成都市高考数学二诊试卷(理科)含答案解析
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.数列{an}满足 , ,且 ,则4a﹣a1的最大值为.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如表:
11.已知双曲线 的左、右焦点分别为F1(﹣c,0),F2(c,0),A,B是圆(x+c)2+y2=4c2与C位于x轴上方的两个交点,且F1A∥F2B,则双曲线C的离心率为( )
A. B. C. D.
12.若对∀m,n∈R,有g(m+n)=g(m)+g(n)﹣3,求 的最大值与最小值之和是( )
A.4 B.6 C.8 D.10
A.﹣16 B.﹣6 C. D.6
7.定义运算a*b为执行如图所示的程序框图输出的S值,则 的值为( )
A. B. C.4 D.6
8.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:
①EP⊥AC;
②EP∥BD;
③EP∥面SBD;
④EP⊥面SAC,
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.
22.直角坐标系中曲线C的参数方程为 (θ为参数).
(1)求曲线C的直角坐标方程;
(2)经过点M(0,1)作直线l交曲线C于A,B两点(A在B上方),且满足|BM|=2|AM|,求直线l的方程.
对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.
对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.由直线x=1,x=2,曲线 及x轴所围成的封闭图形的面积是.
14.已知角 的始边是x轴非负半轴.其终边经过点 ,则sinα的值为.
15.在直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上,若圆C上存在唯一一点M,使|MA|=2|MO|,则圆心C的非零横坐标是.
其中恒成立的为( )
A.①③B.③④C.①②D.②③④
9.若曲线y= 与曲线y=alnx在它们的公共点P(s,t)处具有公共切线,则实数a=( )
A.﹣2 B. C.1 D.2
10.已知△ABC是边长为 的正三角形,EF为△ABC的外接圆O的一条直径,M为△ABC的边上的动点,则 的最大值为( )
A.3 B.4 C.5 D.6
A.﹣2 B. C.1 D.2
【考点】利用导数研究曲线上某点切线方程.
【分析】求出两个函数的导数然后求出公共点的斜率,利用向量相等,有公共点解方程即可求出a的值.
【解答】解:曲线y= 的导数为:y′= ,在P(s,t)处的斜率为:k= .
曲线y=alnx的导数为:y′= ,在P(s,t)处的斜率为:k= .
曲线y= 与曲线y=alnx在它们的公共点P(s,t)处具有公共切线,
可得 ,并且t= ,t=alns,
即 ,解得lns= ,解得s2=e.
可得a=1.
故选:C.
10.已知△ABC是边长为 的正三角形,EF为△ABC的外接圆O的一条直径,M为△ABC的边上的动点,则 的最大值为( )
A.3 B.4 C.5 D.6
对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.
对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.
故选:A.
9.若曲线y= 与曲线y=alnx在它们的公共点P(s,t)处具有公共切线,则实数a=( )
年龄
[15,25)
[25,35)
[35,45)
[45,55)
[55,65]
支持“延迟退休”人数
5
10
10
2
1
(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异;
45岁以下
45岁以上
合计
支持
不支持
合计
(Ⅱ)若从年龄在[45,55),[55,65]的被调查人中各随机选取两人进行调查,记选中的4人中支持“延迟退休”人数为ξ,求随机变量ξ的分布列及数学期望.
可得:a>b,
∴S= ×( ﹣ )= .
故选:B.
8.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:
①EP⊥AC;
②EP∥BD;
③EP∥面SBD;
④EP⊥面SAC,
其中恒成立的为( )
A.①③B.③④C.①②D.②③④
【考点】直线与平面平行的判定;直线与平面垂直的判定.
【分析】如图所示,连接AC、BD相交于点O,连接EM,EN.
(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP.
∴几何体的体积V= × ×(1+4)×4×4= .
故选:B
6.已知x,y满足条件 (k为常数),若目标函数z=x+3y的最大值为8,则k=( )
A.﹣16 B.﹣6 C. D.6
【考点】简单线性规划.
【分析】由目标函数z常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k的方程组,消参后即可得到k的取值.
参考数据:
P(K2≥k)
0.100
0.050
0.010
0.001
k
2.706
3.841
6.635
10.828
K2= .
18.已知函数f(x)=sinωx(ω>0)在区间 上单调递增,在区间 上单调递减;如图,四边形OACB中,a,b,c为△ABC的内角A,B,C的对边,且满足 .
(Ⅰ)证明:b+c=2a;
四川省成都市高考数学二诊试卷(理科)
参考答案与试题解析
一、选择题:本大题共12个小题,每小题5分,共60分.
1.已知复数z= ,则z的共轭复数 是( )
A.1﹣i B.1+i C.i D.﹣i
【考点】复数代数形式的乘除运算;复数的基本概念.
【分析】复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可得到选项.
∵a1=2,a5=3a3,∴2+4d=3(2+2d),解得d=﹣2.
则a3=a1+2d=2+2×(﹣2)=﹣2.
故选:A.
3.已知向量 , =(3,m),m∈R,则“m=﹣6”是“ ”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
【考点】平面向量共线(平行)的坐标表示.
∴A(﹣ ,0),B( ,0),C(0,3),
E(0,﹣1),F(0,3),
当点M在边AB上时,设点M(x0,0),
则﹣ ≤x0≤ ,
∵ =(﹣x0,﹣1), =(x0,﹣3),
∴ • =﹣x02+3,
∵﹣ ≤x0≤ ,
【考点】平面向量数量积的运算.
【分析】首先,以边AB所在直线为x轴,以其中点为坐标原点建立平面直角坐标系,然后,对点M的取值情况分三种情形进行讨论,然后运用数量积的坐标表示和二次函数的最值求法,求解其最大值.
【解答】解:如图所示,以边AB所在直线为x轴,
以其中点为坐标原点建立平面直角坐标系,
∵该正三角形ABC的边长为2 ,
(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;
(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;
(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直.
【解答】解:如图所示,连接AC、BD相交于点O,连接EM,EN.
(Ⅱ)若b=c,设∠AOB=θ,(0<θ<π),OA=2OB=2,求四边形OACB面积的最大值.
19.在斜三棱柱ABC﹣A1B1C1中,侧面AC1⊥平面ABC, ,A1C=CA=AB=a,AB⊥AC,D是AA1的中点.
(1)求证:CD⊥平面AB1;
(2)在侧棱BB1上确定一点E,使得二面角E﹣A1C1﹣A的大小为 .
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
4.设函数f(x)=log2x,在区间(0,5)上随机取一个数x,则f(x)<2的概率为( )
A. B. C. D.
5.一个几何体的三视图如图所示,则它的体积为( )
A. B. C.20 D.40
6.已知x,y满足条件 (k为常数),若目标函数z=x+3y的最大值为8,则k=( )
A. B. C.4 D.6
【考点】程序框图.
【分析】由已知的程序框图可知程序的功能是:计算并输出分段函数的值,比较a,b的值,即可计算得解.
【解答】解:由已知的程序框图可知本程序的功能是:
计算并输出分段函数S= 的值,
∵a= ,∴log100a=lg ,
∴ =lg ,∴lga=lg ,
∴a= ,
∵b=log98•log4 = • • = • • = ,
【分析】由 ⇔﹣1×(2+m)﹣2×2=0,即可得出.
【解答】解: =(﹣1,2)+(3,m)=(2,2+m).
由 ⇔﹣1×(2+m)﹣2×2=0,⇔m=﹣6.
因此“m=﹣6”是“ ”的充要条件.
故选:A.
4.设函数f(x)=log2x,在区间(0,5)上随机取一个数x,则f(x)<2的概率为( )
故选D.
5.一个几何体的三视图如图所示,则它的体积为( )
A. B. C.20 D.40
【考点】由三视图求面积、体积.
【分析】几何体是四棱锥,根据三视图判断相关几何量的数据,把数据代入棱锥的体积公式计算.
【解答】解:由三视图知:
该几何体是四棱锥,如图:
其中SA⊥平面ABCD,SA=4,四边形ABCD为直角梯形,AD∥BC,AB=AD=4,BC=1.
20.已知两点A(﹣2,0)、B(2,0),动点P满足 .
(1)求动点P的轨迹E的方程;
(2)H是曲线E与y轴正半轴的交点,曲线E上是否存在两点M、N,使得△HMN是以H为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
21.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x(a∈R,e为自然对数的底)
A. B. C. D.
【考点】几何概型.
【分析】解不等式f(x)<2的解,利用几何概型的概率公式即可得到结论.
【解答】解:∵log2x,x∈(0,5).
∴由f(x)<2,
得log2x<2
解得0<x<4,
∴根据几何概型的概率公式可得若从区间(0,5)内随机选取一个实数x,
f(x)<2的概率为: = ,
【解答】解:复数z= =
所以它的共轭复数为:1﹣i
故选A
2.设Sn是等差数列{an}的前n项和,a1=2,a5=3a3,则a3=( )
A.﹣2 B.0 C.3 D.6
【考点】等差数列的通项公式.
【分析】利用等差数列的通项公式即可求得公差d,再利用等差数列的通项公式即可求出答案.
【解答】解:设等差数列{an}的公差为d,
【解答】解:画出x,y满足的 (k为常数)可行域如下图:
由于目标函数z=x+3y的最大值为8,
可得直线y=x与直线8=x+3y的交点A(2,2),
使目标函数z=x+3y取得最大值,
将x=2,y=2代入2x+y+k=0得:k=﹣6.
故选B.
7.定义运算a*b为执行如图所示的程序框图输出的S值,则 的值为( )
四川省成都市高考数学二诊试卷(理科)
一、选择题:本大题共12个小题,每小题5分,共60分.
1.已知复数z= ,则z的共轭复数 是( )
A.1﹣i B.1+i C.i D.﹣i
2.设Sn是等差数列{an}的前n项和,a1=2,a5=3a3,则a3=( )
A.﹣2 B.0 C.3 D.6
3.已知向量 , =(3,m),m∈R,则“m=﹣6”是“ ”的( )
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如表:
11.已知双曲线 的左、右焦点分别为F1(﹣c,0),F2(c,0),A,B是圆(x+c)2+y2=4c2与C位于x轴上方的两个交点,且F1A∥F2B,则双曲线C的离心率为( )
A. B. C. D.
12.若对∀m,n∈R,有g(m+n)=g(m)+g(n)﹣3,求 的最大值与最小值之和是( )
A.4 B.6 C.8 D.10
A.﹣16 B.﹣6 C. D.6
7.定义运算a*b为执行如图所示的程序框图输出的S值,则 的值为( )
A. B. C.4 D.6
8.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:
①EP⊥AC;
②EP∥BD;
③EP∥面SBD;
④EP⊥面SAC,
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.
22.直角坐标系中曲线C的参数方程为 (θ为参数).
(1)求曲线C的直角坐标方程;
(2)经过点M(0,1)作直线l交曲线C于A,B两点(A在B上方),且满足|BM|=2|AM|,求直线l的方程.
对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.
对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.由直线x=1,x=2,曲线 及x轴所围成的封闭图形的面积是.
14.已知角 的始边是x轴非负半轴.其终边经过点 ,则sinα的值为.
15.在直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上,若圆C上存在唯一一点M,使|MA|=2|MO|,则圆心C的非零横坐标是.
其中恒成立的为( )
A.①③B.③④C.①②D.②③④
9.若曲线y= 与曲线y=alnx在它们的公共点P(s,t)处具有公共切线,则实数a=( )
A.﹣2 B. C.1 D.2
10.已知△ABC是边长为 的正三角形,EF为△ABC的外接圆O的一条直径,M为△ABC的边上的动点,则 的最大值为( )
A.3 B.4 C.5 D.6
A.﹣2 B. C.1 D.2
【考点】利用导数研究曲线上某点切线方程.
【分析】求出两个函数的导数然后求出公共点的斜率,利用向量相等,有公共点解方程即可求出a的值.
【解答】解:曲线y= 的导数为:y′= ,在P(s,t)处的斜率为:k= .
曲线y=alnx的导数为:y′= ,在P(s,t)处的斜率为:k= .
曲线y= 与曲线y=alnx在它们的公共点P(s,t)处具有公共切线,
可得 ,并且t= ,t=alns,
即 ,解得lns= ,解得s2=e.
可得a=1.
故选:C.
10.已知△ABC是边长为 的正三角形,EF为△ABC的外接圆O的一条直径,M为△ABC的边上的动点,则 的最大值为( )
A.3 B.4 C.5 D.6
对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.
对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.
故选:A.
9.若曲线y= 与曲线y=alnx在它们的公共点P(s,t)处具有公共切线,则实数a=( )
年龄
[15,25)
[25,35)
[35,45)
[45,55)
[55,65]
支持“延迟退休”人数
5
10
10
2
1
(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异;
45岁以下
45岁以上
合计
支持
不支持
合计
(Ⅱ)若从年龄在[45,55),[55,65]的被调查人中各随机选取两人进行调查,记选中的4人中支持“延迟退休”人数为ξ,求随机变量ξ的分布列及数学期望.
可得:a>b,
∴S= ×( ﹣ )= .
故选:B.
8.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:
①EP⊥AC;
②EP∥BD;
③EP∥面SBD;
④EP⊥面SAC,
其中恒成立的为( )
A.①③B.③④C.①②D.②③④
【考点】直线与平面平行的判定;直线与平面垂直的判定.
【分析】如图所示,连接AC、BD相交于点O,连接EM,EN.
(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP.
∴几何体的体积V= × ×(1+4)×4×4= .
故选:B
6.已知x,y满足条件 (k为常数),若目标函数z=x+3y的最大值为8,则k=( )
A.﹣16 B.﹣6 C. D.6
【考点】简单线性规划.
【分析】由目标函数z常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k的方程组,消参后即可得到k的取值.
参考数据:
P(K2≥k)
0.100
0.050
0.010
0.001
k
2.706
3.841
6.635
10.828
K2= .
18.已知函数f(x)=sinωx(ω>0)在区间 上单调递增,在区间 上单调递减;如图,四边形OACB中,a,b,c为△ABC的内角A,B,C的对边,且满足 .
(Ⅰ)证明:b+c=2a;
四川省成都市高考数学二诊试卷(理科)
参考答案与试题解析
一、选择题:本大题共12个小题,每小题5分,共60分.
1.已知复数z= ,则z的共轭复数 是( )
A.1﹣i B.1+i C.i D.﹣i
【考点】复数代数形式的乘除运算;复数的基本概念.
【分析】复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可得到选项.
∵a1=2,a5=3a3,∴2+4d=3(2+2d),解得d=﹣2.
则a3=a1+2d=2+2×(﹣2)=﹣2.
故选:A.
3.已知向量 , =(3,m),m∈R,则“m=﹣6”是“ ”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
【考点】平面向量共线(平行)的坐标表示.
∴A(﹣ ,0),B( ,0),C(0,3),
E(0,﹣1),F(0,3),
当点M在边AB上时,设点M(x0,0),
则﹣ ≤x0≤ ,
∵ =(﹣x0,﹣1), =(x0,﹣3),
∴ • =﹣x02+3,
∵﹣ ≤x0≤ ,
【考点】平面向量数量积的运算.
【分析】首先,以边AB所在直线为x轴,以其中点为坐标原点建立平面直角坐标系,然后,对点M的取值情况分三种情形进行讨论,然后运用数量积的坐标表示和二次函数的最值求法,求解其最大值.
【解答】解:如图所示,以边AB所在直线为x轴,
以其中点为坐标原点建立平面直角坐标系,
∵该正三角形ABC的边长为2 ,
(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;
(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;
(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直.
【解答】解:如图所示,连接AC、BD相交于点O,连接EM,EN.
(Ⅱ)若b=c,设∠AOB=θ,(0<θ<π),OA=2OB=2,求四边形OACB面积的最大值.
19.在斜三棱柱ABC﹣A1B1C1中,侧面AC1⊥平面ABC, ,A1C=CA=AB=a,AB⊥AC,D是AA1的中点.
(1)求证:CD⊥平面AB1;
(2)在侧棱BB1上确定一点E,使得二面角E﹣A1C1﹣A的大小为 .
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
4.设函数f(x)=log2x,在区间(0,5)上随机取一个数x,则f(x)<2的概率为( )
A. B. C. D.
5.一个几何体的三视图如图所示,则它的体积为( )
A. B. C.20 D.40
6.已知x,y满足条件 (k为常数),若目标函数z=x+3y的最大值为8,则k=( )
A. B. C.4 D.6
【考点】程序框图.
【分析】由已知的程序框图可知程序的功能是:计算并输出分段函数的值,比较a,b的值,即可计算得解.
【解答】解:由已知的程序框图可知本程序的功能是:
计算并输出分段函数S= 的值,
∵a= ,∴log100a=lg ,
∴ =lg ,∴lga=lg ,
∴a= ,
∵b=log98•log4 = • • = • • = ,
【分析】由 ⇔﹣1×(2+m)﹣2×2=0,即可得出.
【解答】解: =(﹣1,2)+(3,m)=(2,2+m).
由 ⇔﹣1×(2+m)﹣2×2=0,⇔m=﹣6.
因此“m=﹣6”是“ ”的充要条件.
故选:A.
4.设函数f(x)=log2x,在区间(0,5)上随机取一个数x,则f(x)<2的概率为( )
故选D.
5.一个几何体的三视图如图所示,则它的体积为( )
A. B. C.20 D.40
【考点】由三视图求面积、体积.
【分析】几何体是四棱锥,根据三视图判断相关几何量的数据,把数据代入棱锥的体积公式计算.
【解答】解:由三视图知:
该几何体是四棱锥,如图:
其中SA⊥平面ABCD,SA=4,四边形ABCD为直角梯形,AD∥BC,AB=AD=4,BC=1.
20.已知两点A(﹣2,0)、B(2,0),动点P满足 .
(1)求动点P的轨迹E的方程;
(2)H是曲线E与y轴正半轴的交点,曲线E上是否存在两点M、N,使得△HMN是以H为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
21.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x(a∈R,e为自然对数的底)
A. B. C. D.
【考点】几何概型.
【分析】解不等式f(x)<2的解,利用几何概型的概率公式即可得到结论.
【解答】解:∵log2x,x∈(0,5).
∴由f(x)<2,
得log2x<2
解得0<x<4,
∴根据几何概型的概率公式可得若从区间(0,5)内随机选取一个实数x,
f(x)<2的概率为: = ,
【解答】解:复数z= =
所以它的共轭复数为:1﹣i
故选A
2.设Sn是等差数列{an}的前n项和,a1=2,a5=3a3,则a3=( )
A.﹣2 B.0 C.3 D.6
【考点】等差数列的通项公式.
【分析】利用等差数列的通项公式即可求得公差d,再利用等差数列的通项公式即可求出答案.
【解答】解:设等差数列{an}的公差为d,
【解答】解:画出x,y满足的 (k为常数)可行域如下图:
由于目标函数z=x+3y的最大值为8,
可得直线y=x与直线8=x+3y的交点A(2,2),
使目标函数z=x+3y取得最大值,
将x=2,y=2代入2x+y+k=0得:k=﹣6.
故选B.
7.定义运算a*b为执行如图所示的程序框图输出的S值,则 的值为( )
四川省成都市高考数学二诊试卷(理科)
一、选择题:本大题共12个小题,每小题5分,共60分.
1.已知复数z= ,则z的共轭复数 是( )
A.1﹣i B.1+i C.i D.﹣i
2.设Sn是等差数列{an}的前n项和,a1=2,a5=3a3,则a3=( )
A.﹣2 B.0 C.3 D.6
3.已知向量 , =(3,m),m∈R,则“m=﹣6”是“ ”的( )