等比数列前n项和求和公式-等比比例前n项和公式

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可编辑ppt
2
II、新课讲解:
分析:由于每个格子里的麦粒数都是前一个格 子里的麦粒数的2倍,且共有64个格子,各个 格子里的麦粒数依次是
1,2,22,23, ,263 ,
于是发明者要求的麦粒总数就是
1 2 2 2 2 3 2 6 2 2 6 .3
那么,我们怎样求这个值呢?
S 6 4 1 2 2 2 2 3 2 6 2 2 63
S n a 1 a 2 a 3 a a n
我们是否可以根据刚才的方法来推导一般等比数列的前n项和呢
可编辑ppt
5
na1
Sn a1 1qn
1q
a1 anq 1q
,q1 ,q1
1式中a 已 1,q,知 n,求 Sn
2式中已 a1,an 知 ,q,求 Sn
可编辑ppt
6
V、课时小结:
本节课应重点掌握的内容是等比数列的求和公式
故事:
传说在古代印度,国王要奖赏国际象棋的发明者,发 明者说:“请在棋盘的第1个格子里放上1颗麦粒,在第2 个格子里放上2颗麦粒,在第3个格子里放上4颗麦粒,在 第4个格子里放上8颗麦粒,依此类推,每个格子里放的麦 粒数都是前一个格子里放的麦粒数的2倍,直到第64个格 子。请给我足够的粮食来实现上述要求”。国王觉得并不 难,就欣然同意了他的要求。你认为国王有能力满足发明 者的要求吗?
Sn a111 qqnn1 aa11 aqnq
,q1 ,q1
以及它的推导方法:错项相减法 课后应进一步熟练此公式,
并掌握它的基本应用。
可编辑ppt
7
谢谢观看!
可编辑ppt
8
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
可编辑ppt
3来自百度文库
故事中的麦粒总数为:1.841019
约7000亿吨
大约是全世界一年粮食产量的459倍。
用这么多小麦能从地球到太阳铺 设一条宽10米,厚8米的大道!
可编辑ppt
4
2、等比数列前n项和公式的推导:
那么,我们如何来求一般等比数列的前n和呢?
a 1,a 2,a 3 a n
首项为 a 1 , 公比为q的等比数列
相关文档
最新文档