(完整版)初中数学中考大题专项训练(直接打印版)

合集下载

初中数学中招试题及答案

初中数学中招试题及答案

初中数学中招试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.1010010001…(每两个1之间0的个数依次增加)B. 2.5C. πD. √42. 一个正数的平方根是2,那么这个正数是:A. 4B. -4C. 2D. -23. 一个三角形的三个内角之和是:A. 90°B. 180°C. 360°D. 720°4. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 可以是负数或零5. 以下哪个是二次方程?A. x + 5 = 0B. x^2 + 5x + 6 = 0C. x^3 - 2x^2 + 3x - 4 = 0D. 2x - 3 = 06. 一个数乘以分数的意义是:A. 求这个数的几倍B. 求这个数的几分之几C. 求这个数的相反数D. 求这个数的倒数7. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1D. 08. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 19. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1010. 以下哪个选项是不等式?A. 3x + 5 = 8B. 2x - 4 > 6C. 7x = 35D. 5x - 3答案:1. C2. A3. B4. C5. B6. B7. A8. A9. A10. B二、填空题(每题3分,共30分)11. 一个数的相反数是-7,那么这个数是______。

12. 一个数的绝对值是5,那么这个数可以是______。

13. 一个三角形的两个内角分别是30°和60°,那么第三个内角是______。

14. 如果一个数的平方是25,那么这个数可以是______。

15. 一个数的立方是-8,那么这个数是______。

16. 一个数的1/3是4,那么这个数是______。

(完整版)初中数学中考完整考试题库(含答案).doc

(完整版)初中数学中考完整考试题库(含答案).doc

2019 年初中数学中考复习试题(含答案)学校: __________ 姓名: __________ 班级: __________ 考号: __________题号一二三总分得分第 I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题1.选择题 : 若关于x的方程x2+ ( k2- 1) x+k+ 1= 0 的两根互为相反数,则k 的值为---- ----()(A) 1,或- 1(B)1(C)-1(D)01 22.函数y=-2 ( x+ 1) +2 的顶点坐标是------------------------------------------------()(A) (1 , 2) ( B)(1 ,- 2) ( C) ( - 1, 2) ( D)( - 1,- 2)3.若x1, x2是方程2x2 6 x 3 0 的两个根,则 1 1的值为 ----------------------x1 x2-----( )(A)2 ( B)2 (C)19 2(D)24.如下图, O 是△ ABC 的外心(三角形外接圆的圆心叫外心),OD⊥ BC, OE⊥ AC, OF⊥AB,则 OD: OE: OF= ( )1 1 1A、 a:b:cB 、a : b :c C 、cosA:cosB:cosC D 、 sinA:sinB:sinCAF EOB D C第10 题5 . AB 为⊙ O 的直径,弦CD AB , E 为垂足,若BE=6 , AE=4 ,则CD 等于()(A)2 21 (B)46 ( C)82( D)2 66.若x2 1 mxk 是一个完全平方式,则k 等于()2(A)m2 ( B)1m2 ( C)1m2 ( D)1m2 4 3 167.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ ABC 相似的是【▲ 】A.8.下列图形中既是中心对称图形又是轴对称图形的是【▲ 】A B C D第 II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题9.反比例函数y= k的图象经过点(-2,-1),那么k的值为_________. x10.计算下列各式(1)b3( b)2b n ( 2)( 3)2n 1 3 ( 3) 2 n11.在△ ABC中, D、 E 是 AB 上的点,且AD=DE=EB,DF∥ EG∥BC,则△ ABC被分成的三部分的面积比S△ADF: S 四边形DEGF: S 四边形EBCG等于。

初三数学上册试卷可打印

初三数学上册试卷可打印

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 12. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a + b > 0B. a - b > 0C. a + b < 0D. a - b < 03. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 3x^24. 在直角坐标系中,点P的坐标为(-3,4),那么点P关于x轴的对称点的坐标是()A. (-3,-4)B. (3,4)C. (3,-4)D. (-3,4)5. 下列方程中,无解的是()A. 2x + 5 = 0B. 3x - 6 = 0C. 5x + 2 = 0D. 4x - 8 = 06. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()A. 24c m²B. 32cm²C. 36cm²D. 40cm²7. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 等腰梯形8. 下列各数中,是平方数的是()A. 16B. 18C. 20D. 229. 下列代数式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^210. 下列函数中,是正比例函数的是()A. y = 2xB. y = 3x + 2C. y = x^2D. y = 3/x二、填空题(每题3分,共30分)1. 若a = 5,b = -3,那么a + b的值是______。

2. 下列各数中,是偶数的是______。

3. 下列各数中,是质数的是______。

中考数学数与式专题训练50题(含答案)

中考数学数与式专题训练50题(含答案)

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。

初中数学试卷全套打印

初中数学试卷全套打印

一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √3B. √2C. 2πD. 3.142. 已知 a、b、c 成等差数列,且 a+b+c=12,则 b 的值为()A. 4B. 6C. 8D. 103. 在等腰三角形 ABC 中,AB=AC,若∠BAC=60°,则∠ABC 的度数为()A. 30°B. 45°C. 60°D. 90°4. 下列函数中,是反比例函数的是()A. y=2x+1B. y=2/xC. y=x²D. y=3x5. 若 a、b、c 成等比数列,且 a+b+c=12,则 b 的值为()A. 4B. 6C. 8D. 106. 已知x²-5x+6=0,则 x 的值为()A. 2 或 3B. 1 或 4C. 1 或 5D. 2 或 67. 在平面直角坐标系中,点 A(2,3)关于原点的对称点为()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 若 a、b、c 成等差数列,且a²+b²+c²=24,则 a+b+c 的值为()A. 6B. 8C. 10D. 129. 在等腰三角形 ABC 中,AB=AC,若∠BAC=90°,则∠ABC 的度数为()A. 30°B. 45°C. 60°D. 90°10. 下列函数中,是正比例函数的是()A. y=2x+1B. y=2/xC. y=x²D. y=3x二、填空题(每题2分,共20分)11. 已知 a、b、c 成等差数列,且 a+b+c=12,则 b 的值为 _______。

12. 在等腰三角形 ABC 中,AB=AC,若∠BAC=60°,则∠ABC 的度数为 _______。

13. 下列各数中,有理数是 _______。

14. 若 a、b、c 成等比数列,且 a+b+c=12,则 b 的值为 _______。

中考数学八年级上册专题训练50题含参考答案

中考数学八年级上册专题训练50题含参考答案

中考数学八年级上册专题训练50题含答案一、单选题1.在以下一列数3,3,5,6,7,8中,中位数是( ) A .3 B .5C .5.5D .62.若分式13x -有意义,则x 的取值范围是( ) A .3x >B .3x ≠C .0x ≠D .3x ≠-3.某小组英语听力口语考试的分数依次为:25,29,27,25,22,30,26,这组数据的中位数是( ) A .27B .26C .25.5D .254.对“十·一”黄金周7天假期去某景区旅游的人数进行统计,每天旅游的人数统计如下表:其中众数和中位数分别是( )A .1.2,B .2,2.5C .2,2D .1.2, 2.55.下列定理中,没有逆定理的是( ). A .直角三角形的两锐角互余 B .同位角相等,两直线平行C .对顶角相等D .直角三角形两直角边平方和等于斜边的平方6.已知ABC DEF ≅△△,70A ∠=︒,40E ∠=︒,则F ∠的度数为( ) A .30︒B .40︒C .70︒D .110︒7.某中学随机抽取了该校50名学生,他们的年龄如表所示:这50名学生年龄的众数和中位数分别是( ).A .13岁、14岁 B .14岁,14岁C .14岁,13岁D .14岁,15岁8.下列图形是轴对称图形的有( )A .5个B .4个C .3个D .2个9.已知116a b a b+=+,则a bb a +之值为( )A .4B .3C .2D .110.在1x ,12,21x x+,3xy π,3x y +,1+1x 中,分式的个数有( ) A .5个 B .4个 C .3个 D .2个11.下列各组图形中是全等三角形的一组是( )A .B .C .D .12.如图是用直尺和圆规作一个角等于已知角的示意图,要证明A O B AOB '''∠=∠,就要先证明C O D COD '''∆≅∆,那么判定C O D COD '''∆≅∆的依据是( )A .SSSB .SASC .AASD .ASA13.△ABC 中,AB =AC ,顶角是120°,则一个底角等于( ) A .120°B .90°C .60°D .30°14.如图,在Rt ABC ∆中,90C ∠=︒,12cm AC =,6cm BC ,一条线段PQ AB =,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,若以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,则AP 的值为( )A .6cmB .12cmC .12cm 或6cmD .10cm 或6cm15.下列命题是真命题的是( ) A .同旁内角互补 B .垂直于同一条直线的两直线平行 C .邻补角相等D .两直线平行,内错角相等16.已知分式242x y ⎛⎫- ⎪⎝⎭与另一个分式的商是62x y ,那么另一个分式是( )A .252x y-B .252x yC .1432x yD .32x y -17.要使式子21236x x x x +=---从左到右变形成立,x 应满足的条件是( ) A .x >-2B .x =-2C .x <-2D .x≠-218.若△ ABC 的内角满足,2∠ A -∠ B =60°,4∠ A +∠ C =300°,则△ ABC 是( ) A .直角三角形B .等腰三角形C .等边三角形D .无法确定19.关于x 的分式方程2311m x x -=--有增根,则m 的值是( ) A .1B .2C .1-D .2-20.下列命题中,假命题是( ) A .对顶角相等B .如果一个角的两边分别平行于另一个角的两边,那么这两个角相等C .两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行D .等角的补角相等二、填空题21.我市6月份某一周每天的最高气温为(单位:△):24,25,28,30,31,33,那么这一周每天最高气温的中位数是__.22.如图BD 是ABC 的一条角平分线,AB=8,BC=4,且ABCS =24,则DBC 的面积是_________.23.已知2410x x ++=,则1x x+=______. 24.计算:23b b a a÷=_______________________.25.如图,在ABC 中,B ACB ∠=∠,CD 是ABC 的角平分线,过A 作CD 的平行线交BC 的延长线于点E ,40E ∠=︒,则BAE ∠=_______°26.分式方程24211x x x++--=﹣1的解是_____. 27.21222933++=--+m m m ______. 28.已知方程21242kx x +=--,有增根,则k =_________. 29.在一个三角形中,如果一个内角是另一个内角的2倍,那么这个三角形称为理想三角形;如果一个内角是另一个内角的3倍,那么这个三角形称为梦想三角形.若一个三角形既是理想三角形,也是梦想三角形,写出这个三角形的三个内角的度数(只写出一组)______.30.在ABC 中,已知9028C B A ∠=︒∠-∠=︒,,则B ∠=______.31.如图,AB AC =,AD△BC ,50DAC ∠=︒,则B ∠的度数是_________.32.在平面直角坐标系中,点A (﹣1,8)关于x 轴对称点的坐标是 ___.33.在课堂上,老师发给每人一张印有Rt A B C '''(如图所示)的卡片,然后,要同学们尝试画一个Rt ABC △,使得t Rt R A B ABC C '''≌.小赵和小刘同学先画出了90MBN ∠=︒之后,后续画图的主要过程分别如图所示老师评价:他俩的做法都正确.请你选择一位同学的做法,并说出其作图依据.我选______的做法(填“小赵”或“小刘”),他作图判定t Rt R A B ABC C '''≌的依据是______ 34.如图,△ABC 是等腰直角三角形,AB =AC ,已知点A 的坐标为(﹣2,0),点B 的坐标为(0,1),则点C 的坐标为__.35.已知△AOB=30°,点在△AOB 的内部,与关于OA 对称,与关于OB对称,则△一定是一个__________________三角形.36.方程146x x =+的解是_____. 37.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,则DE 的长为__________.38.已知等腰三角形一腰上的垂直平分线与另一腰所在直线的夹角是50°,则底角的度数为________.39.重庆市政府为了大力发展农牧业,鼓励并支持青年自主创业.打工返乡青年甲、乙两人在政府帮助下合伙养了若干头羊,而每头羊的卖价又恰与羊的头数相等,全部卖完后,两人按下面的方法平分钱:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元(都是整元),轮到乙拿去.为了平均分配,甲应该找补给乙__________元?三、解答题40.如图,点B 、D 、C 、F 在一条直线上,且BD=FC ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ABC△△EFD ,你添加的条件是 .(2)根据你添加的条件,证明△ABC△△EFD .41.已知:如图,AD 是ABC ∆的角平分线,,80B BAD ADC ∠=∠∠=︒,求ABC ∆各内角的度数.42.如图,在ABC ∆中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE ≌;(2)若110A ∠=︒,40C ∠=︒,求AEB ∠的度数. 43.先化简,再求值:(m+2﹣52m -)•243m m--,其中m=﹣12. 44.先化简:(2222a a a a -+-+-)÷2444a a --,再从﹣2,2,﹣1,1中选择一个合适的数代入求值.45.随着国内快递业务量的迅速增长,通过无人机可打造短途航空物流网络,加速物流效率.某公司采用“站点对站点”的无人机快递运送模式,选用了A ,B 两种型号的无人机,已知A 型号无人机平均每分钟比B 型号无人机多飞行150米.若两站点之间的距离为5000米,A 型号无人机单程所需时间是B 型号无人机单程所需时间的45,若不计停留时间,求A 型号无人机在两站点之间往返..的飞行时间.46.已知:如图,在ABC 中,AB AC =,AB 的垂直平分线DE 分别交AB 、AC 于D 、E .(1)若12AC =,10BC =,求EBC 的周长; (2)若40A ∠=︒,求EBC ∠的度数.47.如图,直线a△b ,一块含60°角的直角三角板ABC(△A =60°)按如图所示放置.若△1=55°,求△2的度数.48.如图1,在△ABC 中,BO AC ⊥于点O ,3,1AO BO OC ===,过点A 作AH BC ⊥于点H ,交BO 于点P .(1)求线段OP 的长度;(2)连接OH ,求证:点O 到△AHC 的两边距离相等;(3)如图2,若点D 为AB 的中点,点M 为线段BO 延长线上一动点,连接MD ,过点D 作DN DM ⊥交线段OA 延长线于N 点,则BDM ADN S S ∆∆-的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.49.如图1,在等边三角形ABC 中,AD BC ⊥于,D CE AB ⊥于,E AD 与CE 相交于点O .(1)求证:2OA DO =;(2)如图2,若点G 是线段AD 上一点,CG 平分BCE ∠,60BGF ∠=︒,GF 交CE 所在直线于点F .求证:GB GF =.(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作OG OF OA三条线段之间的数量60∠=︒,边GF交CE所在直线于点F.猜想:,,BGF关系,并证明.参考答案:1.C【详解】试题分析:从小到大排列此数据为:3,3,5,6,7,8,第3个与第4个数据分别是5,6,所以这组数据的中位数是(5+6)÷2=5.5.故选C.考点:中位数.2.B【分析】分式有意义的条件:分母不为0,根据分式有意义的条件列不等式即可.【详解】解:分式13x-有意义,30,x∴-≠3,x∴≠故选:B.【点睛】本题考查的是分式有意义的条件,掌握“分式的分母不为0”是解本题的关键.3.B【分析】将这组数据从小到大重新排列,再根据中位数的定义求解即可.【详解】将这组数据从小到大重新排列为22,25,25,26,27,29,30,△这组数据的中位数为26,故选:B.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.C【分析】先把数据按大小排列,然后根据中位数和众数定义分别求解.【详解】众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;而将这组数据从小到大的顺序排列后,处于中间位置的那个数的是2,那么由中位数的定义可知,这组数据的中位数是2.故选C.【点睛】本题考查统计知识中的中位数和众数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;一组数据中出现次数最多的数据叫做众数.答案第1页,共22页5.C【分析】分别写出四个命题的逆命题,逆命题是真命题的就是逆定理,不成立的就是假命题,就不是逆定理.【详解】解:A 、直角三角形两锐角互余逆定理是两锐角互余的三角形是直角三角形; B 、同位角相等,两直线平行逆定理是两直线平行,同位角相等;C 、对顶角相等的逆命题是:如果两个角相等,那么这两个角是对顶角,逆命题是假命题;D 、直角三角形两直角边平方和等于斜边的平方逆定理是两边的平方和等于第三边的平方的三角形是直角三角形.故选:C .【点睛】本题考查命题与定理,关键是写出四个选项的逆命题,然后再判断真假. 6.C【分析】由题意根据全等三角形对应角相等可得,D A B E F C ∠=∠∠=∠∠=∠,,再利用三角形的内角和等于180°列式计算即可得解.【详解】解:△△ABC △△DEF ,△7040,D A B E F C ︒︒∠=∠=∠=∠=∠=∠,,在△DEF 中,△F =180°-△D -△E =180°-70°-40°=70°.故选:C .【点睛】本题考查全等三角形的性质,主要利用了全等三角形对应角相等,根据对应顶点的字母放在对应位置上准确确定出对应角是解题的关键.7.C【详解】试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题中位数=(13+13)÷2=13;数据14出现了18次,次数最多,所以众数是14.故选C .考点:1.众数;2.中位数.8.B【分析】根据轴对称图形的定义,逐一判断图形,即可得到答案.【详解】由题意得:第一、三、四、五个图形是轴对称图形,【点睛】本题主要考查轴对称图形的定义,掌握“沿一条直线折叠,两边完全重合的图形,叫做轴对称图形”是解题的关键.9.A【分析】将已知条件变形可得:26()ab a b =+,利用完全平方公式展开移项合并同类项后可得,224ab a b =+,又因为22a b a b b a ab ++=,代入即可. 【详解】解:△116a b a b+=+可变形为:26()ab a b =+, △2262ab a ab b =++△224ab a b =+ △22ab a b b a ab++= △原式2244a b ab ab ab+===. 故选:A .【点睛】本题考查的知识点是求分式的值,解此题的关键是将已知条件进行变形,得出224ab a b =+.10.B【详解】解:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式, 由此可得1x ,21x x+,3x y +,1+1x 是分式,共4个, 故选B11.B【分析】根据全等三角形的判定定理逐个判断即可.【详解】解:A .不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;B .符合全等三角形的判定定理SAS ,能推出两三角形全等,故本选项符合题意;C .只有一个角相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;D .只有一条边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL 等.12.A【分析】由题意:用直尺和圆规作一个角等于已知角的示意图中,可得到三条线段对应相等,据此解题.【详解】根据作法可知: =C O CO D O DO D C DC ''''''==,,()C O D COD SSS '''∴∆≅∆故选:A .【点睛】本题考查基本作图、全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.13.D【分析】根据等腰三角形的性质得出△B =△C ,根据题意得出△A =120°,根据三角形内角和定理即可求得底角的度数.【详解】△△ABC 中,AB =AC ,顶角是120°,△△B =△C ,△A =120°△△A+△B+△C =180°,△△B =△C =1801202︒-︒=30°, 故选:D .【点睛】本题主要考查了等腰三角形性质与三角形内角和定理,熟练掌握相关概念是解题关键.14.C【分析】分△ABC △△QP A 、△ABC △△PQA 两种情况,根据全等三角形的性质解答.【详解】解:由题意得:△C =△P AQ =90°,△分两种情况讨论:当△ABC △△QP A 时,AP =BC =6cm ,当△ABC △△PQA 时,AP =AC =12cm ,即AP 的值为12cm 或6cm ,【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键. 15.D【详解】试题分析:A 、两直线平行,则同旁内角互补;B 、在同一平面内,垂直于同一条直线的两直线平行;C 、邻补角是指一个角.考点:真假命题的判定.16.B【分析】由被除式÷除式=商,根据分式除法的运算法则求出另一个分式即可.【详解】△分式242x y ⎛⎫- ⎪⎝⎭与另一个分式的商是62x y , △242x y ⎛⎫- ⎪⎝⎭÷62x y =84x y ⋅612x y =252x y , △另一个分式是252x y, 故选B.【点睛】本题考查分式除法,分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,熟练掌握运算法则是解题关键.17.D【详解】根据分式的基本性质:“在分式的分子和分母中,同时乘以(或除以)一个不为0的数(或整式)分式的值不变.”可知,要使式子21236x x x x +=---从左到右变形成立,则20x +≠,即2x ≠-,故选D.18.C【详解】因为2△A -△B =60°,4△A +△C =300°,所以△C +2△B =180°.因为△A +△B +△C =180°,所以△A =△B =△C =60°,故选C.19.B【分析】根据题意可得x =1,然后代入整式方程中进行计算,即可解答. 【详解】解:2311m x x -=--, m -2=3(x -1),解得:x =m+13,△分式方程有增根,△x=1,把x=1代入x=m+13中,1=m+13,解得:m=2,故选:B.【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键.20.B【分析】分别判断后,找到错误的命题就是假命题.【详解】A. 对顶角相等,正确,是真命题;B. 如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故错误,是假命题.C. 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,正确,是真命题;D.等角的补角相等,正确,是真命题;故选B.【点睛】此题考查命题与定理,解题关键在于掌握其性质定义.21.29【详解】根据中位数的定义,可得每天最高气温的中位数是2922.8【详解】过D作AB、BC的垂线,根据角平分线上的点到角两边的距离相等,得两垂线段相等.所以△△DBC的面积==8.23.4-【分析】将已知方程两边同除以x即可求解.【详解】解:将2410x x++=两边同除以x,得140xx++=△14x x+=- 故答案为:4-.【点睛】本题考查了分式的求值,能正确对已知等式变形是解题关键.24.3b【分析】根据分式除法和分式乘法法则进行计算即可求解. 【详解】解:22333b b b a a a a b b÷=⨯=. 故答案为:3b. 【点睛】本题主要考查分式除法和分式乘法法则,解决本题的关键是要熟练掌握分式除法和分式乘法法则.25.60【分析】根据//CD AE ,40E ∠=︒,可得40BCD E ∠=∠=︒,根据CD 是ABC 的角平分线,可得80B ACB ∠=∠=︒,根据三角形的内角和可得60BDC ∠=︒,再根据两直线平行,同位角相等可得60BAE BDC =︒∠=∠.【详解】解:△//CD AE ,40E ∠=︒,△40BCD E ∠=∠=︒,△CD 是ABC 的角平分线,△224080ACB BCD ∠=∠=⨯︒=︒,△80B ACB ∠=∠=︒,△840180180600BDC BCD B ∠=︒=︒∠=︒-∠-︒-︒-,△//CD AE ,△60BAE BDC =︒∠=∠,故答案是:60.【点睛】本题考查了角平分线的性质,平行线的性质的应用,熟悉相关性质是解题的关键.26.x =13【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:4﹣(x +2)(x +1)=﹣x 2+1,整理得:4﹣x 2﹣3x ﹣2=﹣x 2+1,解得:x =13, 经检验x =13是分式方程的解. 故答案为x =13【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 27.0【分析】先根据平方差公式通分,再加减计算即可. 【详解】原式21222933m m m =-+--+ 222122626999m m m m m +-=-+--- 21226269m m m --+-=- 0=.故答案为:0【点睛】本题考查了分式的加减法,熟悉掌握通分、约分法则是解题的关键.28.14- 【分析】先将分式方程去分母整理为整式方程,然后根据分式方程有增根可得2x =或2x =-,代入计算即可.【详解】解:方程两边同乘(2)(2)x x +-,得12(2)(2)(2)x x k x ++-=-+.△原方程有增根,△最简公分母(2)(2)0x x +-=,增根是2x =或2x =-,当2x =时,14k =-; 当2x =-时,k 无解.△k 值为14-, 故答案为:14-. 【点睛】增根问题可按如下步骤进行:△根据最简公分母确定增根的值;△化分式方程为整式方程;△把增根代入整式方程即可求得相关字母的值.29.30°、60°、90°【分析】根据理想三角形、梦想三角形的定义,列方程求解即可.【详解】解:设最小内角度数为n °,2倍角为2n °,3倍角为3n °,△n +2n +3n =180,△n =30,△这个三角形的三个内角的度数为:30°、60°、90°.故答案为:30°、60°、90°.【点睛】本题考查了n 倍角三角形的定义以及三角形的内角和等知识,解题的关键是学会用方程的思想解决问题.30.59°【分析】由三角形的内角和定理,得到90B A ∠+∠=︒,结合28B A ∠-∠=︒,即可求出B ∠的度数.【详解】解:△在ABC 中,90C ∠=︒,△90B A ∠+∠=︒,△28B A ∠-∠=︒,△59B ∠=︒,21A ∠=︒,故答案为:59°.【点睛】本题考查了三角形内角和定理,解题的关键是熟练掌握三角形内角和定理. 31.50°【分析】根据等腰三角形等边对等角知B C ∠=∠,利用平行线的性质知DAC C ∠=∠,通过等量代换,即可求解.【详解】解:△ AB AC =,△B C ∠=∠,又△//AD BC ,△DAC C ∠=∠(两直线平行,内错角相等),且50DAC ∠=︒,△=50B C DAC ∠=∠∠=︒.故答案为50︒.【点睛】本题考查等腰三角形与平行线的综合,难度不大,熟练掌握等腰三角形以及平行线的性质是顺利解题的关键.32.(-1,-8)【分析】利用关于x 轴的对称点的坐标特点可得答案.【详解】解:△点A (﹣1,8),△点A 关于x 轴的对称点的坐标是(-1,-8),故答案为:(-1,-8).【点睛】此题主要考查坐标的对称,解题的关键是熟知关于x 轴的对称点的坐标特点:坐标轴不变,纵坐标互为相反数.33. 小刘(或小赵) HL (或SAS )【分析】由图可知小赵同学确定的是两条直角边,根据三角形全等判定定理为SAS . 由图可知小刘同学确定了一个直角边和斜边,根据三角形全等判定定理为HL .【详解】小赵同学画了90MBN ∠=︒后,再截取,AB BC 两直角边等于两已知线段,所以确定的依据是SAS 定理;小刘同学画了90MBN ∠=︒后,再截取,BC AC 一直角边和一个斜边,所以确定的依据是HL 定理.故答案为:小刘(或小赵);HL (或SAS )【点睛】本题考查了全等三角形的判定,熟练掌握每种证明方法,做出判断是解题的关键.34.(-3,2)【详解】过C 作CD △x 轴于D ,则△CDA =△AOB =90°,△△ABC 是等腰直角三角形,△△CAB =90°,又△△AOB =90°,△△CAD +△BAO =90°,△ABO +△BAO =90°,△△CAD =△ABO ,在△ACD 和△BAO 中,CDA AOB CAD ABO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ACD △△BAO (AAS ),△CD =AO ,AD =BO ,又△点A 的坐标为(-2,0),点B 的坐标为(0,1),△CD =AO =2,AD =BO =1,△DO =3,又△点C 在第三象限,△点C 的坐标为(-3,2).故答案为:(-3,2).【点睛】考点:1.辅助线的添加;2.三角形全等.35.等边.【详解】试题分析:如图,根据轴对称的性质得到12OP OP OP ==且12260,POP AOB ∠=∠=12OPP ∴是等边三角形.考点:1、轴对称的性质;2、等边三角形的判定.36.x =2.【分析】本题考查解分式方程的能力,观察可得最简公分母是x (x+6),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【详解】方程两边同乘以x (x+6),得x+6=4x ,解得x=2.经检验:x=2是原方程的解.【点睛】此题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程解.(2)解分式方程一定注意要验根.37.1.5【分析】过点P 作//PF BC 交AC 于点F ,根据题意可证APF 是等边三角形,根据等腰三角形三线合一证明AE =FE ,根据全等三角形判定定理可证PFD QCD ≌△△,DF =DC ,进而证明12DE AC =,计算求值即可. 【详解】解:过点P 作//PF BC 交AC 于点F ,如图,△//PF BC ,△60APF B ∠=∠=︒,60A ∠=︒,APF 是等边三角形,△PF PA =,△PE AC ⊥,△AE FE =;△PA CQ =,△PF QC =,△//PF BC ,△∠=∠PFD QCD ,在PFD 和QCD 中,PF QC PFD QCD PDF QDC =⎧⎪∠=∠⎨⎪∠=∠⎩△PFD QCD ≌△△(AAS ),△DF DC =; △12DF FC =,12EF AF =, △DF EF DE +=,FC AF AC +=, △1111()2222DE FC AF FC AF AC =+=+=, △3AC =,113 1.522DE AC ==⨯= 故答案为:1.5【点睛】本题考查了平行线性质、等边三角形性质、全等三角形判定与性质,掌握全等三角形判定定理是解题关键.38.7020︒︒或【分析】分两种情况讨论,△三角形为锐角三角形,根据直角三角形两锐角互余求出顶角,再根据等腰三角形两底角相等列式计算即可;△三角形为钝角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出顶角,再根据等腰三角形两底角相等列式计算即可.【详解】解:由题意,分两种情况讨论,△如图1,三角形为锐角三角形时,905040A ∠=︒-︒=︒, 底角为:()118040702⨯︒-︒=︒; △三角形为钝角三角形时,9050140BAC ∠=︒+︒=︒, 底角为:()1180140202⨯︒-︒=︒, 综上,底角的度数为7020︒︒或.【点睛】此题主要考查了等腰三角形的性质,线段垂直平分线的性质,解题关键是分类讨论.39.2【详解】试题分析:而每头羊的卖价又恰与羊的头数相等.设每头羊的卖价为x;则总的收入是2x ,2x 的尾数可能为0、1、4、5、6、9;全部卖完后,两人按下面的方法平分钱:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元(都是整元),轮到乙拿去,说明这一轮甲拿了10元了,剩下不足十元(都是整元),轮到乙拿去,则最后一轮还剩下的钱大于10,小于20;在10-20间只有16是一个数的平方,所以肯定最后一轮剩下16,甲拿去10元,剩下6元归乙;为了平均分配,甲应该找给乙10-162=2,这样的分配就是平均分配考点:统计点评:本题考查统计,关键是审清题,从而排除各种情况;本题考查学生的逻辑思维能力,归纳能力40.(1)AC=DE;(2)见详解【分析】(1)根据题目中给出的两组对边相等,可以再添加一组对边或一组对角相等利用SSS 或SAS 证明全等即可;(2)根据(1)中添加的条件选择对应的方法证明即可.【详解】(1)AC=DE(2)证明:BD FC =BD DC FC DC ∴+=+即BC DF =在ABC 和EFD △中,AB EF BC DF AC DE =⎧⎪=⎨⎪=⎩()ABC EFD SSS ∴≅【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键. 41.80,40,60BAC B C ∠=︒∠=︒∠=︒【分析】根据B BAD ∠=∠及外角性质可知△B 的度数,进而根据AD 是△BAC 的平分线可知△BAC 的度数,根据三角形内角和求出角C 的度数即可.【详解】△,80B BAD ADC ∠=∠∠=︒,△△B=△BAD=40°,△AD 是△BAC 的平分线,△△BAC=2△BAD=80°,△△B+△BAC+△C=180°,△△C=180°-40°-80°=60°【点睛】本题考查三角形外角性质及三角形内角和定理,熟练掌握三角形内角和定理是解题关键.42.(1)见解析(2)55AEB ∠=︒【分析】(1)根据角平分线的定义得到ABE DBE ∠∠=,再根据全等三角形的判定SAS 证明结论即可;(2)根据三角形的内角和定理求解即可.【详解】(1)证明:△BE 平分ABC ∠,△ABE DBE ∠∠=,在ABE 和DBE 中AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩△()ABE DBE SAS ≌;(2)解:△110,40A C ∠=︒∠=︒,△18030ABC A C ∠=︒-∠-∠=︒由(1)可知ABE DBE ∠∠=,△15ABE ∠=︒,△18055AEB A ABE ∠=︒-∠-∠=︒.【点睛】本题考查角平分线的定义、全等三角形的判定、三角形的内角和定理,熟练掌握全等三角形的判定和三角形的内角和定理是解答的关键.43.-2(m+3),-5.【分析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【详解】解:(m+2-5m-2)•243m m --, =()22245•23m m m m-----, =-()22(3)(3)•23m m m m m -+---, =-2(m+3).把m=-12代入,得,原式=-2×(-12+3)=-5.44.-1【分析】根据分式的减法和除法运算法则可以化简题目中的式子,然后在-2,2,-1,1中选择一个使得原分式有意义的x 的值代入求解. 【详解】22244-224a a a a a a -+-⎛⎫÷ ⎪+--⎝⎭()()()()()2222241=224a a a a a a --+-÷+-- ()()()()()228=2241a a a a a a +--⨯+-- =2-1a a - , 当a =﹣1时,原式=﹣()2-1-1-1⨯ =﹣1.【点睛】本题主要考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法. 45.403分 【分析】设B 型无人机飞行速度为x 米/分,则A 型无人机飞行速度为()150x +米/分,根据题意列出方程并求解.【详解】设B 型无人机飞行速度为x 米/分,则A 型无人机飞行速度为()150x +米/分. 由题意得:5000450005150x x ⨯=+ 解得,600x =经检验,600x =是原方程的解.500020402215033x ⨯=⨯=+(分) 答:A 型号无人机在两站点之间往返..的飞行时间为403分. 【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 46.(1)22;(2)△EBC =30°.【分析】(1)由AB 的垂直平分线DE 分别交AB 、AC 于点D 、E ,易得△EBC 的周长=AC +BC ;(2)由AB =AC ,△A =40°,即可得到△ABC 的度数,再根据△ABE =△A ,即可得出△EBC 的度数.【详解】解:(1)△AB 的垂直平分线DE 分别交AB 、AC 于点D 、E ,△AE =BE ,△△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=10+12=22;(2)△AB=AC,△A=40°,△△ABC=△C=70°,又△AE=BE,△△ABE=△A=40°,△△EBC=70°-40°=30°.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.解题时注意线段垂直平分线上任意一点,到线段两端点的距离相等.47.115°【详解】分析:直接利用三角形的内角和定理结合对顶角的定义得出△ANM的度数,再利用平行心啊的性质求出△2即可.详解:如图,△直线a△b,△△AMO=△2;△△ANM=△1,而△1=55°,△△ANM=55°,△△AMO=△A+△ANM=60°+55°=115°,△△2=△AMO=115°.点睛:此题主要考查了三角形的内角定理和平行线的性质,关键是通过三角形的内角和求出△ANM的度数.48.(1)OP =1;(2)见解析;(3)不变,94【分析】(1)证△OAP △△OBC (ASA ),即可得出OP =OC =1;(2)过O 分别作OM △CB 于M 点,作ON △HA 于N 点,证△COM △△PON (AAS ),得出OM =ON .得出HO 平分△CHA ,即可得出结论;(3)连接OD ,由等腰直角三角形的性质得出OD △AB ,△BOD =△AOD =45°,OD =DA =BD ,则△OAD =45°,证出△DAN =△MOD .证△ODM △△ADN (ASA ),得S △ODM =S △ADN ,进而得出答案.(1)解:△BO △AC ,AH △BC ,△△AOP =△BOC =△AHC =90°,△△OAP +△C =△OBC +△C =90°,△△OAP =△OBC ,在△OAP 和△OBC 中,AOP BOC AO BOOAP OBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△OAP △△OBC (ASA ),△OP =OC =1;(2)过O 分别作OM △CB 于M 点,作ON △HA 于N 点,如图1所示:在四边形OMHN 中,△MON =360°-3×90°=90°,△△COM =△PON =90°-△MOP .在△COM 与△PON 中,90COM PON OMC ONP OC OP ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,△△COM △△PON (AAS ),△OM =ON .△OM △CB ,ON △HA ,△HO 平分△CHA ,△点O 到△AHC 的两边距离相等;(3)S △BDM -S △ADN 的值不发生改变,等于94.理由如下: 连接OD ,如图2所示:△△AOB =90°,OA =OB ,D 为AB 的中点,△OD △AB ,△BOD =△AOD =45°,OD =DA =BD△△OAD =45°,△MOD =90°+45°=135°,△△DAN =135°=△DOM .△MD △ND ,即△MDN =90°,△△MDO =△NDA =90°-△MDA .在△ODM 和△ADN 中,MDO NDA OD ADDOM DAN ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ODM △△ADN (ASA ),△S △ODM =S △ADN ,△S △BDM -S △ADN =S △BDM -S △ODM =S △BOD =12S △AOB =12×12AO •BO =12×12×3×3=94. 【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质以及三角形面积等知识;本题综合性强,证明三角形全等是解题的关键.49.(1)见解析(2)见解析(3)OF OG OA =+,理由见解析【分析】(1)由等边三角形的可求得30OAC OAB OCA OCB ∠=∠=∠=∠=︒,理由含30︒角的直角三角形的性质可得2OC OD =,进而可证明结论;(2)利用ASA 证明CGB CGF ≌即可证明结论;(3)连接OB ,在OF 上截取OM OG =,连接GM ,可证得OMG 是等边三角形,进而可利用ASA 证明GMF GOB ≌,得到MF OB OA ==,由OF OM MF =+可说明猜想的正确性.【详解】(1)证明:△ABC 为等边三角形,△AB BC AC ==,60BAC ACB ∠=∠=︒,△AD BC ⊥,CE AB ⊥,△AD 平分BAC ∠,CE 平分ACB ∠,△30OAC OAB OCA OCB ∠=∠=∠=∠=︒,△OA OC =,在Rt OCD △中,90ODC ∠=︒,30OCD ∠=︒,△2OC OD =,△2OA OD =;(2)证明:△AB AC BC ==,AD BC ⊥,△BD CD =,。

(完整版)初中数学中考计算题复习含答案

(完整版)初中数学中考计算题复习含答案

1 .23621601214314175395243 40431511454233862328125647--8123220113212399101232210601651274311121241318123214 1531246612131321620212529363181712312712661833218243352741581920112|4120131124212223231|1|3333325=14-9=5387431511441312318118741-44011536414233832527------813229200121012-992(101-99)21220091-3;210121-23+-37--12+45410-30=-45-606512743606560127604335+50=-3011121212121312131431323157.21113262969276161212233633231212122312231712233411851451424334155275424335274155424335274158019-2.+2-=-2.1. 2.201212352122232------------------------------------------------------------------63253--------71 220130 3|1|012013567 8 10 111213+|3|+1 151612120130+||222+412 17112013|7|+0121819122012302452211|3|+162320130222122312+124122512+12612272829201322012420113011一.解答题(共3011211+12121211101220130+1+13|1|01201312+1111212451141144362744421811139210+31111111212原式第一项利用立方根的定义化简,第二项利用负数的绝对值等于它的相反数计算法则计算,第四项利用负指数幂法则计算,第五项利用1181311321132132214 3.140+|3|+120131415221612120130+||222+412121122424242+4 17112013|7|+01211211115218原式第一项利用立方根的定义化简,第二项利用二次根式的化简公式化简,第三项利用零指数幂法则计算,1451912121114+1+|12|142121112012302452121222311416314211|3|+16232013021)原式第一项利用负数的绝对值等于它的相反数计算,第二项先计算乘方运算,再计算除法运算,第2131234622212121121313122312+11)原式第一项利用负数的绝对值等于它的相反数计算,第二项利用特殊角的三212172+1+324121)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负指数幂法则21+13+3213212512+112112+126121)原式第一项利用特殊角的三角函数值化简,第二项利用零指数幂法则计算,212211118272282129201322012420112011201122420112242011+522420110301819126-6 3020151351251513 223113415322 2215113656 709422023432852213222330 920121451012456011 ---3622337956347181213343144201232221113.解方程(本小题共61 2532436431.60.20.5140||6015 233218342101216241940 17582818 192221121276521223201120+|4|×0.5+21 21 49322922121212423424 25 0116033230148 31|4|201634232212117538131383171. 2. 3. 4. 5.62-36:-363-17.=-1+1-9-8=-174172312x-2=3x+5 2x-3x=2+5x=-7262(2x+1)-(5x-1)=6x=-354113【解析】先把第二个方程去分母得3x-4y=-2,4113622114211222212221117363236322182323931410123211212111-192-111=-9÷9-18=-1-18=-192753796418=-28+30-27+14=-111221311326313 1532436112171217129128122121543326452431.60.20.529362762732661361263616220561235414试题分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算,最后一项利用立方根定义化简计算即可得到2. 3.153222123x-3+6≥2x332181-3x+3-8+x 0-23223421012122221161747 189190 2021-40--19-24=-40+19-24=-45 2-5-8--28 3-1256712=6+10-74-22--22-23-12011=-4-4+85-32+|-4|×0.52+2-12942912=-4+1+521 312124234 712166 102244124322421 1212423412166224001160341313200116034131322425 =2-1+230-76=-48+8-36=-76316412 95。

初中练习题(打印版)

初中练习题(打印版)

初中练习题(打印版)### 初中数学练习题#### 一、选择题1. 下列哪个选项不是质数?- A. 2- B. 3- C. 4- D. 52. 一个数的平方根是它本身,这个数是:- A. 0- B. 1- C. -1- D. 23. 绝对值等于5的数是:- A. 5- B. -5- C. 5 或 -5- D. 以上都不是#### 二、填空题4. 一个数的立方等于它本身,这个数可以是_______。

5. 如果\( a \)和\( b \)互为相反数,那么\( a + b = _______\)。

6. 一个数的绝对值是它的相反数,那么这个数是_______。

#### 三、计算题7. 计算下列表达式的值:- (i) \( 3^2 - 2 \times 5 \)- (ii) \( \frac{4}{2} + \frac{1}{3} \)8. 解下列方程:- (i) \( 2x + 5 = 11 \)- (ii) \( 3x - 7 = 2x + 8 \)#### 四、解答题9. 一个班级有48名学生,其中1/3是男生,其余是女生。

求这个班级男生和女生各有多少人?10. 一个长方形的长是宽的两倍,如果它的周长是20厘米,求这个长方形的长和宽。

#### 五、应用题11. 一个水果店有苹果和橙子两种水果,苹果的价格是每千克5元,橙子的价格是每千克3元。

如果小明买了2千克苹果和3千克橙子,总共花费了多少钱?12. 一个工厂有100名员工,其中20%的员工是管理人员,其余是生产线工人。

如果每名管理人员的工资是5000元,每名生产线工人的工资是3000元,求这个工厂每月的工资支出总额。

答案:1. C2. A3. C4. 0, 1, -15. 06. 负数或零7. (i) 1 (ii) 2 1/38. (i) \( x = 3 \) (ii) \( x = 5 \)9. 男生16人,女生32人10. 长8厘米,宽4厘米11. 总共花费23元12. 每月工资支出总额为48000元请同学们认真完成以上练习题,通过练习提高自己的数学能力。

中考数学九年级专题训练50题-含答案

中考数学九年级专题训练50题-含答案

中考数学九年级专题训练50题含答案_一、单选题1.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为( ) A .B .C .D .12.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为x ,则得方程( ) A .()2001722x -=⨯ B .()22001%72x -= C .()2200172x -=D .220072x =3.如图,已知BD 与CE 相交于点A ,DE BC ∥,如果348AD AB AC ===,,,那么AE 等于( )A .247B .1.5C .14D .64.如图,CD 是⊙O 的直径,A ,B 是⊙O 上的两点,若15ABD ∠=°,则 ⊙ADC 的度数为( )A .55°B .65°C .75°D .85°5.一元二次方程()()()221211x x x --+=的解为( ) A .2x = B .121,12x x =-=-C .121,22x x ==D .121,12x x ==-6.如图,在Rt ABC 中,90C ∠=︒,10AB =,8AC =,D 是AC 上一点,5AD =,DE AB ⊥,垂足为E ,则AE =( )A .2B .3C .4D .57.如图,抛物线211242y x x =--与x 轴相交于A ,B 两点,与y 轴相交于点C ,点D 在抛物线上,且//CD AB .AD 与y 轴相交于点E ,过点E 的直线MN 平行于x 轴,与抛物线相交于M ,N 两点,则线段MN 的长为( )AB C .D .8.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是( )A .B .C .D .9.如图,O 中,弦AB AC ⊥,4AB =,2AC =,则O 直径的长是( ).A .B .CD 10.在平面直角坐标系中,点2(2,1)A x x +与点(3,1)B -关于y 对称,则x 的值为( ) A .1B .3或1C .3-或1D .3或1-11.2022年,某省新能源汽车产能达到30万辆.到了2024年,该省新能源汽车产能将达到41万辆,设这两年该省新能源汽车产能的平均增长率为x .则根据题意可列出的方程是( ) A .()301241x +=B .()230141x += C .()()23030130141x x ++++=D .()23030141x ++=12.已知抛物线2y x bx c =-++的顶点在直线y=3x+1上,且该抛物线与y 轴的交点的纵坐标为n ,则n 的最大值为( ) A .134B .154C .238D .25813.下列说法正确的是( )A .了解我市市民观看2022北京冬奥会开幕式的观后感,适合普查B .若一组数据2、2、3、4、4、x 的众数是2,则中位数是2或3C .一组数据2、3、3、5、7的方差为3.2D .“面积相等的两个三角形全等”这一事件是必然事件 14.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上B .今年夏天马鞍山不会下雪C .随意掷两枚质地均匀的骰子,朝上的点数之和为1D .库里罚球投篮3次,全部命中15.如图是二次函数2(1)2y a x =++图象的一部分,则关于x 的不等式2(1)20a x ++>的解集是( )A .x<2B .x>-3C .-3<x<1D .x<-3或x>116.已知抛物线y =ax 2+bx +3中(a ,b 是常数)与y 轴的交点为A ,点A 与点B 关于抛物线的对称轴对称,二次函数y =ax 2+bx +3中(b ,c 是常数)的自变量x 与函数值y 的部分对应值如下表:下列结论正确的是( )A .抛物线的对称轴是x =1 B .当x =2时,y 有最大值-1C .当x <2时,y 随x 的增大而增大D .点A 的坐标是(0,3)点B 的坐标是(4,3)17.当x =a 和x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等、当x =a +b 时,函数y =2x 2﹣2x +3的值是( ) A .0B .﹣2C .1D .318.如图,在平面直角坐标系中,抛物线23(0)y ax bx a =++<交x 轴于A ,B 两点(B 在A 左侧),交y 轴于点C .且CO AO =,分别以,BC AC 为边向外作正方形BCDE ,正方形ACGH .记它们的面积分别为12,S S ,ABC 面积记为3S ,当1236S S S +=时,b 的值为( )A .12-B .23-C .34-D .43-19.将方程()()212523x x x x -=--化为一般形式后为( ) A ..2x -8x-3=0 B .9.2x +12x-3=0 C .2x -8x+3=0D .9.2x -12x+3=020.如图,抛物线y=14(x+2)(x ﹣8)与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为M ,以AB 为直径作⊙D .下列结论:⊙抛物线的最小值是-8;⊙抛物线的对称轴是直线x=3;⊙⊙D 的半径为4;⊙抛物线上存在点E ,使四边形ACED 为平行四边形;⊙直线CM 与⊙D 相切.其中正确结论的个数是( )A .5B .4C .3D .2二、填空题21.已知反比例函数1ky x-=,每一象限内,y 都随x 的增大而增大,则k 的值可以是(写出一个即可)_____.22.下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________.(把下图中正确的立体图形的序号都填在横线上).23.如图,直线CD 与O 相切于点C ,AB AC =且//CD AB ,则cos A ∠=______.24.若二次函数261(0)y mx mx m =-+>的图象经过A (2,a ),B (﹣1,b ),C (5,c )三点,则a ,b ,c 从小到大排列是_____.25.如图,AB 是O 的直径,点M 在O 上,且不与A 、B 两点重合,过点M 的切线交AB 的延长线于点C ,连接AM ,若⊙MAO=27°,则⊙C 的度数是______.26.如图,在平面直角坐标系中,点E 在x 轴上,E 与两坐标轴分别交于A B C D 、、、四点,已知()()6,0,2,0A C -,则B 点坐标为___________27.请写出一个以2和-5为根的一元二次方程:______________________. 28.已知ab =2,那么3232a b a b-+=______.29.二次函数2y x x 2=+-的图象与x 轴有______个交点. 30.对于函数6y x=,若x >2,则y ______3(填“>”或“<”). 31.如图,C ,D 是两个村庄,分别位于一个湖的南,北两端A 和B 的正东方向上,且点D 位于点C 的北偏东60°方向上,CD=12km ,则AB=_______km32.皮影戏中的皮影是由________投影得到.33.计算:011(2019)12sin 45()3π---+=____.34.如图,在Rt △ABC 中,⊙C =90°.△ABC 的内切圆⊙O 切AB 于点D ,切BC 于点E ,切AC 于点F ,AD =4,BD =6,则Rt △ABC 的面积=_____.35.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为8cm ,则图中阴影部分的面积为____cm 2.36.若一个圆锥的底面积为16πcm 2,母线长为12cm ,则该圆锥的侧面积为_____. 37.如图,矩形OABC 的顶点,A C 分别在x 轴、y 轴上,顶点B 在第二象限,AB =将线段OA 绕点О按顺时针方向旋转60︒得到线段,OD 连接,AD 反比例函数()0ky k x=≠的图象经过,D B 两点,则k 的值为____.38.如图(1),在Rt ABC △中,=90ACB ∠︒,点P 以每秒1cm 的速度从点A 出发,沿折线AC CB -运动,到点B 停止,过点P 作PD AB ⊥,垂足为D ,PD 的长()y cm 与点P 的运动时间()x s 的函数图象如图(2)所示,当点P 运动5s 时,PD 的长是___________.39.在平面直角坐标系中,经过反比例函数ky x=图象上的点A (1,5)的直线2y x b =-+与x 轴,y 轴分别交于点C ,D ,且与该反比例函数图象交于另一点B .则BC AD +=______.三、解答题40.解方程:2(2)9x -=. 41.已知二次函数y=﹣x 2+2x+3(1)在如图所示的坐标系中,画出该函数的图象 (2)根据图象回答,x 取何值时,y >0?(3)根据图象回答,x 取何值时,y 随x 的增大而增大?x 取何值时,y 随x 的增大而减小?42.在直角坐标平面内,直线y =12x +2分别与x 轴、y 轴交于点A 、C .抛物线y =﹣212x +bx +c 经过点A 与点C ,且与x 轴的另一个交点为点B .点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果⊙ABE 的面积与⊙ABC 的面积之比为4:5,求⊙DBA 的余切值;(3)过点D 作DF ⊙AC ,垂足为点F ,联结CD .若⊙CFD 与⊙AOC 相似,求点D 的坐标.43.如图,已知直线2y x =与双曲线ky x=的图象交于A ,B 两点,且点A 的坐标为()1,a .(1)求k 的值和B 点坐标;(2)设点()(),00P m m ≠,过点P 作平行于y 轴的直线,交直线2y x =于点C ,交双曲线ky x=于点D .若POC △的面积大于POD 的面积,结合图象,直接写出m 的取值范围.44.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆. (1)若该小区家庭轿车的年平均增长量都相同, 请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.45.为了测量某教学楼CD 的高度,小明在教学楼前距楼基点C ,12米的点A 处测得楼顶D 的仰角为50°,小明又沿CA 方向向后退了3米到点B 处,此时测得楼顶D 的仰角为40°(B 、A 、C 在同一水平线上),依据这些数据小明能否求出教学楼的高度?若能求,请你帮小明求出楼高;若不能求,请说明理由. 2.24)46.(1)用配方法解方程:x2﹣2x﹣1=0.(2)解方程:2x2+3x﹣1=0.(3)解方程:x2﹣4=3(x+2).47.梯形ABCD中DC⊙AB,AB =2DC,对角线AC、BD相交于点O,BD=4,过AC的中点H作EF⊙BD分别交AB、AD于点E、F,求EF的长.48.计算:3-+;⊙222602cos458︒+︒+︒sin45cos60tan3049.小明根据学习函数的经验,对函数y=|x2﹣2x|﹣2的图象与性质进行了探究,下面是小明的探究过程,请补充完整:(1)在给定的平面直角坐标系中;画出这个函数的图象,⊙列表,其中m=,n=.⊙描点:请根据表中数据,在如图所示的平面直角坐标系中描点:⊙连线:画出该函数的图象.(2)写出该函数的两条性质:.(3)进一步探究函数图象,解决下列问题:⊙若平行于x轴的一条直线y=k与函数y=|x2﹣2x|﹣2的图象有两个交点,则k的取值范围是;⊙在网格中画出y=x﹣2的图象,直接写出方程|x2﹣2x|﹣2=x﹣2的解为.参考答案:1.A【详解】试题分析:先求出总的球的个数,再出摸到红球的概率.已知袋中装有6个红球,2个绿球,可得共有8个球,根据概率公式可得摸到红球的概率为;故答案选A.考点:概率公式.2.C【分析】设调价百分率为x ,根据售价从原来每件200元经两次调价后调至每件72元,可列方程.【详解】解:设调价百分率为x ,则:2200(1)72.x -=故选:C .【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.3.D【分析】证明ABC ADE △△∽ ,由相似三角形的性质得出AB AC AD AE=,则可得出答案. 【详解】解:⊙DE BC ∥,⊙ABC ADE △△∽, ⊙AB AC AD AE =, 即483AE =, ⊙6AE =,故选:D .【点睛】本题考查了相似三角形的判定与性质,熟记性质是解题的关键.4.C【分析】根据圆周角定理可得⊙ACD =15°,再由直径所对的圆周角是直角,可得⊙CAD =90°,即可求解.【详解】解:⊙⊙ACD =⊙ABD ,15ABD ∠=°,⊙⊙ACD =15°,⊙CD 是⊙O 的直径,⊙⊙CAD =90°,⊙⊙ADC =90°-⊙ACD =75°.故选:C【点睛】本题主要考查了圆周角定理,熟练掌握在同圆(或等圆)中,同弧(或等弧)所对的圆周角相等,直径所对的圆周角是直角是解题的关键.5.C【分析】根据因式分解法解一元二次方程,即可求解.【详解】解:()()()221211x x x --+= ()()212110x x x ----=,()()2120x x --=, 解得121,22x x ==, 故选C .【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 6.C【分析】先证明⊙ADE ⊙⊙ABC ,得出对应边成比例,即可求出AE 的长.【详解】解:⊙ED ⊙AB ,⊙⊙AED =90°=⊙C ,⊙⊙A =⊙A ,⊙⊙ADE ⊙⊙ABC , ⊙AD AE AB AC =,即5108AE =, 解得:AE =4.故选:C .【点睛】本题考查了相似三角形的判定与性质;熟练掌握相似三角形的判定方法,证明三角形相似得出比例式是解决问题的关键.7.D【分析】利用二次函数图象上点的坐标特征求出点A 、B 、C 、D 的坐标,由点A 、D 的坐标,利用待定系数法求出直线AD 的解析式,利用一次函数图象上点的坐标特征求出点E的坐标,再利用二次函数图象上点的坐标特征得出点M 、N 的坐标,进而可求出线段MN 的长.【详解】当0y =时,2112042x x --=, 解得:1224x x =-=,,⊙点A 的坐标为(-2,0);当0x =时,2112242y x x =--=-, ⊙点C 的坐标为(0,-2);当2y =-时,2112242x x --=-, 解得:1202x x ==,,⊙点D 的坐标为(2,-2),设直线AD 的解析式为()0y kx b k =+≠,将A(-2,0),D(2,-2)代入y kx b =+,得:2022k b k b -+=⎧⎨+=-⎩,解得:121k b ⎧=-⎪⎨⎪=-⎩, ⊙直线AD 的解析式为112y x =--, 当0x =时,1112y x =--=-, ⊙点E 的坐标为(0,1-).当1y =-时,2112142x x --=-,解得:1211x x ==⊙点M 、N 的坐标分别为(1,-1)、(1-1),⊙MN=(11=故选:D .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点M 、N 的坐标是解题的关键.8.A【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故A 不可能,即不会是梯形.故选A .【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.9.A【分析】连接BC ,由90BAC ∠=︒可知BC 为直径,利用勾股定理求解即可.【详解】解:连接BC ,如图:⊙AB AC ⊥,⊙90BAC ∠=︒,⊙BC 为直径,由勾股定理可得:BC =故选:A【点睛】此题考查了圆的有关性质,勾股定理,解题的关键是熟练掌握圆的相关知识. 10.C【分析】先根据关于y 轴对称点的坐标特点建立方程,然后解一元二次方程,即可得出结果.【详解】解:⊙A 、B 两点关于y 轴对称,⊙223x x +=,⊙()()310x x +-=,解得3x =-或1,故选:C .【点睛】本题考查了关于y 轴对称点的坐标特点和解一元二次方程,根据关于y 轴对称点的坐标特点建立方程是解题的关键.11.B【分析】设这两年该省新能源汽车产能的平均增长率为x ,根据题意列出一元二次方程即可求解.【详解】解:设这两年该省新能源汽车产能的平均增长率为x ,根据题意得,()230141x +=, 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.12.A【分析】将抛物线顶点坐标代入一次函数解析式,求出b 与c 的关系,再根据抛物线与y 轴交点的纵坐标为c ,即n c =,再利用二次函数的性质即可解答. 【详解】 抛物线2y x bx c =-++的顶点在3+1y x =上,抛物线2y x bx c =-++的顶点标为(2b 、24b c +) ∴23142b bc +=+ 23124b bc ∴=+- 抛物线与y 轴交点的纵坐标为cn c ∴=23124b b n ∴=+- ()21136944n b b ∴=--++ ()2113344n b ∴=--+ n ∴的最大值为134故选:A .【点睛】本题考查了二次函数的性质,函数图像上点坐标的特征,熟练掌握二次函数性质是解题关键.13.C【分析】根据全面调查与抽样调查、中位数与众数、方差、必然事件的定义逐项判断即可得.【详解】解:A 、了解我市市民观看2022北京冬奥会开幕式的观后感,适合抽样调查,则此项说法错误,不符题意;B 、因为一组数据2、2、3、4、4、x 的众数是2,所以2x =,将这组数据按从小到大进行排序为2,2,2,3,4,4,则第三个数和第四个数的平均数为中位数, 所以中位数是23 2.52+=,则此项说法错误,不符题意; C 、这组数据的平均数为2335745++++=, 则方差为222221(24)(34)(34)(54)(74) 3.25⎡⎤⨯-+-+-+-+-=⎣⎦,此项说法正确,符合题意;D 、“面积相等的两个三角形不一定全等”,则这一事件是随机事件,此项说法错误,不符题意;故选:C .【点睛】本题考查了全面调查与抽样调查、中位数与众数、方差、必然事件,熟练掌握各定义和计算公式是解题关键.14.C【分析】事件的发生的概率为0,即为一定不可能发生的事件.【详解】解:C 中事件中两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了不可能事件的定义,熟悉掌握概念是解决本题的关键.15.C【分析】直接根据二次函数的图像和性质即可得出结论.【详解】二次函数y =a(x +1)2+2的对称轴为x =﹣1,⊙二次函数y =a(x +1)2+2与x 轴的一个交点是(﹣3,0),⊙二次函数y =a(x +1)2+2与x 轴的另一个交点是(1,0),⊙由图像可知关于x 的不等式a(x +1)2+2>的解集是﹣3<x <1.故选C.【点睛】本题主要考查二次函数的图像与性质,找出y=a(x+1)2+2与x轴的两个交点是解本题的关键.16.D【分析】利用当x=1和3时,y=0,得出抛物线的对称轴是直线x=2,然后根据x=-1时,y=8,判断增减性,再利用x=0时,y=3,结合对称轴,即可得出A、B点坐标.【详解】)⊙当x=1和3时,y=0,⊙抛物线的对称轴是直线x=2,故A选项错误;又⊙x=-1时,y=8,⊙x<2时,y随x增大而减小;x>2时,y随x增大而大,故C选项错误;⊙x=2时,y有最小值,故B选项错误;⊙x=0时,y=3,则点A(0,3),⊙点A与点B关于抛物线的对称轴对称,⊙B点坐标(4,3),⊙A、B、C错误,D正确.故选:D .【点睛】此题主要考查了二次函数的性质,由表格数据获取信息是解题的关键.17.D【分析】先找出二次函数y=2x2﹣2x+3的对称轴为直线x=12,求得a+b=1,再把x=1代入y=2x2﹣2x+3即可.【详解】解:⊙当x=a或x=b(a≠b)时,二次函数y=2x2﹣2x+3的函数值相等,⊙以a、b为横坐标的点关于直线x=12对称,则122a b+=,⊙a+b=1,⊙x=a+b,⊙x=1,当x=1时,y=2x2﹣2x+3=2﹣2+3=3,故选D.【点睛】题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性和对称轴公式,是基础题,熟记性质是解题的关键.18.B【分析】先确定(0,3)C 得到3OC OA ==,利用正方形的性质,由1236S S S +=得到2222163(3)2OC OB OC OA OB +++=⨯⨯⨯+,求出OB 得到0()9,B -,于是可设交点式(9)(3)y a x x =+-,然后把(0,3)C 代入求出a 即可得到b 的值.【详解】解:当0x =时,233y ax bx =++=,则(0,3)C ,3OC OA ∴==,(3,0)A ∴,1236S S S +=,2222163(3)2OC OB OC OA OB ∴+++=⨯⨯⨯+, 整理得290OB OB -=,解得9OB =,(9,0)B ∴-,设抛物线解析式为(9)(3)y a x x =+-,把(0,3)C 代入得9(3)3a ⨯⨯-=,解得19a =-, ∴抛物线解析式为1(9)(3)9y x x =-+-, 即212393y x x =--+,23b ∴=-. 故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和正方形的性质.19.C【分析】通过去括号、移项、合并同类项将已知方程转化为一般形式.【详解】解:由原方程,得2x-4x 2=10x-5x 2-3,则x 2-8x+3=0.故选C .【点睛】本题考查了一元二次方程的一般形式.一般地,任何一个关于x 的一元二次方程经过整理,都能化成如下形式ax 2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.20.D【分析】根据抛物线的解析式将其化为一般式,再利用抛物线的性质,求解最小值,对称轴.⊙D 的半径计算,主要是计算AB ,将y=0,带入就可以解得.【详解】解:根据抛物线的解析式y=14(x+2)(x ﹣8)将其化为一般式可得213442y x x =-- ⊙错误,抛物线的最小值是2134(4)25421444⎛⎫⨯⨯-- ⎪⎝⎭=-⨯ ;⊙正确,抛 物线的对称轴是323124--=⨯ ;⊙错误,根据y=14(x+2)(x ﹣8)可得,要使y=0,则 x=-2或8,因此(2,0)A - ,(8,0)B ,可得10AB = ,所以⊙D 的半径的半径为5;⊙错误,抛物线上不存在点E ,使四边形ACED 为平行四边形;⊙正确,直线CM 与⊙D 相切 故选D【点睛】本题主要考查二次函数的性质,二次函数的最值,对称轴,交点坐标一直是考试的重点内容,必须熟练的掌握.21.2【分析】根据反比例函数的性质,每一象限内,y 都随x 的增大而增大,则1-k<0解出k 值范围,取合适的数即可.【详解】⊙反比例函数1k y x -=,每一象限内,y 都随x 的增大而增大, ⊙1-k<0,⊙k>1,取k=2,满足题意,故答案为:2.【点睛】本题考查了反比例函数的增减性,理解反比例函数的增减性是解题的关键. 22.⊙、⊙、⊙【详解】本题考查的是由三视图判断几何体依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可. ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故答案为⊙⊙⊙.23【分析】连接BC,连接CO并延长CO交AB于点H,切线性质定理得⊙OCD=90°,CD AB得CH⊙AB,由垂径定理可得CH垂直平分AB,可推出ABC为等边三角形,进//而得出答案.【详解】解:如图,连接BC,连接CO并延长CO交AB于点H,⊙,直线CD与O相切于点C,⊙OC⊙CD⊙⊙OCD=90°⊙//CD AB⊙⊙AHC=⊙OCD=90°⊙CH⊙AB⊙AH=BH⊙CH垂直平分AB⊙AC=BC=⊙AB AC⊙AC=BC=AB⊙ABC为等边三角形,⊙60A∠=︒,⊙cos⊙A【点睛】本题考查垂径定理、切线的性质定理等,熟练掌握垂径定理是解题的关键.24.a<c<b【分析】抛物线开口向上,可根据二次函数的性质拿出对称轴,再根据A,B,C三点横坐标到对称轴的距离判断大小关系.【详解】由题意对称轴x=-62m m-=3, A 点横坐标到对称轴的距离为3-2=1B 点横坐标到对称轴的距离为3-(-1)=4C 点横坐标到对称轴的距离为5-3=2⊙4>2>1⊙b >c >a,从小到大排列为a <c <b.【点睛】考察二次函数的性质,根据横坐标到对称轴的距离即可判断大小关系,不需要求出具体坐标.25.36【详解】如图:连接MO,因为M 为切点,所以OM⊙MC, ⊙OMC=90°,因为OA=OM,所以⊙MAO=⊙OMA= 27°,所以⊙MOC=54°,所以⊙C=90°-54°=36°26.(0,-【分析】根据A 、C 的坐标得到圆的半径长和OE 长,利用勾股定理求出OB 的长,得到点B 坐标.【详解】解:如图,连接BE ,⊙()6,0A ,()2,0C -,⊙8AC =,4BE CE ==,2OC =,⊙422OE =-=,⊙在Rt OBE 中,OB =⊙(0,B -.故答案是:(0,-.【点睛】本题考查圆的性质和平面直角坐标系,解题的关键是根据已知点坐标得到线段长,结合几何的性质求点坐标.27.答案不唯一,如【详解】试题分析:方程的根的定义:方程的根就是使方程左右两边相等的未知数的值. 答案不唯一,如.考点:一元二次方程的根的定义28.12 【分析】由已知可得a=2b ,代入式子进行计算即可.【详解】⊙a b=2, ⊙a=2b , ⊙3a 2b 3a 2b -+=6262b b b b -+=12, 故答案为12. 【点睛】本题考查了比例的性质,得出a=2b 是解题的关键.29.两【分析】二次函数2y x x 2=+-的图象与x 轴的交点个数,即是2x x 2=0+-解的个数.【详解】令2x x 2=0+-,即()()120x x -+=解得x=1或x=-2,二次函数2y x x 2=+-的图象与x 轴有两个交点.故答案为两【点睛】此题考查抛物线与坐标轴的交点,解题关键在于使函数值等于0.30.<【分析】根据反比例函数的性质即可解答.【详解】当x=2时,632y==,⊙k=6时,⊙y随x的增大而减小⊙x>2时,y<3故答案为<【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.31.6.【分析】过点C作CE⊙BD于E构造直角三角形,由方位角确定⊙ECD=60°,在Rt⊙CED 中利用三角函数AB=CD•cos⊙ECD即可.【详解】过点C作CE⊙BD于E,由湖的南,北两端A和B⊙⊙EBA=⊙BAC=90º,又⊙BEC=90º则四边形ABCE为矩形,⊙AB=CE⊙点D位于点C的北偏东60°方向上,⊙⊙ECD=60°,⊙CD=12km,在Rt⊙CED中,⊙CE=CD•cos⊙ECD=12×12=6km,⊙AB=CE=6km.故答案为:6.【点睛】本题考查解直角三角形的应用,通过辅助线,将问题转化矩形和三角形中,利用三角函数与矩形性质便可解决是关键.32.中心【分析】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【详解】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【点睛】本题属于基础题,考查了投影的知识,可运用投影的知识或直接联系生活实际解答.33.3【分析】原式第一项利用零指数幂法则计算,第二项根据绝对值的代数意义去绝对值符号,第三项代入特殊角三角函数值计算,第四项利用负整数指数幂法则进行计算,最后进行加减运算即可得到结果.【详解】解:011(2019)12sin 45()3π-︒--+=123-+=13=3【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.34.24【分析】设内切圆半径为r ,根据内切圆的性质和勾股定理求出r 即可.【详解】设内切圆半径为r,则OE=OF=OD=r易知BD=BE=6,AD=AF=4⊙Rt△ABC中,AC2+BC2=(4+r)2+(6+r)2=AB2=100解得r=2,则AC=6,BC=8⊙S△ABC=24【点睛】本题考查的是三角形,熟练掌握熟练掌握三角形的内切圆是解题的关键. 35.16π.【分析】根据大圆的弦AB与小圆相切于点C,运用垂径定理和勾股定理解答.【详解】设AB切小圆于点C,连接OC,OB,⊙AB切小圆于点C,⊙OC⊙AB,⊙BC=AC=12AB=12×8=4,⊙Rt⊙OBC中,OB2=OC2+BC2,即OB2-OC2= BC2=16,⊙圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=16π(cm2).故答案为:16π.【点睛】本题考查了圆的切线,熟练掌握圆的切线性质定理,垂径定理和勾股定理是解决此类问题的关键.36.48πcm2【分析】根据圆锥的底面面积,得出圆锥的半径,进而利用圆锥的侧面积的面积公式求解.【详解】解:⊙圆锥的底面面积为16πcm2,⊙圆锥的半径为4cm,这个圆锥的侧面积为:212412482cm ππ⨯⨯⨯= 故答案为:48πcm 2.【点睛】本题考查了圆锥的计算,解题的关键是根据圆锥的底面面积得出圆锥的半径.37.-【分析】作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -,根据旋转的性质求出OA=OD=m ,⊙AOD=60°,求出点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭,构造关于m 的方程,解方程得出点B 坐标,即可求解.【详解】解:如图,作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -, ⊙线段OA 绕点О按顺时针方向旋转60︒得到线段,OD⊙OA=OD=m ,⊙AOD=60°, ⊙1cos 2OE OD DOE m =∠=,sin DE OD DOE =∠=,⊙点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭, ⊙点B 、D 都在反比例函数()0k y k x=≠的图象上,⊙1322m m -=, 解得124,0x x ==(不合题意,舍去),⊙点B 坐标为(-,⊙4k =--故答案为:-【点睛】本题为反比例函数与几何综合题,考查了反比例函数的性质,旋转的性质,三角函数等知识,理解反比例函数性质,构造方程,求出点B 坐标是解题关键.38.1.2cm【分析】根据图2可判断AC=3,BC=4,则可确定t=5时BP 的值,利用sinB 的值,可求出PD .【详解】解:由题图(2)可得3AC =cm ,4BC =cm ,5AB ∴=cm. 当5x =时,点P 在BC 边上,⊙5AC CP +=cm ,2BP AC BC AC CP ∴=+--=,在Rt ABC △中,3sin 5AC B AB ==, 在Rt PBD △中, 36sin 2 1.255PD BP B ∴=⋅=⨯==(cm ).【点睛】此题考查了动点问题的函数图象,解答本题的关键是根据图2得到AC 、BC 的长度.39.【分析】先分别求出k ,b 的值得到函数解析式,得到点C ,D 的坐标,勾股定理求出CD 及AB 的长,即可得到答案. 【详解】解:将点(1,5)代入k y x =,得k =5,⊙5y x=, 将点(1,5)代入y =-2x +b ,得-2+b =5,解得b =7,⊙y =-2x +7,当527x x=-+时,解得x =1或x =2.5, 当x =2.5时,y =2,⊙B (2.5,2),令y =-2x +7中x =0,得y =7;令y =0,得x =3.5,⊙C (3.5,0),B (0,7),⊙CD =⊙AB⊙BC +AD =CD -AB故答案为:【点睛】此题考查了待定系数法求函数解析式,一次函数图象与坐标轴的交点,勾股定理,正确掌握待定系数法求出解析式是解题的关键.40.15 =x,21x=-【分析】直接利用开平方的方法解一元二次方程即可得到答案.【详解】解:(1)⊙()229x-=,⊙23x-=±,解得15 =x,21x=-.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.41.(1)图象见解析;(2)-1<x<3;(3)当x<1时,y随x的增大而增大.当x>1时,y随x的增大而减小.【详解】试题分析:(1)列表,描点,连线,画出抛物线;(2)(3)根据图象回答问题即可.试题解析:(1)列表:描点、连线可得如图所示抛物线.(2)当-1<x <3时,y >0;(3)当x <1时,y 随x 的增大而增大.当x >1时,y 随x 的增大而减小.42.(1)y =﹣21322x -x +2;(2)98;(3)(﹣32,258)或(﹣3,2). 【分析】(1)由直线得到A 、C 的坐标,然后代入二次函数解析式,利用待定系数法即可得;(2)过点E 作EH ⊙AB 于点H ,由已知可得141252AB EH AB OC =⨯ ,从而可得EH 、HB 的长,然后再根据三角函数的定义即可得;(3)分情况讨论即可得.【详解】(1)令直线y =12x +2中y =0得12x +2=0解得x =-4,⊙A (-4,0),令x =0得y =2,⊙C (0,2) 把A 、C 两点的坐标代入212y x bx c =-++得, 2840c b =⎧⎨-=⎩, ⊙322b c ⎧=-⎪⎨⎪=⎩ , ⊙213222y x x =--+ ;(2)过点E 作EH ⊙AB 于点H ,由上可知B (1,0), ⊙45ABE ABC S S ∆∆=, ⊙141••252AB EH AB OC =⨯ , ⊙4855EH OC ==, 将85y =代入直线y =12x +2,解得45x =- ⊙4855E ⎛⎫- ⎪⎝⎭, ⊙49155HB =+= , ⊙90EHB ∠=︒ ⊙995cot 885HB DBA EH ∠===; (3)⊙DF ⊙AC ,⊙90DFC AOC ∠=∠=︒,⊙若DCF CAO ∠=∠,则CD//AO ,⊙点D 的纵坐标为2,把y=2代入213222y x x =--+得x=-3或x=0(舍去), ⊙D (-3,2) ;⊙若DCF ACO ∠=∠时,过点D 作DG ⊙y 轴于点G ,过点C 作CQ ⊙DG 交x 轴于点Q ,⊙90DCQ AOC ∠=∠=︒ ,⊙90DCF ACQ ACO CAO ∠+∠=∠+∠=︒,⊙ACQ CAO ∠=∠,⊙AQ CQ =,设Q (m ,0),则4m + ⊙32m =- , ⊙302Q ⎛⎫- ⎪⎝⎭,, 易证:COQ ∆⊙DCG ∆ , ⊙24332DG CO GC QO === ,设D (-4t ,3t+2)代入213222y x x =--+得t=0(舍去)或者38t =, ⊙32528D ⎛⎫- ⎪⎝⎭,. 综上,D 点坐标为(﹣32,258)或(﹣3,2) 43.(1)2k =;点B 的坐标为()1,2--(2)1m >或1m <-【分析】(1)利用待定系数法进行求值即可;(2)结合图象,可知当PC >PD ,POC △的面积大于POD 的面积,由此可知1m >或1m <-.(1)解:⊙点()1,A a 在直线2y x =上,⊙212a =⨯=,⊙点A 的坐标是()1,2, 代入函数k y x=中,得212k =⨯= ⊙直线2y x =经过原点⊙由双曲线的对称性可知,点A 与点B 关于原点对称,点B 的坐标为()1,2--; (2)如图所示:⊙点A 的坐标是()1,2,点B 的坐标为()1,2--,若POC △的面积大于POD 的面积,则:PC >PD ,结合图象可知此时:1m >或1m <-,【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.44.(1)25%;(2)室内21露天66;室内22露天62;室内23露天58;室内24露天54;【分析】(1)设平均增长率为x ,根据题意可列出关于x 的一元二次方程,解方程即可. (2)设室内车位为a 个,露天车位为b 个,根据计划投入15万元用于建若干个停车位,可列出一个关于a ,b 的方程,再根据计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,列出关于a ,b 的不等式,解不等式可求出a 的范围,因为a 是整数,所以最后的方案有有限个.【详解】(1)设平均增长率为x ,根据题意得2640(1)1000x += 解得125%4x ==或94x =-(不符合题意,舍去)。

数学中考复习题带答案

数学中考复习题带答案

数学中考复习题带答案一、选择题(每题3分,共30分)1. 若a和b互为相反数,且a+b=0,则a的值是多少?A. 0B. -bC. bD. 无法确定答案:B2. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. 4答案:A3. 下列哪个选项不是单项式?A. 3xB. 5y²C. 7zD. 4x - 3y答案:D4. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8答案:A5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 一个数的立方根是2,这个数是多少?A. 8B. 6C. 4D. 2答案:A7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 无法确定答案:C8. 一个数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/2D. 3/1答案:A9. 一个分数的分子和分母同时乘以相同的数,这个分数的值会?A. 变大B. 变小C. 不变D. 无法确定答案:C10. 如果一个多项式的最高次项系数为负,那么这个多项式是?A. 一次多项式B. 二次多项式C. 奇次多项式D. 偶次多项式答案:D二、填空题(每题2分,共20分)11. 一个数的平方是25,这个数可能是________。

答案:±512. 一个数的立方是-27,这个数是________。

答案:-313. 两个数的最大公约数是12,最小公倍数是144,这两个数可能是________和________。

答案:36,4814. 一个数的相反数是-7,这个数是________。

答案:715. 一个数的绝对值是8,这个数可能是________或________。

答案:8,-816. 一个数的平方根是2或-2,这个数是________。

答案:417. 一个圆的直径是14,那么它的半径是________。

初中数学试卷打印

初中数学试卷打印

一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 下列运算中,正确的是()A. (-3)² = 3B. (-2)³ = -8C. (-1)⁴ = -1D. 2⁴ = 163. 下列各数中,属于整数的是()A. 2.5B. -1/3C. √4D. π4. 下列各数中,属于无理数的是()A. √9B. 3/2C. 2.678956789...D. 0.123456789...5. 下列各数中,属于实数的是()A. √-4B. πC. 2/3D. -√96. 下列各数中,绝对值最小的是()A. -5B. -4C. -3D. -27. 下列各数中,负整数指数幂最小的是()A. 1/2B. 2/3C. 3/4D. 4/58. 下列各数中,正整数指数幂最大的是()A. 1/2B. 2/3C. 3/4D. 4/59. 下列各数中,两个数的乘积为0的是()A. 3和-3B. 2和0C. 0和-2D. 3和410. 下列各数中,两个数的和为0的是()A. 3和-3B. 2和0C. 0和-2D. 3和4二、填空题(每题2分,共20分)11. 2的3次方等于______。

12. -3的平方等于______。

13. 下列数中,正数是______。

14. 下列数中,负数是______。

15. 下列数中,无理数是______。

16. 下列数中,有理数是______。

17. 下列数中,整数是______。

18. 下列数中,实数是______。

19. 下列数中,负整数指数幂是______。

20. 下列数中,正整数指数幂是______。

三、解答题(每题10分,共30分)21. 简化下列各数:3² × (-2)³。

22. 计算下列各式的值:(-3)⁴ ÷ (-2)²。

23. 解下列方程:2x - 3 = 7。

中考数学九年级下册专题训练50题含参考答案

中考数学九年级下册专题训练50题含参考答案

2023年2月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.2.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A.B.C.D.3.如图是一个几何体的侧面展开图,这个几何体是()A.长方体B.圆柱C.球D.圆锥4.如图,已知点P为反比例函数y=-6x上一点,过点P向坐标轴引垂线,垂足分别为M,N,那么四边形MONP的面积为()A.-6B.6C.3D.125.桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃,则(). A.从中随机抽取1张,抽到黑桃的可能性更大B.从中随机抽取1张,抽到黑桃和红桃的可能性一样大C.从中随机抽取5张,必有2张红桃D .从中随机抽取7张,可能都是红桃 6.函数3xy x =+中,自变量x 的取值范围是( ) A .3x >-B .3x <-C .x≠-3D .x≠ 37.将抛物线22y x =-向右平移3个单位,再向下平移2个单位,所得抛物线解析式为( )A .()2232y x =-++ B .()2232y x =-+- C .()2232y x =--+D .()2232y x =---8.从正面、上面、左面三个方向看某一物体得到的图形如图所示,则这个物体是( )A .三棱锥B .三棱柱C .圆锥D .圆柱9.如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用( )个小正方体A .12B .11C .10D .910.若气象部门预报明天下雨的概率是70%,下列说法正确的是( ) A .明天下雨的可能性比较大 B .明天下雨的可能性比较小 C .明天一定会下雨D .明天一定不会下雨11.一个由两个一次性纸杯组成的几何体如图水平放置,它的俯视图是( )12.已知点()()121,,2,A y B y 在抛物线()()2120y a x a =++>上,则下列结论正确的是( ) A .122y y >>B .212y y >>C .122y y >>D .212y y >>13.下图是几个小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的主视图为( )A .B .C .D .14.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(-2,0),其部分图象如图所示,下列结论:①4ac <b 2;①方程ax 2+bx +c =0的两个根是x 1=-2,x 2=6;①12a +c >0;①当y >0时,x 的取值范围是-2≤x <2;①当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个15.如图是某几何体的三视图,则该几何体是( )16.若下列有一图形为二次函数2286y x x =-+的图形,则此图为( )A .B .C .D .17.已知二次函数21=++()y ax bx c b c ≠图象的最高点坐标为(-2,4),则一次函数22()4y b c x b ac =-+-图象可能在:A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限18.如图是一个圆形转盘,让转盘自由转动两次,则指针两次都落在黄色区域的概率是( ).A .14B .34C .29D .91619.二次函数y=ax2+bx+c (a 、b 、c 为常数,且a≠0)中x 与y 的部分对应值如下表:给出以下三个结论:(1)二次函数y=ax2+bx+c 最小值为﹣4; (2)若y <0,则x 的取值范围是0<x <2;(3)二次函数y=ax2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧,则其中正确结论的个数是( )A .0B .1C .2D .320.如图,平行于x 轴的直线AC 分别交抛物线21y x =与223x y =于B 、C 两点,过点C作y 轴的平行线交1y 于点D ,直线DE ∥AC 交2y 于点E ,则DEAB的值是( )A .2B .32y =C .3D .3.二、填空题21.有6张同样的卡片,卡片上分别写上数字“1921”、“1994”、“1935”、“1949”、“1978”、“1980”,将这些卡片背面朝上,洗匀后随机从中抽出一张,抽到标有的数字是偶数的概率是______.22.抛物线y =(a −1)x 2−2x +3在对称轴左侧,y 随x 的增大而增大,则a 的取值范围是________.23.事件A 发生的概率为15,大量重复做这种试验事件A 平均每100次发生的次数是___.24.已知二次函数245y x x =--的图像与x 轴交于A 、B 两点,顶点为C ,则①ABC 的面积为________.25.甲、乙两人分别从、、A B C 这3个景点随机选择2个景点游览,甲、乙两人选择的2个景点恰好相同的概率是________.26.在10以内的素数中,随机抽取其中的一个素数,则所抽取的素数是偶数的等可能性大小是______.27.一个几何体的三视图如图所示,则这个几何体的名称是___________.28.如图,P 是反比例函数y = 3x图象上一点,P A ①x 轴于点A ,则PAOS =_______________.29.写出抛物线y =2(x ﹣1)2图象上一对对称点的坐标,这对对称点的坐标可以是_____.30.如图,转盘的白色扇形和黑色扇形的圆心角分别为240°和120°.让转盘自由转动2次,则指针一次落在白色区域,另一次落在黑色区域的概率是________.31.如图,在平面直角坐标系中,反比例(0)ky k x=>的图象和ABC ∆都在第一象限内,52AB AC ==,BC x ∕∕轴,且4BC =,点A 的坐标为()3,5.若将ABC ∆向下平移m 个单位长度,,A C 两点同时落在反比例函数图象上,则m 的值为_____.32.已知Rt △ABC ,①C =90°,AB =13,AC =12,以AC 所在直线为轴将此三角形旋转一周所得圆锥的侧面积是________.(结果保留π)33.若二次函数26y x x k =-+的最小值为2,则k =________.34.将图所示的Rt①ABC 绕AB 旋转一周所得的几何体的主视图是图中的________ (只填序号).35.如图,矩形ABCD 的顶点C ,D 在x 轴的正半轴上,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上,则矩形ABCD 的面积为__36.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__. 37.如图,将抛物线212y x =平移得到抛物线m ,抛物线m 经过点(6,0)A -和点(0,0)O ,它的顶点为P ,它的对称轴与抛物线212y x =交于点Q .(1)点P 的坐标为______;(2)图中阴影部分的面积为_____.38.30张牌,牌面朝下,每次抽出一张记下花色后再放回,洗牌后再抽,抽到红心、黑桃、草花、方块的频率依次为20%,32%,44%,4%,则四种花色的牌各约有________ .(按红心、黑桃、草皮、方块的顺序填写)39.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;①244b ac a->0;①ac -b +1=0;①OA·OB =ca-.其中正确结论的个数是______个.40.如图,在平面直角坐标系中.点A 、B 在反比例函数y =5x的图象上运动,且始终保持线段AB =M 为线段AB 的中点,连接OM ,则线段OM 的长度是_____.三、解答题41.当自变量x 取何值时,函数512y x =+与54y x =-的值相等?这个函数值是多少? 42.抛物线2y ax bx c =++的对称轴为直线2x =,且顶点在x 轴上,与y 轴的交点为A ,A 点的坐标为()0,1,点()2,1B 在抛物线的对称轴上,直线1y =-与直线2x =相交于点C .(1)求该抛物线的函数表达式.(2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线1y =-交于点D .试判断PBD ∆是否为等腰三角形,并说明理由.(3)作PE BD ⊥于点E ,当点P 从横坐标2013处运动到横坐标2019处时,请求出点E 运动的路径长.43.如图,一次函数112y k x =+与反比例函数22k y x=的图象交于点(4,)A m 和(8,2)B --,与y 轴交于点C .(1)1k = ,2k = ;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是 ;(3)过点A 作AD ①x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当ODAC S 四边形:ODES=3:1时,求点P 的坐标.44.我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表中,a=,b=,c=;(2)补全统计图;(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?45.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W (元)与x (天)之间的函数关系式; (2)求x 为何值时,日销售利润为900元?(3)直接写出哪一天销售这种水果的利润最大?最大日销售利润为多少元?46.在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为x 后放回,然后乙也从中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(),x y . (1)请用列表或画树状图的方法写出点P 所有可能的坐标; (2)求点P 在函数22y x =-+的图象上的概率.47.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =3;当x =12时,y =1.求x =-12时,y 的值.48.综合与探究如图,已知抛物线y =﹣x 2﹣2x +3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .其顶点为D ,对称轴是直线l ,且与x 轴交于点H .(1)求点A ,B ,C ,D 的坐标;(2)若点P 是该抛物线对称轴l 上的﹣个动点,求①PBC 周长的最小值;(3)若点E 是线段AC 上的一个动点(E 与A .C 不重合),过点E 作x 轴的垂线,与抛物线交于点F ,与x 轴交于点G .则在点E 运动的过程中,是否存在EF =2EG ?若存在,求出此时点E的坐标;若不存在,请说明理由.49.指出下列随机事件中,哪些是等可能事件,哪些是非等可能事件.①在一个装着3个白球、3个黑球(每个球除颜色外都相同)的袋中摸出一个球,摸出白球与摸出黑球;①掷一枚均匀的骰子,朝上一面的点数分别为1、2、3、4、5、6;①从4张扑克牌中(4张牌的花色分别为红桃、方块、梅花、黑桃)随意抽取一张,这张牌分别是红桃、方块、梅花、黑桃;①掷一枚图钉,钉尖着地与钉尖朝上.50.如图,①OAB的OA边在x轴上,其中B点坐标为(3,4)且OB=BA.(1)求经过A,B,O三点的抛物线的解析式;(2)将(1)中的抛物线沿x轴平移,设点A,B的对应点分别为点A′,B′,若四边形ABB′A′为菱形,求平移后的抛物线的解析式.参考答案:1.B【分析】根据左视图的定义: 由物体左边向右做正投影得到的视图(不可见的用虚线),判断即可.【详解】解:根据左视图的定义可知: 该几何体的左视图为:故选:B.【点睛】此题考查的是判断一个几何体的左视图,掌握左视图的定义: 由物体左边向右做正投影得到的视图(不可见的用虚线),是解决此题的关键.2.B【详解】试题分析:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2.故选B.考点:二次函数图象与几何变换.3.D【分析】根据圆锥侧面展开图的特征即可求解.【详解】解:如图是一个几何体的侧面展开图,这个几何体是圆锥.故选:D.【点睛】本题主要考查几何体的展开图,解题的关键是根据几何体的展开图判断几何体的形状,难度不大.4.B【分析】设P(x,y),根据点P在反比例函数上得xy=-6,由反比例函数k的几何意义结合矩形的面积公式即可得出答案.【详解】设P(x,y),①点P在反比例函数y=-6x上,①xy=-6,①S四边形MONP=ON·OM=|xy|=|-6|=6.故答案为B.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数k y x=(k 为常数,k ≠0)图像上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数k .5.A【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【详解】解: A 、黑桃数量多,故抽到黑桃的可能性更大,故正确;B 、黑桃张数多于红桃,故抽到两种花色的可能性不相同,故错误;C 、从中抽取5张可能会有2张红桃,也可能不是,故错误;D 、从中抽取7张,不可能全是红桃,故错误.故选A .【点睛】本题考查概率的意义.6.C【分析】根据分式中分母不为零计算即可.【详解】由题意得x+3≠0,解得:x≠-3,故选:C .【点睛】本题考查了函数自变量的取值范围,掌握知识点是解题关键.7.D【分析】根据二次函数图象左加右减在自变量,上加下减在函数值的平移规律进行求解.【详解】.解:抛物线 22y x =- 向右平移3个单位,得()22-3y x =-,再向下平移2个单位,得:()2222y x =---.故答案为:D .【点睛】此题主要考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8.A【分析】由主视图和左视图可得知几何体为锥体,再根据俯视图是三角形即可判断其为三棱锥.【详解】解:①主视图和左视图均为三角形①该几何体为椎体①俯视图为三角形①该几何体为三棱锥.故选:A.【点睛】本题主要考查了几何体的三视图,良好的空间想象能力是解答本题的关键.9.D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;++=个小正方体.①这个几何体最少需要用6219故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.10.A【分析】根据“概率”的意义进行判断即可.【详解】解:A.明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A符合题意;B.明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项B不符合题意;C.明天下雨的可能性是70%,并不代表明天一定会下雨,因此选项C不符合题意;D.明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项D不符合题意;故选:A.【点睛】本题考查了概率与可能性的关系,正确理解概率的意义是解题的关键.11.C【分析】根据俯视图是指从几何体的上面观察得出的图形作答.【详解】解:几何体的俯视图是:【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.12.B【分析】根据题意可得当1x >-时,y 随x 的增大而增大,即可求解.【详解】解:①抛物线()()2120y a x a =++>,①抛物线的对称轴为直线1x =-,且开口向上,①当1x >-时,y 随x 的增大而增大,①当1x =-时,函数值最小,最小值为2,①点()()121,,2,A y B y 在抛物线()()2120y a x a =++>上, ①212y y >>.故选:B【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.13.C【分析】由几何体的俯视图,可知从正面看这个几何体,会看到左边有2个小正方形,中间有2个小正方形,右边有1个小正方形,从而确定答案.【详解】解:由几何体的俯视图,可知从正面看这个几何体,会看到左边有2个小正方形,中间有2个小正方形,右边有1个小正方形.故选C .【点睛】本题主要考查由三视图判断几何体等知识点的理解和掌握,能正确画图是解此题的关键,难度不大.14.B【分析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(6, 0),则可对①进行判断;由对称轴方程得到b =-2a ,然后根据x =-1时函数值为0可得到3a +c =0,则可对①进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对①进行判断;根据二次函数的性质对①进行判断.【详解】解:①抛物线开口向下,顶点在x 轴上方,①抛物线与x 轴有两个交点,①①= b 2-4ac >0,①①正确;①抛物线的对称轴为直线x =2,与x 轴的一个交点坐标为(-2,0),①抛物线与x 轴的另一个交点坐标为(6,0),①方程ax 2+bx +c =0的两个根是x 1=2,x 2=6,①①正确; ①22b a-=, ①b =-4a ,①x =-2时,y =0,①4a -2b +c =0,①4a +8a +c =0,即12a +c=0,①①错误;当-2<x <6时,y >0,①①错误;当x <0时,y 随x 的增大而增大,①①正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时( 即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由①决定:①= b 2-4ac >0时,抛物线与x 轴有2个交点;①= b 2-4ac =0时,拋物线与x 轴有1个交点;①=b 2-4ac <0时,抛物线与x 轴没有交点.15.B【分析】根据三视图的形状即可判断.【详解】解:A 、圆柱的主视图是长方形,左视图是长方形,俯视图是圆,故此选项不符合题意;B 、几何体的主视图是长方形,左视图是小长方形,俯视图是三角形,故此选项符合题意;C 、长方体的主视图是长方形,左视图是小长方形,俯视图是长方形,故此选项不符合题意;D 、圆锥的主视图是三角形,左视图是三角形,俯视图是圆且中间有点,故此选项不符合题意,故选:B .【点睛】本题考查了根据三视图判断几何体的形状,解题的关键是掌握常见几何体的三视图特征.16.A【分析】根据二次函数的解析式y=2x 2-8x+6求得函数图象与y 轴的交点及对称轴,并作出选择.【详解】解:①当x=0时,y=6,及二次函数的图象经过点(0,6);①二次函数的图象的对称轴是:x=--822=2,即x=2; 综合①①,符合条件的图象是A ;故选A .【点睛】本题考查了二次函数的图象.解题时,主要从函数的解析式入手,求得函数图象与y 轴的交点及对称轴,然后结合图象作出选择.17.B【分析】根据图象有最高点可知a <0,把(-2,4)代入函数表达式可得4a -2b +c =4,根据最高点坐标可得到对称轴的表达式.【详解】解:①图象有最高点,①a <0,把(-2,4)代入21=++y ax bx c 得:4a -2b +c =4, ①最高点坐标(-2,4),①对称轴表达式:x =-2b a=-2,整理得:b =4a , 把b =4a 代入4a -2b +c =4得:b -c =-4<0,①a <0,且最高点坐标(-2,4),①21=++y ax bx c 与x 轴有两个交点,①∆=24b ac ->0,①一次函数22()4y b c x b ac =-+-在一二四象限.故选①B .【点睛】一次函数y =kx +b (k ≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.18.D【分析】首先将黄色区域平分成三部分,然后根据题意画树状图,由树状图求得所有等可能的结果与两次指针都落在黄色区域的情况,再利用概率公式即可求得答案.【详解】解:将黄色区域平分成三部分,如图:画树状图得:①共有16种等可能的结果,两次指针都落在黄色区域的只有9种情况,①两次指针都落在黄色区域的概率为916; 故选D .【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.C【分析】根据表格数据确定出二次函数的顶点坐标,开口方向,与x 轴的交点坐标,然后再逐一进行判断即可得解.【详解】解:由表格得:二次函数顶点坐标为(1,﹣4),开口向上,与x 轴交点坐标为(﹣1,0)与(3,0),则(1)二次函数y=ax 2+bx+c 最小值为﹣4,正确;(2)若y <0,则x 的取值范围是﹣1<x <3,错误;(3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧,正确, 故选C .【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.20.D【分析】设A 点坐标为(0,a ),利用两个函数解析式求出点B 、C 的坐标,然后求出AB 的长度,再根据CD ∥y 轴,利用y 1的解析式求出D 点的坐标,然后利用y 2求出点E 的坐标,从而得到DE 的长度,然后求出比值即可得解.【详解】解:设A 点坐标为(0,a ),(a >0),则x 2=a ,解得x①点B a ),23x =a ,则x①点C a ),①CD ∥y 轴,①点D 的横坐标与点C①y 1=2=3a ,①点D ,3a ),①DE ∥AC ,①点E 的纵坐标为3a , ①23x =3a ,①x①点E 的坐标为(3a ),①DE ,①则3DE AB == 故选:D .【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据平行于x 轴的点的纵坐标相同,平行于y 轴的点的横坐标相同,用点A 的纵坐标表示出各点的坐标是解题的关键.21.12【分析】直接利用概率公式计算即可.【详解】根据题意可知:这些卡片中标有数字是偶数的卡片有3张. 故抽到标有的数字是偶数的概率是3162=. 故答案为:12.【点睛】本题考查简单的概率计算,掌握概率的计算公式是解答本题的关键. 22.a <1【分析】根据题意列出不等式并解答即可.【详解】解:①抛物线y =(a −1)x 2−2x +3在对称轴左侧,y 随x 的增大而增大,①a −1<0,解得a <1,故答案为:a <1.【点睛】本题考查了二次函数图象与系数的关系,解题时,需要熟悉抛物线的对称性和增减性.23.20【分析】根据概率的意义解答即可.【详解】解:①事件A 发生的概率为15,①大量重复做这种试验事件A 平均每100次发生的次数是100×15=20.故答案为:20.【点睛】本题考查了概率意义,熟记概率意义是在大量重复试验下事件发生的频率会趋近于某个数(即概率)附近是解题关键. 24.27【分析】先求出A ,B ,C 的坐标,再以AB 为底边,求出三角形ABC 的高,即可求出面积.【详解】解:当y =0时,2450x x --=, 解得11x =-,25x =,①A ,B 的坐标为(1-,0),(5,0), ①AB =6,①2245(2)9y x x x =--=--, ①C (2,9-), ①C 到AB 的距离为9, ①169272ABCS=⨯⨯=. 故答案为:27.【点睛】本题主要考查二次函数的性质,关键是要能根据解析式求出图象与坐标轴的交点. 25.13【分析】用树状图表示所有可能出现的结果,再求出两个景点相同的概率. 【详解】解:用树状图表示如下:共有9种可能的结果,其中甲、乙两人选择的2个景点恰好相同的有3种结果, ①甲、乙两人选择的2个景点恰好相同的概率是3193P ==, 故答案为:13.【点睛】本题考查了用树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是解决本题的关键.26.14【分析】根据10以内的素数有4个,分别是:2、3、5、7;其中偶素数只有1个即2;求抽取的素数是偶数的可能性,就相当于求1是4的几分之几,用除法计算,据此解答. 【详解】解解:10以内的素数有4个,分别是:2、3、5、7;其中偶素数只有1个即2; ①1144÷=, 故答案为:14.【点睛】本题考查了简单事件发生的可能性的求解,即用可能性=所求情况数÷总情况数或求一个数是另一个数的几分之几用除法计算,注意:在所有的素数中只有一个偶素数即2.27.直三棱柱.【详解】解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱. 故答案为:直三棱柱.【点睛】本题考查由三视图判断几何体,难度不大. 28.32【分析】根据反比例函数k 的几何意义即可求解. 【详解】解:①P 是反比例函数y = 3x图象上一点P A ⊥x 轴于点A , ①PAOS=32, 故答案为:32.【点睛】本题考查了反比例函数k 的几何意义,掌握反比例函数k 的几何意义是解题的关键.29.(2,2),(0,2)(答案不唯一)【分析】由函数y=2(x﹣1)2可得函数的对称轴,任取函数上一点,求出其关于对称轴对称的点可得答案.【详解】解:由抛物线y=2(x﹣1)2,可得其对称轴为x=1,可取一点(0,2),则其关于x=1的对称点位(2,2),故答案:(2,2),(0,2)(答案不唯一).【点睛】本题主要考查二次函数的性质及二次函数关于对称轴对称的点的特征.30.4 9【分析】由白色区域是240度,黑色区域是120度,指针落在它们的可能性不相同;所以将白色区域分成相等的两部分,那么指针落在三个部分的可能性相同,则可由列表法或树状图列出所有可能的结果,利用概率公式即可求解.【详解】解:将白色扇形分成相等的两部分,分别记为白1和白2,所以转盘自由转动1次,指针落在白1,白2,黑三部分的可能性相同,如下表,所有等可能的结果有9种,其中一次落在白色区域,一次落在黑色区域的有4种,所以P(指针一次落在白色区域,另一次落在黑色区域)= 4 9 .故答案为4 9 .【点睛】本题考查了几何概率的求法,将白色扇形分成相等的两部分,再利用列表法(或树状图法)求解是解决本题的基本思路.31.5 4【分析】根据已知求出B与C点坐标,再表示出相应的平移后A与C坐标,将之代入反比例函数表达式即可求解;【详解】解:①52AB AC ==,4BC =,点()A 3,5. ①71,2B ⎛⎫⎪⎝⎭,75,2C ⎛⎫ ⎪⎝⎭,将ABC ∆向下平移m 个单位长度, ①()3,5A m -,75,2C m ⎛⎫- ⎪⎝⎭,①,A C 两点同时落在反比例函数图象上, ①73(5)52m m ⎛⎫-=- ⎪⎝⎭,①54m =;故答案为54;【点睛】本题考查反比例函数的图象及性质;熟练掌握等腰三角形的性质,通过等腰三角形求出点的坐标是解题的关键. 32.65π【详解】试题分析:首先确定圆锥的母线长和圆锥的底面半径,利用侧面积计算公式直接求得圆锥的侧面积即可.试题解析:①①C=90°,AB=13,AC=12, ①BC=5,以AC 所在直线为轴旋转一周,所得圆锥的底面周长=10π,侧面积=12×10π×13=65π. 考点:1.圆锥的计算;2.点、线、面、体. 33.11【分析】根据二次函数解析式求出函数的顶点坐标,代入即可解题. 【详解】解:①函数2y x 6x k =-+的对称轴是x=3, ①当x=3时,函数有最小值2, 即9-18+k=2, 解得:k=11.【点睛】本题考查了二次函数的图像和性质,属于简单题,求出二次函数的顶点坐标是解题关键. 34.①【分析】易得此几何体为两个底面相同且相连的圆锥的组合体,主视图是从几何体正面看【详解】解:Rt △ABC 绕斜边AB 旋转一周所得的几何体是两个底面相等相连的圆锥,圆锥的主视图是等腰三角形,所以该几何体的左视图是两个底边相等的等腰三角形相连,并且上面的等腰三角形较大,故为图①. 故答案为①.【点睛】本题考查了空间想象能力及几何体的三视图;发挥空间想象能力,确定旋转一周所得的几何体形状是关键. 35.12.【分析】利用反比例函数k 的几何意义求解即可.【详解】①延长BA 交y 轴于点E ,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上, ①ADOE S 矩形=4,OE S 矩形BC =16, ①矩形ABCD 的面积为:OE S 矩形BC -ADOE S 矩形=16-4=12;故答案为:12.【点睛】本题考查了反比例函数的k 的几何意义,熟练将k 的几何意义与图形的面积有机结合,灵活解题是解题的关键. 36.﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,所以函数图象分支在二、四象限。

初三数学中考必考题(2020年8月整理).pdf

初三数学中考必考题(2020年8月整理).pdf

初三数学中考必考题1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E.求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛−−abac a b 44,22)2.如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AMABC D ER P H Q=x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.ABC MN图 3OABC MND 图 2OABMNP图 1O6如图,抛物线21:23L y x x =−−+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xky =的图象上. C D A BE F NM(1)求m ,k 的值; (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标 为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为.9.如图16,在平面直角坐标系中,直线y =−x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =−+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物x友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.11.已知:如图14,抛物线2334y x =−+与x 轴交于点A ,点B ,与直线34y x b =−+相交于点B ,点C ,直线34y x b =−+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?12.在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若yxODEC FA BC 的坐标为(0,2),AB=5,A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n −++−=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CMCN+的值是否为定值,若是,求出定值,若不是,请说明理由13.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E.求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛−−abac a b 44,22)14.已知抛物线c bx ax y ++=232,ACO BNDML`(Ⅰ)若1==b a ,1−=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<−x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.16.已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.P图①压轴题答案1.解:(1)由已知得:310c b c =⎧⎨−−+=⎩解得 c=3,b =2∴抛物线的线的解析式为223y x x =−++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO BOFD S S S ∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,======所以2220BD BE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==,所以AOB DBE ∆∆.2解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x−∴=, 即y 关于x 的函数关系式为:365y x =−+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫−+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x −+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==, 366528x −+∴=,152x ∴=.ABCD ERP H QM21 HA BCD E R PHQ综上所述,当x 为185或6或152时,PQR △为等腰三角形. 3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴△AMN ∽△ABC .∴AM AN AB AC=,即43x AN=.∴AN =43x .……………2分∴S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4)……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知△AMN ∽△ABC .∴AM MN AB BC=,即45x MN=.∴54MN x =, ∴58OD x =.…………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴△BMQ ∽△BCA . ∴BM QM BC AC=. ∴55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴x =4996. ∴当x =4996时,⊙O 与直线B C 相切.…………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵MN ∥BC ,∴∠AMN =∠B ,∠AOM =∠APC∴△AMO ∽△ABP .∴12AM AO AB AP ==.AM =MB =2. 故以下分两种情况讨论:①当0<x ≤2时,2Δ83x S y PMN ==.∴当x =2时,2332.82y =⨯=最大……………………………………8分 ②当2<x <4时,设PM ,PN 分别交BC 于E ,F .BD 图 2P 图 3∵四边形AMPN 是矩形, ∴PN ∥AM ,PN =AM =x . 又∵MN ∥BC ,∴四边形MBFN 是平行四边形. ∴FN =BM =4-x .∴()424PF x x x =−−=−. 又△PEF ∽△ACB .∴2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴()2322PEF S x ∆=−.………………………………………………9分 MNP PEF y S S ∆∆=−=()222339266828x x x x −−=−+−.……………………10分当2<x <4时,29668y x x =−+−298283x ⎛⎫=−−+ ⎪⎝⎭.∴当83x =时,满足2<x <4,2y =最大.……………………11分 综上所述,当83x =时,y 值最大,最大值是2.…………………………12分4解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =, 以直线AB的解析式为43y x =−+ (2)由旋转知,AP=AD,∠PAD=60o, ∴ΔAPD 是等边三角形,=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=, ∴GB=2BD=32,OH=OE+HE=OE+BG=37222+=∴D(532,72)(3)设OP=x,则由(2)可得D(323,2x x++)若ΔOPD的面积为:133(2)2x x+=解得:2321x−±=所以P(2321−±,0)567解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .……………1分 ∵AB ∥CD ,∴DG =CH ,DG ∥CH .∴四边形DGHC 为矩形,GH =CD =1.∵DG =CH ,AD =BC ,∠AGD =∠BHC =90°,∴△AGD ≌△BHC (HL ).∴AG =BH =2172−=−GH AB =3.………2分 ∵在Rt △AGD 中,AG =3,AD =5, ∴DG =4.∴()174162ABCD S +⨯==梯形.………………………………………………3分(2)∵MN ∥AB ,ME ⊥AB ,NF ⊥AB ,∴ME =NF ,ME ∥NF .∴四边形MEFN 为矩形. ∵AB ∥CD ,AD =BC , ∴∠A =∠B .∵ME =NF ,∠MEA =∠NFB =90°, ∴△MEA ≌△NFB (AAS ).∴AE =BF .……………………4分设AE =x ,则EF =7-2x .……………5分C DA B E FN M G H C DA B E F NM G H∵∠A =∠A ,∠MEA =∠DGA =90°, ∴△MEA ∽△DGA . ∴DGME AG AE =. ∴ME =x 34.…………………………………………………………6分∴6494738)2(7342+⎪⎭⎫ ⎝⎛−−=−=⋅=x x x EF ME S MEFN 矩形.……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能.……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得1021=x .……………………………………………11分∴EF =21147272105x −=−⨯=<4. ∴四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFN S 正方形.8解:(1)由题意可知,()()()131−+=+m m m m .解,得m =3.………………………………3分∴A (3,4),B (6,2); ∴k =4×3=12.……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵四边形AN 1M 1B 为平行四边形,∴线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴N 1点坐标为(0,4-2),即N 1(0,2);………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0).………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321−=k .∴直线M 1N 1的函数表达式为232+−=x y .……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴M 2点坐标为(-3,0),N 2点坐标为(0,-2).………………………9分设直线M 2N 2的函数表达式为22−=x k y ,把x =-3,y =0代入,解得322−=k ,∴直线M 2N 2的函数表达式为232−−=x y .所以,直线MN 的函数表达式为232+−=x y 或232−−=x y .………………11分(3)选做题:(9,2),(4,5).………………………………………………2分9解:(1)直线y =−x 轴交于点A ,与y 轴交于点C .(10)A ∴−,,(0C ,·················································································· 1分 点A C ,都在抛物线上,0a c c ⎧=⎪∴⎨⎪=⎩a c ⎧=⎪∴⎨⎪=⎩∴抛物线的解析式为2y x x =− ······················································ 3分 ∴顶点13F ⎛⎫− ⎪ ⎪⎝⎭, ······················································································· 4分 (2)存在 ····································································································· 5分1(0P ··································································································· 7分2(2P ··································································································· 9分 (3)存在 ··································································································· 10分理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ················································································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线233y x x =−(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =,在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴−−, ············································· 12分设直线B F '的解析式为y kx b =+x3k bk b⎧−=−+⎪∴⎨=+⎪⎩解得6kb=⎪⎪⎨⎪=⎪⎩62y x∴=− ······················································································· 13分yy x⎧=−⎪∴⎨=−⎪⎩377xy⎧=⎪⎪⎨⎪=−⎪⎩37M⎛∴⎝⎭,∴在直线AC上存在点M,使得MBF△的周长最小,此时377M⎛⎫−⎪⎪⎝⎭,. ······· 14分解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M即为所求. ································ 11分过点F作FG y⊥轴于点G,则OB FG∥,BC FH∥.90BOC FGH∴∠=∠=,BCO FHG∠=∠HFG CBO∴∠=∠同方法一可求得(30)B,.在Rt BOC△中,tan3OBC∠=,30OBC∴∠=,可求得3GH GC==,GF∴为线段CH的垂直平分线,可证得CFH△为等边三角形,AC∴垂直平分FH.即点H为点F关于AC的对称点.0H⎛∴−⎝⎭, ··········································· 12分设直线BH的解析式为y kx b=+,由题意得03k bb=+⎧⎪⎨=⎪⎩kb⎧=⎪⎪⎨⎪=⎪⎩y∴=······················································································ 13分xy y ⎧=⎪∴⎨⎪=⎩77x y =⎪⎪⎨⎪=−⎪⎩377M ⎛∴− ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫− ⎪ ⎪⎝⎭,. 1 10解:(1)点E 在y 轴上 ··············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM = 点D 在第一象限,∴点D的坐标为122⎛⎫ ⎪ ⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨++=⎪⎩解得99a b =−⎪⎪⎨⎪=−⎪⎩∴所求抛物线表达式为:28299y x x =−−+ ·················································· 9分 (3)存在符合条件的点P ,点Q . ································································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ······················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =−−+上28229m ∴−+=解得,10m =,2m = 1(02)P ∴,,22P ⎛⎫ ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB ==, ∴当点1P 的坐标为(02),时, 点Q 的坐标分别为1(Q,22)Q ; 当点2P 的坐标为28⎛⎫−⎪ ⎪⎝⎭时,点Q的坐标分别为328Q ⎛⎫−⎪ ⎪⎝⎭,428Q ⎛⎫⎪ ⎪⎝⎭. ··········································· 14分 (以上答案仅供参考,如有其它做法,可参照给分) 11解:(1)在2334y x =−+中,令0y = 23304x ∴−+=12x ∴=,22x =−(20)A ∴−,,(20)B , (1)又点B 在34y x b =−+上 302b ∴=−+32b =BC ∴的解析式为3342y x =−+ ········································································ 2分 (2)由23343342y x y x ⎧=−+⎪⎪⎨⎪=−+⎪⎩,得11194x y =−⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ····················································· 4分 914C ⎛⎫∴− ⎪⎝⎭,,(20)B ,4AB ∴=,94CD =······················································································· 5分 1994242ABC S ∴=⨯⨯=△ ·················································································· 6分 (3)过点N 作NP MB ⊥于点P EO MB ⊥ NP EO ∴∥BNP BEO ∴△∽△ ······················································································· 7分 BN NPBE EO∴=································································································· 8分 由直线3342y x =−+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE =25322t NP ∴=,65NP t ∴= ················································································ 9分 16(4)25S t t ∴=−2312(04)55S t t t =−+<< ············································································· 10分 2312(2)55S t =−−+ ····················································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大∴当点M 运动2秒时,MNB △的面积达到最大,最大为125.12解:(1)m=-5,n=-3 (2)y=43x+2 (3)是定值.因为点D 为∠ACB 的平分线,所以可设点D 到边AC,BC 的距离均为h , 设△ABCAB 边上的高为H, 则利用面积法可得:222CM h CN h MN H⋅⋅⋅+=(CM+CN )h=MN ﹒HCM CN MNH h +=又H=CM CN MN⋅化简可得(CM+CN)﹒1MN CM CN h=⋅故111CM CN h+=13解:(1)由已知得:310c b c =⎧⎨−−+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =−++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0) 设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,======所以2220BD BE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==, 所以AOBDBE ∆∆.14解(Ⅰ)当1==b a ,1−=c 时,抛物线为1232−+=x x y , 方程01232=−+x x 的两个根为11−=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10−,和103⎛⎫ ⎪⎝⎭,. ············································ 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124−=∆≥0,有c ≤31. ···································· 3分①当31=c 时,由方程031232=++x x ,解得3121−==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫− ⎪⎝⎭,. ······························ 4分 ②当31<c 时, 11−=x 时,c c y +=+−=1231, 12=x 时,c c y +=++=5232.由已知11<<−x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31−=x ,。

中考数学计算题专项训练(全)

中考数学计算题专项训练(全)

中考专项训练——计算题集训一(计算)1. 计算:3082145+-Sin2.计算:3.计算:2×(-5)+23-3÷12 .4.计算:22+(-1)4+(5-2)0-|-3|;5.计算:22+|﹣1|﹣.6.计算:︒+-+-30sin 2)2(20.7.计算,8.计算:(1)()()022161-+--(2)a(a-3)+(2-a)(2+a)9. 计算:(3)0- (12)-2 +tan45°10. 计算:()()0332011422---+÷-集训二(分式化简)1. (2011.南京)计算.2. (2011.常州)化简:21422---x x x3.(2011.淮安)化简:(a+b )2+b (a ﹣b ).4. (2011.南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.5. (2011.苏州)先化简,再求值:(a ﹣1+)÷(a 2+1),其中a=﹣1.6.(2011.宿迁)已知实数a 、b 满足ab =1,a +b =2,求代数式a 2b +ab 2的值.7. (2011.泰州)化简.8.(2011.无锡)a(a-3)+(2-a)(2+a)9.(2011.徐州)化简:11()a a a a--÷;10.(2011.扬州)化简2111x x x -⎛⎫+÷ ⎪⎝⎭集训三(解方程)1. (2011•南京)解方程x 2﹣4x+1=0.2. (2011.常州)解分式方程2322-=+x x3.(2011.连云港)解方程:3x = 2x -1 .4. (2011.苏州)已知|a ﹣1|+=0,求方裎+bx=1的解.5. (2011.无锡)解方程:x 2+4x -2=06.(2011.盐城)解方程:x x -1 - 31-x= 2.7.(2011.泰州)解方程组,并求的值.集训四(解不等式)1.(2011.南京)解不等式组,并写出不等式组的整数解.2.(2011.常州)解不等式组()()()⎩⎨⎧+≥--+-14615362x x x x3.(2011.连云港)解不等式组:⎩⎨⎧2x +3<9-x ,2x -5>3x .4.(2011.南通)求不等式组⎩⎨⎧3x -6≥x -42x +1>3(x -1)的解集,并写出它的整数解.5.(2011.苏州)解不等式:3﹣2(x ﹣1)<1.6. (2011.宿迁)解不等式组⎪⎩⎪⎨⎧<+>+.221,12x x8.解不等式组:102(2)3x x x -≥⎧⎨+>⎩9. 解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。

初中试卷_打印版数学题

初中试卷_打印版数学题

姓名:______________________ 班级:_________ 学号:_________ 满分:100分时间:90分钟一、选择题(每题3分,共30分)1. 下列各数中,是整数的是()A. -3.5B. 2.1C. 0.8D. 42. 下列各数中,绝对值最小的是()A. -3B. -2.5C. 0D. 1.53. 下列各数中,是负数的是()A. 0.1B. -0.2C. 1.2D. 04. 若 |a| = 5,则 a 的值为()A. ±5B. ±3C. ±1D. 05. 下列图形中,不是平行四边形的是()A. 正方形B. 长方形C. 等腰梯形D. 平行四边形6. 在直角坐标系中,点 P(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)7. 下列等式中,正确的是()A. 3x + 2 = 2x + 5B. 3x - 2 = 2x - 5C. 3x + 2 = 2x + 6D. 3x - 2 = 2x + 48. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2 + 1D. y = 49. 若 x + y = 5,且 x - y = 1,则 x 的值为()A. 3B. 2C. 4D. 510. 下列各数中,能被 6 整除的是()A. 18B. 24C. 30D. 36二、填空题(每题5分,共25分)11. 有理数 a 的相反数是 ____________,绝对值是 ____________。

12. 若 a < b,则 -a > -b 或 -a < -b。

13. 若 a = -3,b = 2,则 a + b = ____________,a - b = ____________。

14. 在直角坐标系中,点 Q(3,-4)关于 x 轴的对称点是 ____________。

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。

公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。

在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。

那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。

对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。

初三数学试卷电子档可打印

初三数学试卷电子档可打印

一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 如果a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. a / 2 < b / 2D. a 2 > b 23. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 1/xD. y = 3x + 54. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 如果等边三角形的边长为a,那么它的周长是()A. 3aB. 4aC. 5aD. 6a6. 一个长方体的长、宽、高分别是5cm、4cm、3cm,那么它的体积是()A. 60cm³B. 120cm³C. 180cm³D. 240cm³7. 下列方程中,x = 2是它的解的是()A. x + 3 = 5B. 2x - 1 = 3C. x^2 - 4 = 0D. 3x + 2 = 78. 下列各式中,正确的是()A. sin45° = √2/2B. cos45° = √2/2C. tan45° = √2/2D. cot45° = √2/29. 下列各图中,是等腰三角形的是()A.![等腰三角形图]B.![非等腰三角形图]C.![等边三角形图]D.![直角三角形图]10. 一个数的平方根是-3,那么这个数是()A. 9B. -9C. 3D. -3二、填空题(每题5分,共50分)11. 2的平方根是_________,3的立方根是_________。

12. 若a = 5,则a - 2的值是_________。

13. 下列函数中,y = 2x + 3是一次函数,其斜率是_________,截距是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年初中数学中考大题一.解答题(共25小题)1.目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:,)2.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是30°和60°,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由;(2)求信号发射点的深度.(结果精确到1m,参考数据:≈1.414,≈1.732)3.如图,某生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动12米到B处,测得∠EBF=30°,∠CBD=45°,sin∠CAD=.(1)求旗杆EF的高;(2)求旗杆EF与实验楼CD之间的水平距离DF的长.4.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)5.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠PCB=,BE=,求PF的长.6.如图,△ABC内接于⊙O,AD是⊙O直径,过点A的切线与CB的延长线交于点E.(1)求证:EA2=EB•EC;(2)若EA=AC,,AE=12,求⊙O的半径.7.从⊙O外一点A引⊙O的切线AB,切点为B,连接AO并延长交⊙O于点C,点D.连接BC.(1)如图1,若∠A=26°,求∠C的度数;(2)如图2,若AE平分∠BAC,交BC于点E.求∠AEB的度数.8.如图,⊙O是以AB为直径的圆,C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点F,连结CA,CB.(1)求证:AC平分∠DAB;(2)若⊙O的半径为5,且tan∠DAC=,求BC的长.9.已知二次函数y=﹣2x2+8x﹣6,完成下列各题:(1)将函数关系式用配方法化为y=a(x+h)2+k的形式,并写出它的顶点坐标、对称轴;(2)它的图象与x轴交于A,B两点,顶点为C,求S△ABC.10.已知二次函数y=x2﹣6x+8.(1)将y=x2﹣6x+8化成y=a(x﹣h)2+k的形式;(2)当0≤x≤4时,y的最小值是,最大值是;(3)当y<0时,写出x的取值范围.11.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.12.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C (0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.13.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?14.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?15.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.16.一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?17.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.18.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).19.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.21.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.22.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.24.在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一第11页(共13页)点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论:.(填“成立”或“不成立”)(3)如图3,当点E是线段AC延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.25.阅读下面材料:第12页(共13页)小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数;小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.(1)请你回答:图1中∠APB 的度数等于.(直接写答案)参考小伟同学思考问题的方法,解决下列问题:如图3,在正方形ABCD内有一点P,且PA=2,PB=1,PD=.(2)求∠APB的度数;(3)求正方形的边长.第13页(共13页)。

相关文档
最新文档