桩基完整性(低应变试验]试验方法
低应变法检桩
低应变法检桩低应变法(Low strain method)是一种常用于桩基检测的无损检测方法。
该方法基于桩与周围土体之间的互作用,并通过测量桩体表面产生的应变来评估桩的质量和完整性。
下面将介绍低应变法的原理、设备以及在桩基工程中的应用。
1. 原理:低应变法是基于桩体与周围土体之间的相互应变影响的原理。
当施加一个小幅度的交变载荷时,桩体表面出现微小的应变变化。
这些变化将沿着桩体传播到土体中,并通过受土体约束的地表上产生的应变信号进行检测和分析。
通过分析这些信号的特征,可以评估桩的质量和完整性。
2. 设备:低应变法的主要设备包括振动器、传感器和数据采集系统。
振动器用于施加小幅度的交变载荷到桩体上,通常通过压电元件或振动器激励器来实现。
传感器用于测量桩体表面产生的应变信号,常用的传感器有应变计和纤维光栅传感器。
数据采集系统用于记录和分析传感器捕获到的数据,通常由计算机软件和硬件组成。
3. 应用:低应变法在桩基工程中有广泛的应用。
它可以用于评估桩的质量、完整性和嵌入深度。
以下是低应变法在桩基工程中的几个常见应用:a. 桩基质量评估:通过监测桩体表面的应变信号,可以评估桩的质量和完整性。
当桩体有缺陷或损坏时,应变信号会显示出特定的图案,可用于判断桩的质量状况。
b. 桩身变形识别:低应变法还可以用于监测桩身在荷载作用下的变形情况。
通过比较不同荷载条件下的应变信号,可以确定桩体的变形特征,并评估其变形性能。
c. 桩基嵌入深度确定:利用低应变法可以确定桩体的嵌入深度。
通过测量桩体表面的应变信号,可以确定桩体与土体之间的互作用区域,并进一步确定桩体的嵌入深度。
d. 桩基施工质量监控:低应变法还可以用于监控桩基施工质量。
在桩基施工过程中,通过实时监测桩体的应变信号,可以及时发现施工质量问题,并采取相应的措施进行调整。
综上所述,低应变法是一种常用的桩基检测方法,通过测量桩体表面产生的应变信号来评估桩的质量和完整性。
它在桩基工程中可以广泛应用于桩基质量评估、桩身变形识别、桩基嵌入深度确定和桩基施工质量监控等方面。
低应变法检测桩基完整性应注意的问题探讨
低应变法检测桩基完整性应注意的问题探讨摘要:本文旨在探讨低应变法在桩基完整性检测中的应用。
首先介绍了低应变法的原理和适用范围,然后综述了桩基完整性检测的常用方法及其优缺点。
接着详细阐述了低应变法检测桩基完整性的工作原理和步骤,并提出了在试验过程中需要注意的事项。
关键词:低应变法;桩基完整性检测;试验方法;注意事项;应用案例;发展趋势引言:桩基是土木工程中常用的地基处理方式之一,其稳定性和完整性对结构的安全性至关重要。
因此,对桩基完整性进行准确可靠地检测是工程实践中的重要任务之一。
低应变法是一种常用的桩基完整性检测方法,它通过监测桩身上的应变变化来评估桩体的完整性,具有非破坏性、高灵敏度和实时性等优点。
一、低应变法概述(一)低应变法的原理和基本概念低应变法是一种常用的非破坏性测试方法,用于评估桩基完整性。
其原理基于桩体在受到外部负荷或变形作用时,桩身产生的应变变化。
低应变法通过测量桩身表面的微小应变变化,来判断桩体是否存在损伤或缺陷。
低应变法的基本概念是在桩体表面或附近安装应变测量传感器,例如应变片或光纤传感器。
这些传感器能够实时监测桩体的应变变化,并将数据传输到数据采集系统进行记录和分析。
通常采用应变计算方法,将测得的应变数据转换为桩体受力或变形的信息,以评估桩体的完整性。
(二)低应变法的适用范围低应变法适用于多种桩基类型,包括混凝土桩、钢筋混凝土桩、钢管桩、预制桩等。
在满足桩径比的前提下,无论桩体的直径和长度如何,低应变法都能提供有效的完整性检测。
低应变法适用于各种桩基工况和工程环境。
它可以在静态或动态加载情况下进行检测,包括垂直受力、水平受力和弯矩受力等。
无论是新建桩基还是已存在的桩基,低应变法都可以进行检测和评估。
低应变法还适用于不同类型的桩基损伤和缺陷的检测,如桩体断裂、裂缝、夹泥、桩底沉渣等。
它可以检测桩体表面和内部的应变变化,从而提供有关桩体损伤类型、位置和程度的信息。
低应变法是一种广泛适用于不同桩基类型和工程条件的检测方法。
基桩完整性-低应变法
省公路工程试验检测中心有限公司标准化作业指导书(结构所)受控状态:发放编号:持有人:发布日期:2019年月日实施日期:2019年月日省公路工程试验检测中心有限公司标准化作业指导书(结构所)批准:审核人:主要参加编写人员:省公路工程试验检测中心有限公司标准化作业指导书目录省公路工程试验检测中心有限公司基桩完整性(低应变法)标准化作业指导书一、依据的检测标准及技术要求本作业指导书依据的检测标准及技术要求是:1.1《建筑基桩检测技术规范》(JGJ 106-2014)中的“低应变法”;1.2《公路工程基桩动测技术规程》(JTG/T F81-01-2004)中的“低应变反射波法”。
二、适用范围适用于混凝土预制桩(混凝土预制方桩、预应力混凝土管桩)、混凝土灌注桩(钻孔灌注桩、沉管灌注桩、树根桩)等刚性材料桩的完整性检测。
三、试验目的检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
四、试验原理本方法的实质是将混凝土桩视为一维线弹性杆件,当桩顶受一冲击力后,其应力(应变或位移)以波动形式在桩身中传播,遇到波阻抗差异界面后,产生反射波信号,通过分析入射波和反射波的波形、相位、振幅、频率及波的到达时间等特征,达到检测桩身完整性的目的。
检测示意图如图4.1所示:图4.1 低应变法检测示意图五、仪器设备本公司应用于低应变动测的仪器为ZBL-P810型基桩动测仪。
该仪器为集信号放大、数据采集、显示记录和分析处理于一体的高性能仪器,由主机系统、速度传感器、ICP 加速度传感器、手锤、AC-DC 电源、信号线等部件组成。
检测仪器的主要技术性能指标符合现行行业标准《基桩动测仪》(JG/T 3055-1999)和检测规范的有关规定。
ZBL-P810型基桩动测仪的主要性能指标见表5.1所示。
表5.1 ZBL-P810基桩动测仪主要性能指标1. 激振锤2. 加速度传感器3. 基桩动测仪4. 手提式计算机(可选)六、试验准备6.1 收集和了解检测工程概况6.1.1 工程项目名称,建设、设计、施工、监理单位名称;6.1.2 场地工程地质勘察报告;6.1.3 基本参数:桩型、桩径、桩长、桩身砼强度、持力层及极限承载力;6.1.4 桩位图及桩基施工记录。
桩基低应变完整性检测(精制实操)
桩基低应变完整性检测引言近几十年,我国工程建设蓬勃发展,桩基础在高层建筑、大型厂房、桥梁码头、海上钻井平台及核电站等重要工程中被广泛应用。
由于桩基属于地下隐蔽工程,桩基施工过程中受到所处地质条件、施工技术工艺等多种因素的影响,成桩难免存在各种不足,影响成桩的质量和使用效果,比如缩径、扩径、离析或夹泥,甚至断桩等不利缺陷。
如何快速、准确的评价桩身质量,是桩基检测工程一直所关注的话题。
而低应变检测具有设备简单轻便、检测快速等优点被广泛应用于桩基检测工程中。
技术原理反射波法检测是建立在一维波动理论基础上,在数学上模拟桩的一维应力波传播,计算反射、透射和波的叠加,根据波形的异常情况推断桩的完整性。
反射波法检测,是通过敲击桩顶,产生的应力脉冲以波的形式沿桩体传播,应力波在传播的过程中遇到桩体界面变化时,将表现为桩身阻抗变化而产生反射波,通过安装在桩顶的传感器接收到波的变化,由应力波沿桩身向下传播遇到有缺陷的界面或到达桩底产生反射然后返回桩顶的时间来判断桩身内的缺陷位置。
对于嵌固于土体中的桩,由于桩长L一般远大于桩径d,因此,将桩作为一维弹性值杆,考虑桩土相互作用,则桩身质点振动速度v(x,y)满足下面的一维波动方程:在式(1)中:χ-振动质点到震源的距离;t-质点振动的时间;k-桩周土弹性参数;c-桩周土阻尼系数;A-桩的截面积;C-纵波在桩中的传播速度,且满足关系,其中ρ为桩的密度;E为桩的弹性模量。
应力波在桩体中的传播时间(Δt)及桩长(L),可用下式计算出不同岩土介质中桩的纵波波速:布置方案根据桩径大小,桩心对称布置2~4个安装传感器的检测点:实心桩检测点宜在距桩中心2/3 半径处:空心桩的激振点和检测点宜为桩壁厚的1/2,激振点和检测点与桩中心连线形成的夹角宜为90°检测采集数据时需要注意的地方主要有以下几点:1.安装传感器部位的混凝土应平整;2.传感器安装应与桩顶面垂直,应与锤击点保持在一个水平面上;3.用耦合剂粘结时,应具有足够的粘结强度;4.传感器安装位置应远离钢筋笼的主筋,以减少外露主筋对测试产生干扰信号。
桩基完整性(低应变试验)试验方法
1 桩基完整性(低应变试验)1.1一般规定:(1)低应变反射波法适用围为:混凝土灌注桩、混凝土预制桩、预应力管桩及CFG 桩。
(2)对桩身截面多变且变化幅度较大灌注桩,应采用其他方法辅助验证低应变法检测的有效性。
(3)受检桩混凝土强度不应低于设计强度的70%,且不应低于15MPa 。
1.2检测原理:低应变法目前国普遍采用低应变反射波法,为狭义低应变法,其通过采用瞬态冲击的方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。
因此基桩必须符合一维波动理论要求,满足平截面假定和一维线弹性杆件模型要求,一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5。
1.3检测方法及工艺要求(1)检测前的准备工作a 受检基桩混凝土强度至少达到设计强度的70%,或期龄不少于14天时方可报检。
b 施工单位填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。
c 施工单位向检测单位提供基桩工程相关参数和资料。
d 检测前,施工单位做好以下准备工作:①剔除桩头,使桩顶标高为设计的桩顶标高。
②要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本相同。
③灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬的混凝土表面。
④桩顶表面平整干净且无积水。
⑤实心桩的第三方位置打磨出直径约10cm 的平面,平面保证水平,不要带斜坡;在距桩第三方2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm 的平面,打磨面应平顺光洁密实图2 不同桩径对应打磨点数及位置示意图0.8m<D≤1.25m D≤0.8m图2 不同桩径对应打磨点数及位置示意图⑥当桩头与垫层相连时,相当于桩头处存在很大的截面阻抗变化,会对测试信号产生影响。
因此,测试前应将桩头侧面与断层断开。
⑦准备黄油1~2包,作为测试耦合剂用。
⑧在基坑检测,应提前将基坑水抽干,并搭设好梯子,便于上下。
桩低应变实验报告
桩低应变实验报告引言桩基是土木工程中常用的重要基础形式之一,它承担着将建筑物和地下结构的重荷载传递至较深的地层中的重要任务。
桩基在土壤中的承载力和变形特性对工程的安全性和稳定性具有重要影响。
桩低应变实验是用来研究桩基在静态或动力荷载作用下的变形特性及承载力的实验方法之一。
实验目的本次实验旨在通过桩低应变实验,探究桩基在荷载作用下的变形规律,进一步了解土壤与桩基的相互作用过程,从而为工程设计提供参考建议。
实验原理桩低应变实验是通过在试验场地上搭建桩基模型,在模拟实际工程荷载作用下,测量桩头和桩身的变形量,从而对桩基的力学特性进行研究。
实验装置主要包括传感器、数据采集设备、承载框架和电子称重砝码等组成。
实验步骤如下:1. 在试验场地上挖掘合适深度的试验坑;2. 安装试验装置,包括传感器和数据采集设备,并保证其准确可靠;3. 在试验坑中浇筑混凝土,形成相应的承载框架,并确保其水平度;4. 安装待测的桩基模型,如木制、塑料或钢管等;5. 设置荷载大小和加载速率,并开始加载;6. 期间记录并测量桩头和桩身的变形量,并记录相应的荷载和位移数据;7. 持续加载直到达到目标荷载或设定的变形限值。
实验结果与分析通过桩低应变实验,我们得到了桩头和桩身在不同荷载作用下的变形数据。
根据实验数据,我们制作了荷载-位移曲线和荷载-变形曲线,如下图所示。
![](荷载位移曲线.png)通过观察荷载-位移曲线可以看出,随着荷载的增加,位移逐渐增大,呈现出明显的非线性关系。
荷载逐渐增大时,桩基的承载能力在一定范围内与位移呈线性关系,但当荷载进一步增大时,位移增加速度明显加快,表明桩基即将达到破坏状态。
而通过观察荷载-变形曲线可以看出,随着荷载的增加,桩头和桩身的变形逐渐增大。
与位移不同的是,荷载与变形呈现出较为线性的关系。
这说明桩基的变形主要由荷载引起,变形量与荷载之间存在明确的线性关系。
根据实验数据还可以计算得到桩基的刚度等参数,并通过比较不同实验条件下的数据,进一步研究桩基的力学性质。
低应变桩基检测方法
反射波检测基桩完整性的技术要点 —(一)一.反射波法检测基桩完整性如何获取桩底反射众所周知,反射波法检测基桩桩身完整性,能否采集到桩底反射信号,是现场进行数据采集成败的关键。
要获取桩底反射波有几个必须的条件即:1. 桩头要处理好这些往往由于不同的原因不能实现,如此的后果往往造成检测失败。
桩头不做上述处理如图1所示,桩头面不仅凹凸不平,尚有突出的混凝土楞刺,在这下锤头下落,冲击能量首先在冲破凹凸不平消耗大理能量,使有效的击振能量大打折扣,还不能励出理想的入射脉冲波。
于是只好再次加大激振力度再次击破凹凸不平的楞刺,恶性循环的结果,不仅取得良好的激振脉冲波,还会激励出杂散振动。
恶性循环的结果,将使反射波信号复杂,多次击振的一致性差和得不到桩底反射波。
如先将激振和安装传感器部位打磨平整,反而会取得事半功倍的成效。
桩头没有打磨平整,会使直达波上叠加高频噪音信号,图2便是一个实测范例(还不是最严重的)。
与此同时还会带来多次激励的信号一致性极差,而无法确认检测的真实结果。
2. 传感器与桩头的耦合是采集到良好质量信号的重要条件。
传感器安装点,应事先检查混凝土是否完整,并打磨平整。
安装时,传感器的轴线应平行桩身的轴线,即垂直于桩头的水平面,这样传感器的最大灵敏度方向可对准桩底,有利于接收桩头下部的反射信号。
传感器应通过耦合剂牢牢黏结在桩头上,不可松动,以免在击振时传感器也随之振动,形成干扰。
耦合剂的选用以黏度较大的橡皮泥最佳,因为橡皮泥可以起到机械滤波的作用,滤除击振时产生的高频干扰(但是在北方冬季橡皮泥“凝固”失去了柔软性,到不如凝固的黄油会更好些)。
3. 击振脉冲波的力度和主频要适度锤击脉冲波的力度、主频与桩长相匹配。
原则是至少要有两次以上击振后的反射波信号基本一致,方可确定得到的信号是可靠的桩身状况的客观反映。
图3是几种典型的现场检测到的反射波记录。
多次采集的反射波信号不一致,且有高频干扰的实例如图3(a);击振一致性较好,还可见缺陷反射,但是没有桩底反射波如图3(b );图3(c)是桩径1200mm 、桩长15.3m 人工挖孔灌注桩,用速度型传感器接收,有桩底反射波、击振一致性好的实例;图3(d )是用加速度传感器接收的检测记录,虽然击振的直达波一致性不太好,但可见一致性较好的桩底反射。
桩基检测方法和原理
桩基检测方法和原理一、低应变反射波法检测1、基本流程低应变检测一般首先进行,以了解试验前桩身的完整性。
进行低应变试验前通知委托方或现场监理工程师,经批准后进场进行试验,操作步骤参考如下:⑴传感器安装面预处理;⑵安装传感器;⑶调整仪器进入接受状态;⑷检查信号、存储信号;⑸重复观测确定信号一致性;⑹改变锤击位置及接受位置,重新观测;⑺对异常桩重点对待。
每批桩低应变试验结束后及时进行分析。
对有问题的桩应及时将分析结果通知监理或委托方。
2、低应变检测原理低应变完整性检测是根据应力波在不同波阻抗和不同约束条件下传播特性来判别桩身质量。
具体方法是:试验时将传感器紧密粘贴在被测桩头上,在桩身顶部用力棒(或力锤)进行竖向激振,产生应力波;应力波沿着桩身向下传播,当桩身存在明显的波阻抗差异界面或桩身截面积发生变化时将产生反射信息,经接收、放大、和滤波后记录在基桩检测仪内;然后用电子计算机对记录数据(反射信息)进行处理,结合施工工艺、地层等综合分析,识别来自桩身不同部位的反射信息,据此反射信息对基桩的施工质量进行判释。
二、高应变承载力检测1、基本流程根据试验要求高应变测试应在单桩竖向抗压静载试验完成前进行,高应变试验前通知委托方或现场监理工程师,经批准后进场进行试验检测,操作步骤参考如下:⑴传感器安装面预处理;⑵重锤就位;⑶在仪器监控下安装应力、加速度传感器;⑷调整仪器进入接受状态;⑸按预定高度起吊重锤,接受操作员指挥,使重锤自动脱钩;⑹仪器操作员检查采集信号、工作人员检查传感器;⑺根据操作人员意见重复上述(5)、(6)项,或进行下一根桩的试验工作,重复(1)~(7)步。
直至全部试验结束。
对有问题的桩应及时将分析结果通知监理或委托方。
2、高应变检测原理高应变动力试验是用重锤冲击桩顶,使桩土间产生相对位移,实测桩顶力和加速度的时程曲线,通过波动方程分析法拟合计算单桩的极限承载力。
资料主要分析步骤:①正确选取信号,确定波速平均值;②假定桩和土的力学模型,根据勘察报告和施工记录选定计算模型的初始参数;③利用实测的加速度曲线作为输入的边界条件,通过波动方程数学求解,反算桩顶的力曲线;④如果计算的曲线与实测的曲线不吻合,说明假定的模型及参数不合理,有针对性地调整桩土模型及参数;⑤、根据调整后的桩土模型及参数再行计算,直至计算曲线与实测曲线的吻合程度良好,且难以进一步改善为止。
低应变检测桩身完整性和声波透射法检测桩基
实验报告课程:桩基检测与评定题目:低应变检测桩身完整性与桩基超声波透射法院系:土木工程系专业:年级:姓名:指导教师:西南交通大学峨眉校区2012 年7 月 1 日基 桩 反 射 波 法 试 验检 测 报 告一.基本原理基桩低应变动力检测反射波法的基本原理是将桩身假定为一维弹性杆件(桩长>>直径),在桩顶锤击力作用下,产生一压缩波,沿桩身向下传播。
当桩身存在明显波阻抗Z 变化的截面将产生反射和透射波,反射的相位和幅值大小由波阻抗Z 变化决定。
桩身波阻抗Z 由桩的横截面积A 、桩身材料密度ρ等决定即Z=A C ⋅⋅ρ。
假设在基桩中某处存在一个波阻抗变化界面,界面上部波阻抗1Z =111A C ρ,上部波阻抗2Z =222A C ρ①当1Z =2Z 时,表示桩截面均匀,无缺陷。
②当1Z >2Z 时,表示在相应位置存在缩径或砼质量较差等缺陷,反射波速度信号与入射波速度信号相位一致。
③当1Z <2Z 时,表示在相应位置存在扩径,反射波与入射波速度信号相位相反。
当桩身存在缺陷时,根据缺陷反射波时刻与桩顶锤击触发时刻的差值△t 和桩身传播速度C 来推算缺陷位置Lx=△t ²C/2二.现场检测大致流程是用力锤对桩顶作瞬态激振,以产生脉冲应力波,由设置在桩顶的加速度传感器接收入射波和反射波信号,该信号经电荷放大后,经桩基分析系统处理,根据反射波的时差,相位和幅值即可判断桩身的缺陷位置、类型及程度。
传感器的安装对现场信号的采集影响较大,理论上传感器越轻、越贴近桩面、与桩面之间接触刚度越大,传递特性越好,测试信号也越接近桩面的质点振动。
对实心桩的测试,传感器安装位置宜为距桩心2/3~3/4半径处;对空心桩的测试,锤击点与传感器安装位置宜在同一水平面上,且与桩中心连线形成90°夹角,传感器安装位置宜为桩壁厚的1/2处。
传感器的安装必须通过藕合剂垂直与桩面粘接,此次实验使用的是经口加工的口香糖。
低应变法检测桩身完整性规程
低应变法8.1 适用范围8.1.1 本方法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
8.1.2 本方法的有效检测桩长范围应通过现场试验确定。
8.2 仪器设备8.2.1 检测仪器的主要技术性能指标应符合现行行业标准《基桩动测仪》JG/T 3055的有关规定,且应具有信号显示、储存和处理分析功能。
8.2.2 瞬态激振设备应包括能激发宽脉冲和窄脉冲的力锤和锤垫;力锤可装有力传感器;稳态激振设备应包括激振力可调、扫频范围为10~2000Hz 的电磁式稳态激振器。
8.3 现场检测8.3.1 受检桩应符合下列规定:1 桩身强度应符合本规范第3.2.6 条第1 款的规定。
2 桩头的材质、强度、截面尺寸应与桩身基本等同。
3 桩顶面应平整、密实,并与桩轴线基本垂直。
8.3.2 测试参数设定应符合下列规定:1 时域信号记录的时间段长度应在2L/c 时刻后延续不少于5ms ;幅频信号分析的频率范围上限不应小于2000Hz 。
2 设定桩长应为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积。
3 桩身波速可根据本地区同类型桩的测试值初步设定。
4 采样时间间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于1024 点。
5 传感器的设定值应按计量检定结果设定。
8.3.3 测量传感器安装和激振操作应符合下列规定:1 传感器安装应与桩顶面垂直;用耦合剂粘结时,应具有足够的粘结强度。
2 实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3 半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90 °,激振点和测量传感器安装位置宜为桩壁厚的1/2 处。
3 激振点与测量传感器安装位置应避开钢筋笼的主筋影响。
4 激振方向应沿桩轴线方向。
5 瞬态激振应通过现场敲击试验,选择合适重量的激振力锤和锤垫,宜用宽脉冲获取桩底或桩身下部缺陷反射信号,宜用窄脉冲获取桩身上部缺陷反射信号。
低应变桩身完整性检测.【桩基优质PPT】
cm/s 0
0.60
4
8
12
16
230: # 25 24
28
32
0.30
0.00
x 3 L/D=40 (D=50 cm)
-0.30
20.00 m (4800 m/s)
cm/s 0
0.16
4
8
12
16
3:2#0 38
24
28
32
0.08
0.00
-0.08
x 3 L/D=40 (D=50 cm) 20.00 m (4800 m/s)
40
44 m
V 0.133 cm/s (0.133)
2019/10/5
2).测试曲线及分析2.2 测试曲线及分析
Earth Products China Limited
2019/10/5
3)检测时,应合理设置采样时间间隔、 采样点数、增益、传感器灵敏度、模 拟滤波、触发方式等,其中增益应结 合激振方式通过现场对比试验确定。
f >2 fc
f =N.Δ f
2019/10/5
冲击锤型大小对波形的影响
(a) 冲击锤型不合适
2019/10/5
(b) 冲击锤型合适
4 ) 每根桩的检测信号数量应符合下列规定: (1)根据桩直径大小,桩心对称布置2~4个
40
44 m
V 0.158 cm/s (0.158)
2).测试曲线及分析2.2 测试曲线及分析
Earth Products China Limited
KHJD C:\Documents and Settings\z hs\My Documents\ 郑 州 考 核 \低 应 变 考 核 \考 核 基 地 PIT\PitW1.PIT
低应变法检测桩身完整性规程
低应变法8.1 适用范围8.1.1 本方法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
8.1.2 本方法的有效检测桩长范围应通过现场试验确定。
8.2 仪器设备8.2.1 检测仪器的主要技术性能指标应符合现行行业标准《基桩动测仪》JG/T 3055的有关规定,且应具有信号显示、储存和处理分析功能。
8.2.2 瞬态激振设备应包括能激发宽脉冲和窄脉冲的力锤和锤垫;力锤可装有力传感器;稳态激振设备应包括激振力可调、扫频范围为10~2000Hz 的电磁式稳态激振器。
8.3 现场检测8.3.1 受检桩应符合下列规定:1 桩身强度应符合本规范第3.2.6 条第1 款的规定。
2 桩头的材质、强度、截面尺寸应与桩身基本等同。
3 桩顶面应平整、密实,并与桩轴线基本垂直。
8.3.2 测试参数设定应符合下列规定:1 时域信号记录的时间段长度应在2L/c 时刻后延续不少于5ms ;幅频信号分析的频率范围上限不应小于2000Hz 。
2 设定桩长应为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积。
3 桩身波速可根据本地区同类型桩的测试值初步设定。
4 采样时间间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于1024 点。
5 传感器的设定值应按计量检定结果设定。
8.3.3 测量传感器安装和激振操作应符合下列规定:1 传感器安装应与桩顶面垂直;用耦合剂粘结时,应具有足够的粘结强度。
2 实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3 半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90 °,激振点和测量传感器安装位置宜为桩壁厚的1/2 处。
3 激振点与测量传感器安装位置应避开钢筋笼的主筋影响。
4 激振方向应沿桩轴线方向。
5 瞬态激振应通过现场敲击试验,选择合适重量的激振力锤和锤垫,宜用宽脉冲获取桩底或桩身下部缺陷反射信号,宜用窄脉冲获取桩身上部缺陷反射信号。
低应变法检测桩基完整性分析
反射 波特 征 曲线
完整 曲线
图 1为完整 曲线 。 1 图 a为端承桩 的反射 波特 征 曲
线, 桩底 反射 波 与入 射 波反 相 位 ; 1 图 b为 摩擦 桩 的 反 射波特 征 曲线 , 底反 射波 与入 射波 同相位 。 桩
图 5 桩 底 沉 渣 曲 线
低 应变 法检 测 桩 基 完整 性 分析
口 文 / 雪梅 靳
摘
要 : 了保 证 桩 基 的安 全 , 用 简便 快 捷 的检 测 法对 更 多 的桩 进 行桩 身 质 量 检测 显 得 尤 为 为 采
重要 。文 中介 绍 了低应 变 法检测 基桩 完 整性 的基本 原 理 , 出了各种 反射 波 的理论 特征 给 曲线 并通 过 实例 对各种 波 形 曲线进 行分 析 , 出低 应 变检 测基桩 完 整性 的不 足之处 。 指 关键 词 : 应 变法 ; 基 检测 ; 整性 低 桩 完
R < , 射波 与入射 波 反相 。 ,0 反
以上 3种情 况 表 明 ,反射 波 相位 与 入射 波 相位 的
天 建 科 20 O 阳 津 设 技 0・. 1N J
关系 , 判别桩 身质量 的依据 。 是
桩底 沉渣 曲线
图 5为桩 底 沉渣 曲线。桩 底反射 与入射 波 同相位 ,
桩 基 工程 是 地 下 隐 蔽 工 程 , 工 难 度 大 、 施 工序 多 。
一
透 射 波 系数 尺 为
尺 = l 三二
1} .- - Z2
般在 地 下或 水下 进 行施 工 , 工过 程 很难 进 行 监测 。 施
() 1
() 2
由于 受 水 渗 流 、 砂 层 、 泥 层 等 不 良地 质 影 响 , 引 流 淤 易 起 塌孔 和 缩孔 等缺 陷 ; 在混 凝 土 灌注 过 程 中 , 出现 停 如 顿 、 管过 快或 导 管拔 空等 现 象 , 拨 易产 生 离析 、 夹泥 、 断 桩、 缩径 、 松 不 密实等 缺 陷 。这 些缺 陷将 直 接导 致 桩 疏
基桩完整性检测--低应变反射波法
2.1 应力波基本概念
4.一维波动方程
2 2u u 2 c 0 2 2 t x
c
E
区别:质点运动速度V
应力波在杆中的纵向传播速度
V c
对于普通钢材,c=5120m/s, 屈服限对应的变形约为1‰即ε=1000με, 则质点运动速度V=5.12m/s
2.1 应力波基本概念
1.2 基桩检测内容 1.完整性检测 反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综 合定性指标。 (1)连续性包涵了桩长不够的情况。 (2)作为完整性定性指标之一的桩身截面尺寸,由于定义为 “相对变化”,所以先要确定一个相对衡量尺度。根据设计 桩径,并针对不同成桩工艺的桩型按施工验收规范考虑桩径 的允许负偏差 。 2.承载力检测 基桩的预期使用功能和安全性需通过有代表性的单桩承载力 试验来确定 。
2.4 低应变检测系统
3.传感器的性能规定 (1)传感器宜选用压电式加速度传感器或磁电式 速度传感器,频响曲线的有效范围应覆盖整个测试信 号的频带范围。 (2)加速度传感器的电压灵敏度应大于100mV/g, 量程不小于50g。速度传感器的灵敏度不小于 300mV/cm·s-1 30Hz,传感器灵敏度选择原则在满足 频响范围的前提下,尽可能地选择灵敏度较高的传感 器。 (3)加速度传感器的安装谐振频率应大于10kHz, 速度传感器的安装谐振频率应大于1.5kHz。
1.1 基桩基本知识
1.1 基桩基本知识 3.常见基桩质量问题---灌注桩
1.1 基桩基本知识 3.常见基桩质量问题---沉管灌注桩 (1)极易振断初凝邻桩,软件硬土层交界处尤重 (2)桩距小于三倍桩径,使初凝砼拉裂 (3)拔管过快,淤泥层易缩颈 (4)动水压力作用,冒水桩演变成断桩 (5)振动沉管用活瓣桩尖张开不灵活,砼下落不畅,断桩 或密实度差 (6)预制桩尖被卡住,吊脚桩
低应变检测桩基完整性.doc
低应变检测桩基完整性
低应变检测桩基完整性?以下带来关于低应变检测桩基完整性,相关内容供以参考。
低应变反射波法的主要功能是检验桩身结构的完整性,如桩身缺陷位置判断、施工桩长校对和混凝土强度等级定性估计等。
用手锤或力锤、力棒敲击桩顶,由此产生的应力波沿桩身以波速C向下传播,应力波通过桩阻抗z(Z:AC)变化界面时(如缩径、夹异物、混凝土离析或扩径),一部分应力波产生反射向上传播,另一部分应力波产生透射向下传播至桩端,在桩端处又产生反射。
由安装在桩顶的加速度或速度传感器,接收反射波信号,并由测桩仪进行信号放大等处理后,得到加速度时程曲线。
从曲线形态特征可以判断阻抗变化位置或校核桩长,由平均波速大小估计混凝土的强度等级。
混凝土的速度C及桩身缺陷的深度L可按下列公式计算:
C=2L/ΔT (1)
L’=1/2CmΔtx (2)
式中:L--测点下桩长,m;
ΔT--速度波第一峰与桩底反射波峰间的时间差;
Δtx--速度波第一峰与缺陷反射波峰间的时间差;
Cm--桩身波速的平均值,m/s。
低应变检测又叫应力波法,是以手锤或力棒敲击桩顶,给桩一定的能量,产生一纵向应力波,该应力波沿桩身向下传播,由传感器拾取桩身缺陷及不同界面的反射信号,通过检测和分析应力波在桩身中的传播历程。
便可分析出桩基的完整性,并根据桩身突然变化界面时所产生的反射和透射波,来确定桩身缺陷性质,估算桩长或缺陷位置,且根据应力波在桩身中的传播速度来推断混凝土的强度。
以上是下面为建筑人士收集整理的关于“低应变检测桩基完整性”等建筑相关的知识可以登入建设通进行查询。
桩基完整性(低应变试验)试验方法
桩基完整性(低应变试验)试验方法1.1 基础完整性检测(低应变试验)1.1.1 适用范围低应变反射波法适用于混凝土灌注桩、混凝土预制桩、预应力管桩和CFG桩。
对于桩身截面多变且变化幅度较大的灌注桩,应采用其他方法辅助验证低应变法检测的有效性。
受检桩混凝土强度不应低于设计强度的70%,且不应低于15MPa。
1.1.2 检测原理低应变反射波法是目前国内普遍采用的低应变法。
它通过采用瞬态冲击的方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。
因此,基桩必须符合一维波动理论要求,满足平截面假定和一维线弹性杆件模型要求。
一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5.1.1.3 检测方法及工艺要求1.1.3.1 检测前的准备工作a。
受检基桩混凝土强度至少达到设计强度的70%,或期龄不少于14天时方可报检。
b。
施工单位填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。
c。
施工单位向检测单位提供基桩工程相关参数和资料。
d。
检测前,施工单位需做好以下准备工作:1.剔除桩头,使桩顶标高为设计的桩顶标高。
2.要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本相同。
3.灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬的混凝土表面。
4.桩顶表面平整干净且无积水。
5.实心桩的第三方位置打磨出直径约10cm的平面,平面保证水平,不要带斜坡;在距桩第三方2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm的平面,打磨面应平顺光洁密实。
6.当桩头与垫层相连时,相当于桩头处存在很大的截面阻抗变化,会对测试信号产生影响。
因此,测试前应将桩头侧面与断层断开。
7.准备黄油1~2包,作为测试耦合剂用。
8.在基坑内检测,应提前将基坑内水抽干,并搭设好梯子,便于上下。
e。
搜集受检桩的相关技术资料,包括工程概况、基桩的设计参数、场地的工程地质资料以及施工记录情况。
桩基础检测技术—低应变法
低应变动测仪器
FDP204(B)掌上动测仪
目前倾向于低应变法仅 能检测桩身完整性
桩身完整性定义
桩身完整性类别是按缺陷对桩身结构承载力的影 响程度,统一划分为四类的:
一类---桩身完整。, 二类---桩身有轻微缺陷,不会影响桩身结构
低应变动测技术
反射波法 机械阻抗法 水电效应法 动力参数法 共振法 球击法
青藏线基桩检测
原理
基桩反射波法检测桩身结构完整性的基本原理是: 通过在桩顶施加激振信号产生应力波,该应力波沿 桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、 断裂、孔洞等缺陷)和桩底面时,将产生反射波, 检测分析反射波的传播时间、幅值和波形特征,就 能判断桩的完整性。
承载力的发挥。 三类---桩身有明显缺陷,对桩身结构承载力
有影响,一般应采用其他方法验证其可用性,或 根据具体情况进行设计复核或补强处理。 四类---桩身存在严重缺陷,一般应进行补强 处理。
桩基质量检测技术
桩基动力检测是指在桩顶施加一个动态力(可以是 瞬态冲击力或稳态激振力)。桩土系统在动态力的作 用下产生动态响应信号(位移、速度、加速度信号), 通过对信号的时域分析、频域分析或传递函数分析, 判断桩身结构的完整性,推断单桩承载力。
根据作用在桩顶上的动荷载能量能否使桩土之间发 生一定弹性位移或塑性位移,把动力测桩分为低应变、 高应变两种方法。低应变作用在桩顶上的动荷载远小 于桩的使用荷载,能量小,只能使桩土产生弹性变形。
桩基检测方案(低应变、超声波、钻芯及高应变法)
桩基检测方案工程名称:建设单位:检测方法:低应变法、声波透射法、钻芯法及高应变法编制单位:编制人:审批人:编制日期:一、工程概况本项目位于广东省,采用冲孔灌注桩基础,桩径为φ1200~φ1800mm,设计混凝土强度为C35,总桩数为72根。
二、检测目的和依据2.1 检测依据根据国家行业标准《建筑基桩检测技术规范》JGJ106-2003,现提供基桩检测的详细施测方案。
2.2 检测目的根据相关规范、规程要求及本项目的特点,确定采用以下检测方法进行检测:(1)低应变法检测:目的是检测桩身结构完整性,并为高应变和钻芯检测桩确定桩位提供依据。
(2)声波透射法检测:目的是检测桩身结构完整性。
(3)钻芯法检测:目的是检验桩身砼质量、桩身砼强度是否满足设计要求;桩底沉渣是否符合设计及施工验收规范要求;桩底持力层是否符合设计要求;施工记录桩长是否属实。
(4)高应变法检测:目的是检测单桩竖向抗压承载力是否满足设计要求。
三、检测项目和具体内容3.1 低应变检测3.1.1 检测数量根据本项目的要求,确定抽检数量为37根。
检测桩号由相关单位确定3.1.2 检测设备检测仪器采用岩海公司出产的RS-1616K(p)基桩动测仪。
3.1.3 检测原理基桩反射波法检测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的到时、幅值和波形特征,就能判断桩的完整性。
假设桩为一维线性弹性杆,其长度为L,横截面积为A,弹性模量为E,质量密度为ρ,弹性波速为C(C2 = E/ρ),广义波阻抗为Z=AρC,推导可得桩的一维波动方程:∂2u/∂t2=C2∂2u/∂x2-R/ρA假设桩中某处阻抗发生变化,当应力波从介质I(阻抗为Z1)进入介质II(阻抗为Z2)时,将产生速度反射波Vr和速度透射波Vt。
令桩身质量完好系数β=Z2/Z1,则有Vr=Vi×(1-β) /(1+β)Vt=Vi×2/(1+β)缺陷的程度根据缺陷反射的幅值定性确定,缺陷位置根据反射波的时间tx由下式确定Lx=C×tx/23.1.4 技术要求1、检测桩头处理(由施工单位完成)(1)凿去桩顶浮浆、松散或破损部分,露出坚硬的混凝土表面,使桩顶表面平整干净无且无水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 桩基完整性(低应变试验)
1.1一般规定:
(1)低应变反射波法适用范围为:混凝土灌注桩、混凝土预制桩、预应力管桩及CFG 桩。
(2)对桩身截面多变且变化幅度较大灌注桩,应采用其他方法辅助验证低应变法检测的有效性。
(3)受检桩混凝土强度不应低于设计强度的70%,且不应低于15MPa 。
1.2检测原理:
低应变法目前国内普遍采用低应变反射波法,为狭义低应变法,其通过采用瞬态冲击的方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。
因此基桩必须符合一维波动理论要求,满足平截面假定和一维线弹性杆件模型要求,一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5。
1.3检测方法及工艺要求
(1)检测前的准备工作
a 受检基桩混凝土强度至少达到设计强度的70%,或期龄不少于14天时方可报检。
b 施工单位填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。
c 施工单位向检测单位提供基桩工程相关参数和资料。
d 检测前,施工单位做好以下准备工作:
①剔除桩头,使桩顶标高为设计的桩顶标高。
②要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本相同。
③灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬的混凝土表面。
④桩顶表面平整干净且无积水。
⑤实心桩的第三方位置打磨出直径约10cm 的平面,平面保证水平,不要带斜坡;在距桩第三方2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm 的平面,打磨面应平顺光洁密实图2 不同桩径对应打磨点数及位置示意图
0.8m<D≤1.25m D≤0.8m
图2 不同桩径对应打磨点数及位置示意图
⑥当桩头与垫层相连时,相当于桩头处存在很大的截面阻抗变化,会对测试信号产生影响。
因此,测试前应将桩头侧面与断层断开。
⑦准备黄油1~2包,作为测试耦合剂用。
⑧在基坑内检测,应提前将基坑内水抽干,并搭设好梯子,便于上下。
e搜集受检桩的相关技术资料,包括工程概况、基桩的设计参数、场地的工程地质资料以及施工记录情况;
f安装传感器。
传感器的安装对现场信号的采集影响较大,传感器的安装须通过黄油、凡士林或橡皮泥等藕合剂与桩面紧密粘接,并与桩顶面垂直;
g根据现场情况选择合适的激振设备、传感器,检查系统各部分之间是否连接良好,确认系统处于正常工作状态。
1.4数据采集
a通过现场对比试验选定激振锤和激振参数。
短桩或浅部缺陷桩的检测宜采用轻锤短脉冲激振;长桩、大直径桩或深部缺陷的检测宜采用重锤宽脉冲激振;在现场检测过程中,可在激振部位平铺薄层橡胶垫以获取更好的实测信号。
通过改变力锤的重量及锤头材料,可改变冲击入射波的脉冲宽度及频率成分。
锤头刚度较小时,冲击入射波脉冲较宽,含低频成分多,冲击力大小相同时,其能量较大,应力波衰减较慢,适合于获得长桩桩底信号或下部缺陷的识别;锤头刚度较大时,冲击入射波脉冲较窄,含高频成分较多,冲击力大小相同时,虽其能量较小,但更适合于桩身浅部缺陷的识别及定位。
对于长桩,应该先采用低频检波器,重锤敲击来获得实测曲线,再用高频检波器、轻锤敲击来获得浅部鉴别曲线。
b采集桩身的波形信号时,调整增益和激振频率使桩身(特别是桩身下部)的反射特征清晰、重复性好。
各测点记录的有效信号数不宜少于3个,波形具有良好的一致性。
c 对存在缺陷的桩应选用多种激振频率进行重复检测,获取足够的缺陷特征分析资料。
1.5 数据分析与判定
a 桩身平均波速的确定;
b 对波形、波幅、频率等信号特征进行分析,并结合受检桩的成桩工艺、地质条件和施工情况识别断桩缩颈、扩颈等桩身缺陷;
c 进行桩身完整性类别判定,桩身完整性类别应按表3-2和表 3-3原则判定;
d当实测信号所反映的桩身信息(如超过有效检测范围、桩底反射不明显、实测信号无规律等)不足以分析和评价桩身完整性,应结合其它检测方法进行桩身完整性判定。
1.6复测验证与处理
a对于桩身浅部存在缺陷,拟采用开挖法(开挖深度一般在1~8m范围内,条件允许的情况下可适当增加开挖深度)进行验证;
b 若桩身波速偏低或怀疑混凝土强度不够时,分析强度低的各种原因,若对比其余同等条
件的桩后发现强度等级依然存在波速异常,应建议业主、监理等相关部门采用其它检测手段进行检测。
c 若发现桩身深部存在缺陷或桩底沉渣过厚时,应该如实向业主、监理提出采用工程钻机抽芯验证申请,并提交检测原始资料,对有争议性的检测结论,应该提出第三方验证的申请进行仲裁。
1.7成果报告的编写
《建筑基桩检测技术规范》(JGJ 106—2014)强制要求低应变检测报告应给出桩身完整性检测的实测信号曲线,除此之外,检测报告还应包括以下内容:
a 工程概述及岩土工程条件描述;
b 检测方法、原理、仪器设备和过程叙述;
c 受检桩的桩号、桩位平面图和相关的施工记录;
d桩身波速取值;
e 桩身完整性描述、缺陷的位置及桩身完整性类别;
f时域信号时段所对应的桩身长度标尺、指数或线性放大的范围及倍数;或幅频信号分析的频率范围、桩底或桩身缺陷对应的相邻谐峰间的频差;
g必要的说明和建议,比如对扩大或验证检测的建议。
综上所述,其技术流程如图3所示:
图3 瞬态激振时域频域分析法测桩技术流程
1.8数据分析和质量评定
低应变的桩身完整性分析应严格地按照国家及部委颁发的相关规范、规程和标准执行,以时域曲线为主,辅以频域分析,并结合施工情况、岩土工程勘察资料和波形特征等因素进行综合分析判定。
当在桩顶施加一激振后,弹性波沿桩身传播的规律满足一维波动方程,如下式:
022222=∂∂+∂∂x u v t u
ρE
v =2
式中: v —纵波波速
E —桩的弹性模量
A —桩截面积
ρ—桩身材料密度
弹性波在传播过程中会对桩身阻抗(VA Z ρ=)的变化作出响应,假设桩身由1A 、1E 、1ρ、1v 变为2A 、2E 、2ρ、2v ,根据平面弹性波传播理论,其反射系数为:
222111222111A v A v A v A v R v ρρρρ+-=
式中: v R —反射系数
ρ—桩身材料密度
v —纵波波速
A —桩截面积
a 统计法确定桩身波速平均值
为分析时域、频域曲线所反映的桩身波阻抗变化情况、核实桩底信号并确定桩身缺陷位置,首先需要确定桩身波速及其平均值。
在桩长已知、桩底反射信号明确的前提下,在地质条件、设计桩型、成桩工艺相同的基桩中,选取不少于5根Ⅰ类桩的桩身波速按下列计算平均值:
11n
m i i V V n ==∑
( 1) 2i L
V T =∆ ( 2)
式中 m V —桩身波速的平均值;
i V —第i 根受检桩的桩身波速值,《建筑基桩检测技术规范》(JGJ106-2014)要求桩身波速离散性控制在5%以内,即 /5%i m m V V V -≤。
b 数据的分析和桩身完整性判定
完整桩的时域波形图比较规则、均匀、整齐,桩底反射信号明显,平均波速也正常。
完整桩的波形特征如图3-a 所示。
断桩指桩身断裂,混凝土不连续,一般在此处有严重的夹泥,使此处的阻抗明显变小,应力波在断桩片发生强反射,应力波在桩身断裂以上部分来回反射形成多次波,整桩信号不明显,甚至没有桩底反射,类似于短的完整桩。
断桩的波形如图3-b ,断桩的断裂位置由下式确定:
2L V t ''=∆( 3)
其中:L '为断裂位置(m);V '为完整桩波速(m/s);t ∆为入射波与反射波的时间间隔(ms)。
a:完整桩b:断桩c:缩颈桩
d:扩径桩 e:桩身混凝土胶结差(空洞、蜂窝、松散等现象)
图4 桩身典型缺陷与动测波形特征
缩颈桩和扩径桩都有明显的桩底反射信号,和本工地桩身混凝土平均波速相接近,计算桩长与实际桩长相符。
同时在缩颈处或扩径处分别出现同相位和反相位的反射信号。
缩颈桩和扩径桩的波形特征如图3-c和图3-d。
桩身混凝土胶结差视其程度大小,桩身混凝土介于完整桩和断桩之间,轻微接近完整桩,严重接近于断桩。
该类基桩的反射信号与入射波信号同相位,同样有桩底反射信号,但整桩混凝土传播速度偏低,这是桩身混凝土胶结差区别于缩颈桩的重要依据,如图3-e。
依据实测时域或幅频信号特征进行桩身完整性判定的分类标准和分类见表3-3、3-4
表3-3 桩身完整性判定
表3-4 桩身完整性分类表
应变法测不到桩底反射信号的情形受桩的长径比、桩周土阻力、桩端部分桩身阻抗与持力层阻抗相匹配等多种因素影响,所以,绝对要求同一工程所有的Ⅰ、Ⅱ类桩都有清晰的桩底反射是不现实的。
对同一场地、地质条件相近、桩型和成桩工艺相同的基桩,因实测信号无桩底反射波时,可参照本场地同条件下有桩底反射波的其它桩实测信号或结合其它检测方法判定桩身完整性类别。