高考立体几何大题及答案(理)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料范本
本资料为word版本,可以直接编辑和打印,感谢您的下载
高考立体几何大题及答案(理)
地点:__________________
时间:__________________
说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容
1.如图,四棱锥中,底面为矩形,底
面,,,点在侧棱上,。
(I)证明:是侧棱的中点;
求二面角的大小。
2.如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为
AA1、B1C的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BA
C
B
A1
B1
C1
D
E
D-C为60°,求B1C与平面BCD所成的角的大小
3.如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.
4.如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面;(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
5.如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面交于点.
(1)求证:平面⊥平面;
(2)求直线与平面所成的角;
(3)求点到平面的距离.
6.如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(I)求证:;
(II)设线段、的中点分别为、,求证:∥
(III)求二面角的大小。
7.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD =AD=a,点E是SD上的点,且DE=a(0<≦1). (Ⅰ)求证:对任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求的值。
8.如图3,在正三棱柱中,AB=4, ,点D是BC的中点,点E 在AC上,且DEE.(Ⅰ)证明:平面平面; (Ⅱ)求直线AD 和平面所成角的正弦值。
9.如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(I)求证:;
(II)设线段、的中点分别为、,
求证:∥
(III)求二面角的大小。
10.如题(18)图,在五面体中,∥,,,四边形为平行四边形,平面,.求:
(Ⅰ)直线到平面的距离;
(Ⅱ)二面角的平面角的正切值.
11.如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2)设PD=AD,求二面角A-PB-C的余弦值.
12(本小题满分12分)
如图,已知四棱锥P-ABCD的底面为等腰梯形,ABCD,ACBD,垂足为H,
PH是四棱锥的高,E为AD中点
证明:PEBC
若APB=ADB=60°,求直线PA与平面PEH所成角的正弦值
参考答案
1、【解析】(I)解法一:作∥交于N,作交于E,
连ME、NB,则面,,
设,则,
在中,。
在中由
解得,从而 M为侧棱的中点M.
解法二:过作的平行线.
(II)分析一:利用三垂线定理求解。
在新教材中弱化了三垂线定理。
这两年高考中求二面角也基本上不用三垂线定理的方法求作二面角。
过作∥交于,作交于,作交于,则∥,面,面面,面即为所求二面角的补角.
法二:利用二面角的定义。
在等边三角形中过点作交于点,则点为AM的中点,取SA的中点G,连GF,易证,则即为所求二面角.
解法二、分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D—xyz,则。
S
A
B
C
D
M
z
x
y
(Ⅰ)设,则
,
,由题得
,即
解之个方程组得即
所以是侧棱的中点。
法2:设,则
又
故,即
,解得,
所以是侧棱的中点。
(Ⅱ)由(Ⅰ)得,又,,
设分别是平面、的法向量,则
且,即且
分别令得,即
,
∴
二面角的大小。
2、解法一:(Ⅰ)取BC中点F,连接EF,则EF,从而EFDA。
连接AF,则ADEF为平行四边形,从而AF//DE。
又DE⊥平面,故AF⊥平面,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC。
(Ⅱ)作AG⊥BD,垂足为G,连接CG。
由三垂线定理知
CG⊥BD,故∠AGC为二面角A-BD-C的平面角。
由题设知,
∠AGC=600..
设AC=2,则AG=。
又AB=2,BC=,故AF=。
由得2AD=,解得AD=。
故AD=AF。
又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为与平面BCD所成的角。
.
因ADEF为正方形,AD=,故EH=1,又EC==2,
所以∠ECH=300,即与平面BCD所成的角为300.
解法二:
(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz。
设B(1,0,0),C(0,b,0),D(0,0,c),则(1,0,2c),E(,,c).
于是=(,,0),=(-1,b,0).由DE⊥平面知DE⊥BC,
=0,求得b=1,所以 AB=AC。
(Ⅱ)设平面BCD的法向量则
又=(-1,1, 0),
=(-1,0,c),故
令x=1, 则y=1, z=,=(1,1, ).
又平面的法向量=(0,1,0)
由二面角为60°知,=60°,
故°,求得
于是,
,
°
所以与平面所成的角为30°
3、(Ⅰ)证明:连接,在中,分别是的中点,所以,又,所以,又平面ACD ,DC平面ACD,所以平面ACD (Ⅱ)在中,,所以
而DC平面ABC,,所以平面ABC
而平面ABE,所以平面ABE平面ABC,所以平面ABE
由(Ⅰ)知四边形DCQP是平行四边形,所以
所以平面ABE,所以直线AD在平面ABE内的射影是AP,所以直线AD与平面ABE所成角是
在中,,
所以
4、【解法1】(Ⅰ)∵四边形ABCD是正方形,∴AC⊥BD,
∵,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面.
(Ⅱ)设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O,E分别为DB、PB的中点,
∴OE//PD,,又∵,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
∴,即AE与平面PDB所成的角的大小为.
【解法2】如图,以D为原点建立空间直角坐标系,设
则,
(Ⅰ)∵,
∴,
∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,
∴平面.
(Ⅱ)当且E为PB的中点时,,
设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∵,
∴,
∴,即AE与平面PDB所成的角的大小为.
多面体ABCDEF的体积为VE—ABCD+VE—BCF=
5、解:方法(一):
(1)证:依题设,M在以BD为直径的球面上,则BM⊥PD.
因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD,所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD.
(2)设平面ABM与PC交于点N,因为AB∥CD,所以AB∥平面PCD,则AB∥MN∥CD,
由(1)知,PD⊥平面ABM,则MN是PN在平面ABM上的射影,
所以就是与平面所成的角,
且
所求角为
(3)因为O是BD的中点,则O点到平面ABM的距离等于D 点到平面ABM距离的一半,由(1)知,PD⊥平面ABM于M,则|DM|就是D点到平面ABM距离.
因为在Rt△PAD中,,,所以为中点,,则O点到平面ABM 的距离等于。
方法二:
(1)同方法一;
(2)如图所示,建立空间直角坐标系,则,,,,,,设平面的一个法向量,由可得:,令,则,即.设所求角为,则,
所求角的大小为.
(3)设所求距离为,由,得:
6、【解析】解法一:
因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF.
因为⊿ABE为等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因为∠AEF=45,
所以∠FEB=90°,即EF⊥BE.
因为BC平面ABCD, BE平面BCE,
BC∩BE=B
所以
…………………………………………6分
(II)取BE的中点N,连结CN,MN,则MNPC
∴ PMNC为平行四边形,所以PM∥CN.
∵ CN在平面BCE内,PM不在平面BCE内,
∴ PM∥平面
BCE. (8)
分
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥A B,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD,
作GH⊥BD于H,连结FH,则由三垂线定理知BD⊥FH.
∴ ∠FHG为二面角F-BD-A的平面角.
∵ FA=FE,∠AEF=45°,
∠AEF=90°, ∠FAG=45°.
设AB=1,则AE=1,AF=,则
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,
,
在Rt⊿FGH中, ,
∴ 二面角的大小为
…………………………………………12分
解法二: 因等腰直角三角形,,所以
又因为平面,所以⊥平面,
所以
即两两垂直;如图建立空间直角坐标系,
(I) 设,则,
∵,∴,
从而
,
于是,
∴⊥,⊥
∵平面,平面,
∴
(II),从而
于是
∴⊥,又⊥平面,直线不在平面内,
故∥平面
(III)设平面的一个法向量为,并设=(
即
取,则,,从而=(1,1,3)
取平面D的一个法向量为
故二面角的大小为
7、(Ⅰ)证发1:连接BD,由底面是正方形可得ACBD。
SD平面ABCD,BD是BE在平面ABCD上的射影,
由三垂线定理得ACBE.
(II)解法1:SD平面ABCD,CD平面ABCD, SDCD.
又底面ABCD是正方形,CDAD,又SDAD=D,CD平面SAD。
过点D在平面SAD内做DFAE于F,连接CF,则CFAE,
故CFD是二面角C-AE-D 的平面角,即CFD=60°
在Rt△ADE中,AD=, DE= , AE= 。
于是,DF=
在Rt△CDF中,由cot60°=
得,即=3
,解得=
8、解:(Ⅰ)如图所示,由正三棱柱的性质知平面.
又DE平面ABC,所以DE.而DEE,,
所以DE⊥平面.又DE 平面,
故平面⊥平面.
(Ⅱ)解法 1: 过点A作AF垂直于点,
连接DF.由(Ⅰ)知,平面⊥平面,
所以AF平面,故是直线AD和
平面所成的角。
因为DE,
所以DEAC.而ABC是边长为4的正三角形,
于是AD=,AE=4-CE=4-=3.
又因为,所以E= = 4,
, .
即直线AD和平面所成角的正弦值为 .
解法2 : 如图所示,设O是AC的中点,以O为原点建立空
间直角坐标系,
则相关各点的坐标分别是A(2,0,0,), (2,0,), D(-1, ,0), E(-1,0,0).
易知=(-3,,-),=(0,-,0),=(-3,,0).
设是平面的一个法向量,则
解得.
故可取.于是
= .
由此即知,直线AD和平面所成角的正弦值为 .
所以ME与BN不共面,它们是异面直
线。
……..12分
9、【解析】解法一:
因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF.
因为⊿ABE为等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因为∠AEF=45,
所以∠FEB=90°,即EF⊥BE.
因为BC平面ABCD, BE平面BCE,
BC∩BE=B
所以………………6分
(II)取BE的中点N,连结CN,MN,则MNPC
∴ PMNC为平行四边形,所以PM∥CN.
∵ CN在平面BCE内,PM不在平面BCE内,
∴ PM∥平面
BCE. (8)
分
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD,
作G H⊥BD于H,连结FH,则由三垂线定理知BD⊥FH.
∴ ∠FHG为二面角F-BD-A的平面角.
∵ FA=FE,∠AEF=45°,∠AEF=90°, ∠FAG=45°.
设AB=1,则AE=1,AF=,则
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,
,
在Rt⊿FGH中, ,
∴ 二面角的大小为………………12分
解法二: 因等腰直角三角形,,所以
又因为平面,所以⊥平面,所以
即两两垂直;如图建立空间直角坐标系, (I) 设,则,
∵,∴,
从而
,
于是,
∴⊥,⊥
∵平面,平面,
∴
(II),从而
于是
∴⊥,又⊥平面,直线不在平面内,
故∥平面
(III)设平面的一个法向量为,并设=(即
取,则,,从而=(1,1,3)
取平面D的一个法向量为
故二面角的大小为
10、解法一:(Ⅰ)平面, AB到面的距离等于点A到面的距离,过点A作于G,因∥,故;又平面,由三垂线定理可知,,故,知,所以AG为所求直线AB到面的距离。
在中,
由平面,得AD,从而在中,。
即直线到平面的距离为。
(Ⅱ)由己知,平面,得AD,又由,知,故平面ABFE
,所以,为二面角的平面角,记为.
在中, ,由得,,从而
在中, ,故
所以二面角的平面角的正切值为.
解法二:
(Ⅰ)如图以A点为坐标原点,的方向为的正方向建立空间直角坐标系数,则
A(0,0,0) C(2,2,0) D(0,2,0) 设可得,由.即,解得
∥,
面,所以直线AB到面的距离等于点A到面的距离。
设A点在平面上的射影点为,则因且,而
,此即解得①,知G点在面上,故G点在FD上.
,故有② 联立①,②解得, .
为直线AB到面的距离. 而所以
(Ⅱ)因四边形为平行四边形,则可设, .由
得,解得.即.故
由,因,,故为二面角的平面角,又,,,所以
111111.解:(1)因为∠DAB=60°,AB=2AD,由余弦定理得.
从而BD2+AD2=AB2,故BD⊥AD.
又PD⊥底面ABCD,可得BD⊥PD.
所以BD⊥平面PAD.故PA⊥BD.
(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x
轴的正半轴建立空间直角坐标系Dxyz.则A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1).
=(-1,,0),=(0,,-1),=(-1,0,0).
设平面PAB的法向量为n=(x,y,z),则
即
因此可取n=(,1,).
设平面PBC的法向量为m,则
可取m=(0,-1,-),.
故二面角APBC的余弦值为.
12.解:以为原点,分别为轴,线段的长为单位长,建立
空间直角坐标系如图,则
(Ⅰ)设
则
可得
因为
所以
(Ⅱ)由已知条件可得
设为平面的法向量
则即
因此可以取,
由,
可得
所以直线与平面所成角的正弦值为。