第十二次相遇时,甲跑完几圈又多少米?4.解放军某部队进行军事训练,队伍长525米,以每秒1米的速度进行,一个通讯员因事需要从末尾到排头并立即返回末尾。