2013重庆中考数学试题及答案(09修订版).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中考 第1页(共16页) 数学中考 第2页(共16页)
重庆市2013年初中毕业暨高中招生考试(模拟)
数 学 试 卷
(本卷共五个大题,满分150分,考试时间120分钟)
参考公式:抛物线2
y ax bx c =++(0a ≠)的顶点坐标为2424b ac b a a ⎛⎫
-- ⎪⎝⎭
,,对称轴公式为
2b x a
=-
.
一、选择题:(本大题10个小题,每小题4分,共40分)
1.5-的相反数是( ) A .5
B .5-
C .
15
D .15
-
2.计算322x x ÷的结果是( ) A .x
B .2x
C .5
2x
D .6
2x
3.函数13
y x =+的自变量x 的取值范围是( )
A .3x >-
B .3x <-
C .3x ≠-
D .3x -≥
4.如图,直线A B C D 、相交于点E ,D F AB ∥.若100A E C ∠=°,则D ∠等于( ) A .70° B .80° C .90° D .100° 5.下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查一批新型节能灯泡的使用寿命 B .调查长江流域的水污染情况
C .调查重庆市初中学生的视力情况
D .为保证“神舟7号”的成功发射,对其零部件进行检查
6.如图,O ⊙是A B C △的外接圆,AB 是直径.若80B O C ∠=°, 则A ∠等于( )
A .60°
B .50°
C .40°
D .30°
7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是( )
A .
B .
C .
D .
8.观察下列图形,则第n 个图形中三角形的个数是( )
A .22n +
B .44n +
C .44n -
D .4n
9.如图,在矩形A B C D 中,2A B =,1B C =,动点P 从点B 出发, 沿路线B C D →→作匀速运动,那么A B P △的面积S 与点P 运动 的路程x 之间的函数图象大致是( )
10.如图是二次函数y=ax 2+bx+c 的图象,下列结
论中:①abc >0;②b=2a ;③a+b+c <0;④a-b+c >0; ⑤4a+2b+c <0.正确的个数是( ) A .4个 B .3个 C .2个 D .5个
二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.
11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元.那么7840000万元用科学记数法表示为 万元. 12.分式方程
121
1
x x =
+-的解为 .
13.已知A B C △与D EF △相似且面积比为4∶25,则A B C △与D EF △的相似比为 .
14.已知1O ⊙的半径为3cm ,2O ⊙的半径为4cm ,两圆的圆心距12O O 为7cm ,则1O ⊙与2O ⊙的位置关系是 .
15.在平面直角坐标系xOy 中,直线3y x =-+与两坐标轴围成一个AO B △.现将背面完全相同,正面分别标有数1、2、3、
12
、
13
的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上
的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在AO B △内的概率为 .
16.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %.
A .
B .
C .
D .
C
A
E B
F
D 4
题图
……
第1个
第2个
第3个
6题图
D C P
B
A
题图
三、解答题:(本大题4个小题,每小题6分,共24分)
17
.计算:
1
02
1
|2|(π(1)
3
-
⎛⎫
-+⨯---
⎪
⎝⎭
.
18.解不等式组:
30
3(1)21
x
x x
+>
⎧
⎨
--
⎩
,①
≤.②
19.如图所示,为求出河对岸两棵树A、B间的距离,小坤在河岸上选取一点C,然后沿垂直于A C 的直线前进了12米到达点D,测得90
CDB=
∠.取C D的中点E,测得56
AEC=
∠,67
BED=
∠,求河对岸两树间的距离(提示:过点A作AF BD
⊥于点F).
(参考数据:
4
sin56
5
≈,tan56 ≈
2
3
,sin67 ≈
15
14
,tan67 ≈
3
7
.
)
20.为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月
该班同学的植树情况的部分统计如下图所示:
(1)请你根据以上统计图中的信息,填写下表:
四、解答题:(本大题4个小题,每小题10分,共40分)
21.先化简,再求值:
2
2
121
1
24
x x
x x
++
⎛⎫
-÷
⎪
+-
⎝⎭
,其中3
x=-
.
(株)
20题图
植树2株的
人数占32%
数学中考第3页(共16页)数学中考第4页(共16页)
数学中考 第5页(共16页) 数学中考 第6页(共16页)
22.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,C E x ⊥轴于点E ,1tan 422
A B O O B O E ∠===,,.
(1)求该反比例函数的解析式; (2)求直线AB 的解析式.
23.有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.
24.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且A E A C =. (1)求证:B G F G =;
(2)若2AD D C ==,求AB 的长.
五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)
25.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:
(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12
月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对
农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销
售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.916
6.083 6.164)
D
C E
B G
A
24题图 F x
23题图
26.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴
的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE ⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段
OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为6
5
,那么EF=2GO是
否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的
交点P与点C、G构成的△PCG
理由.
26题图
x
数学中考第7页(共16页)数学中考第8页(共16页)
数学中考 第9页(共16页) 数学中考 第10页(共16页)
(第23题)
F
A
C
数学试题参考答案及评分意见
一、选择题
1.A 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.B 10.A 二、填空题
11.6
7.8410⨯ 12.3x =- 13.2:5 14.外切 15.35
16.30
三、解答题
17.解:原式23131=+⨯-+ ···············································································(5分) 3=. ································································································(6分) 18.解:由①,得3x >-.····················································································(2分)
由②,得2x ≤.·····················································································(4分) 所以,原不等式组的解集为32x -<≤.·················································(6分)
19.解:∵E 为CD 中点,CD =12,∴CE =DE =6. 在Rt △ACE 中
∵tan56°=
CE
AC ,
∴AC =CE ·tan56°≈6×23=9.
在Rt △BDE 中, ∵tan67°= BD
DE
, ∴BD =DE ·tan67°≈6×3
7=14 .
∵AF ⊥BD ,
∴AC =DF =9,AF =CD =12, ∴BF =BD -DF =14-9=5.
在Rt △AFB 中,AF =12,BF =5, ∴135
122
2
2
2
=+=+=
BF
AF
AB .
∴两树间距离为13米.
20
················(4分)
(2)补图如下:
····························(6分)
四、解答题: 21.解:原式2
21(1)
2
(2)(2)
x x x x x +-+=
÷
++- ·······························································(4分)
2
1(2)(2)
2(1)
x x x x x ++-=
++ ···························································································(6分) 21
x x -=
+. ··············································································································(8分)
当3x =-时,原式32
5
312
--=
=-+. ······································································· (10分)
22.解:(1)42O B O E == ,,246B E ∴=+=.
C E x ⊥轴于点E .
1tan 2
C E A B O B E
∴∠=
=
,3C E ∴=. ···································································(1分)
∴点C 的坐标为()23C -,
. ···················································································(2分) 设反比例函数的解析式为(0)m y m x
=≠.
将点C 的坐标代入,得32
m
=
-,············································································(3分)
6m ∴=-. ···········································································································(4分)
∴该反比例函数的解析式为6
y x
=-.····································································(5分) (2)4O B = ,(40)B ∴,. ·
···············································································(6分) 1tan 2
O A A B O O B
∠=
= ,
2O A ∴=,(02)A ∴,.·
············································································
············(7分) (株)
数学中考 第11页(共16页) 数学中考 第12页(共16页)
设直线AB 的解析式为(0)y kx b k =+≠.
将点A B 、的坐标分别代入,得240.
b k b =⎧⎨
+=⎩, ··························································(8分)
解得122.k b ⎧
=-⎪⎨⎪=⎩
, ·
······································································································(9分) ∴直线AB 的解析式为122
y x =-
+. ·
································································ (10分) 23.解:(1)画树状图如下: ·······················(4分)
或列表如下:
由图(表)知,所有等可能的结果有12种,其中积为0的有4种, 所以,积为0的概率为4112
3
P =
=.······································································(6分)
(2)不公平.········································································································(7分) 因为由图(表)知,积为奇数的有4种,积为偶数的有8种. 所以,积为奇数的概率为14112
3
P ==, ·································································(8分)
积为偶数的概率为282
12
3
P ==
. ···········································································(9分)
因为
1233
≠,所以,该游戏不公平.
游戏规则可修改为:
若这两个数的积为0,则小亮赢;积为奇数,则小红赢.······································ (10分) (只要正确即可)
24.(1)证明:90ABC D E AC ∠= °,⊥于点F , ABC AFE ∴∠=∠. ······································(1分)
A C A E E A F C A
B =∠=∠ ,,
A B C A F E ∴△≌△········································(2分)
AB AF ∴=.·
················································(3分) 连接A G , ······················································(4分) A G A G A B A F == ,,
R t R t ABG AFG ∴△≌△. ··························(5分) B G F G ∴=. ················································(6分)
(2)解:AD D C D F AC = ,⊥,
11
22
A F A C A E ∴=
=
.·
·······················································································(7分) 30E ∴∠=°. 30FAD E ∴∠=∠=°,·························································································(8分)
AF ∴= ········································································································(9分)
AB AF ∴==
····························································································· (10分)
五、解答题:
25.解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得
3.95
4.3.k b k b +=⎧⎨
+=⎩
,
········································································································(1分) 解得0.13.8.
k b =⎧⎨
=⎩,所以,0.1 3.8p x =+. ···································································(2分)
设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+. ·······················(3分) 化简,得2
5709800w x x =-++,所以,2
5(7)10125w x =--+.
当7x =时,w 取得最大值,最大值为10125.
答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. ····(4分) (2)去年12月份每台的售价为501226002000-⨯+=(元),
去年12月份的销售量为0.112 3.85⨯+=(万台), ···············································(5分) 根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. ····················(8分)
令%m t =,原方程可化为2
7.514 5.30t t -+=.
D C
E
B G
A F 0 1 3 0 1 3 0 1 3 0 1 3 2 3 4 1 幸运数 吉祥数 积
数学中考 第13页(共16页) 数学中考 第14页(共16页)
27.5
15
t ∴=
=
⨯.
10.528t ∴≈,2 1.339t ≈(舍去)
答:m 的值约为52.8.························································································· (10分) 26.解:(1)由已知,得(30)C ,,(22)D ,,
90AD E C D B BC D ∠=-∠=∠ °, 1tan 2tan 212A E A D A D E B C D ∴=∠=⨯∠=⨯
= .
∴(01)E ,
. ············································································································(1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.
将1c =和点D C 、的坐标分别代入,得
42129310.a b a b ++=⎧⎨
++=⎩
,
····································································································(2分) 解这个方程组,得56
136a b ⎧
=-⎪⎪⎨⎪=⎪⎩
故抛物线的解析式为2
51316
6
y x x =-
+
+. ···························································(3分) (2)2E F G O =成立. ·························································································(4分)
点M 在该抛物线上,且它的横坐标为65
,
∴点M 的纵坐标为
125
.························································································(5分)
设D M 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得
1122612.5
5k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧
=-⎪
⎨⎪=⎩,. ∴D M 的解析式为132
y x =-
+.·
········································································(6分) ∴(03)F ,
,2E F =. ···························································································(7分) 过点D 作D K O C ⊥于点K ,
则D A D K =.
90A D K F D G ∠=∠= °, F D A G D K ∴∠=∠.
又90F A D G K D ∠=∠= °,
D AF D K G ∴△≌△. 1K G A F ∴==.
1G O ∴=.············································································································(8分) 2E F G O ∴=.
(3) 点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,.
∴222(1)2PG t =-+,222
(3)2PC t =-+,2G C =.
①若P G P C =,则2222(1)2(3)2t t -+=-+, 解得2t =.∴(22)P ,,此时点Q 与点P 重合.
∴(22)Q ,
. ···········································································································(9分) ②若PG G C =,则22(1)22t 2-+=,
解得 1t =,(12)P ∴,,此时G P x ⊥轴.
G P 与该抛物线在第一象限内的交点Q 的横坐标为1,
∴点Q 的纵坐标为
73
.
∴713Q ⎛⎫
⎪⎝⎭
,. ······································································································· (10分)
x。