第一讲速算与巧算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲速算与巧算
第一讲速算与巧算
一、知识要点
速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题的策略。
转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。
二、精讲精练
【例题1】计算9+99+999+9999
【思路导航】这四个加数分别接近10、100、1000、10000。
在计算这类题目时,常使用减整法,例如将99转化为100-1。
这是小学数学计算中常用的一种技巧。
9+99+999+9999
=(10-1)+(100-1)+(1000-1)+(10000-1)
=10+100+1000+10000-4
=11106
练习1:
1计算1998+2997+4995+5994 2.计算19998+39996+49995+69996.
【例题2】计算489+487+483+485+484+486+488
【思路导航】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。
489+487+483+485+484+486+488
=490×7-1-3-7-5-6-4-2
=3430-28
=3402
想一想:如果选480为基准数,可以怎样计算?.
练习2:
1. 1032+1028+1033+1029+1031+1030
2.2451+2452+2446+245
3.
【例题3】计算下面各题。
(1)632-156-232 (2)128+186+72-86
【思路导航】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。
练习3:
计算下面各题
1.1208-569-208
2.283+69-183
3.132-85+68
【例题4】计算下面各题。
1. 248+(152-127)
2. 324-(124-97)
3. 283+(358-183)
【思路导航】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。
我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。
1.248+(152-127)
=248+152-127
=400-127
=273
练习4:
计算下面各题
1. 462-(262-129)
2. 662-(315-238)
3.736+678+2386-(336+278)-186
【例题5】计算下面各题。
(1)286+879-679 (2)812-593+193 2.324-(124-97)=324-124+97 =200+97 =297 3.283+(358-183)=283+358-183 =283-183+358 =100+358=458
(2)128+186+72-86 =128+72+186-86 =(128+72)+(186-86) =200+100=300
(1)632-156-232 =632-232-156 =400-156 =244
【思路导航】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
练习5:
计算下面各题。
1.368+1859-859
2.582+393-293
3.632-385+285
【例题6】:计算325÷25
分析与解答:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。
利用这一性质,可以使这道计算题简便。
325÷25
=(325×4)÷(25×4)
=1300÷100
=13
练习6:
计算下面各题。
1、450÷25
2、525÷25
3、3500÷125
【例题7】:计算25×125×4×8
分析与解答:经过仔细观察可以发现:在这道连乘算式中,如果先把25与4相乘,可以得到100;同时把125与8相乘,可以得到1000;再把100与1000相乘就简便了。
这就启发我们运用乘法交换律和结合律使计算简便。
25×125×4×8
=(25×4)×(125×8)
=100×1000
=100000
练习7:
(2)812-593+193 =812-(593-193) =812-400 =412
(1)286+879-679 =286+(879-679) =286+200 =868
计算下面各题。
125×15×8×4 25×24 25×5×64×125
【例题8】:计算(1)(360+108)÷36 (2)(450-75)÷15
分析与解答:两个数的和(或差)除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(或差)。
利用这一性质,可以使这道题计算简便。
(1)(360+108)÷36 (2)(450-75)÷15
=360÷36+108÷36 =450÷15-75÷15
=10+3 =30-5
=13 =25
练习8:
计算下面各题。
(720+96)÷24 (4500-90)÷45 (10000-1000-100-10)÷10
【例题9】:计算158×61+42×61
分析与解答:乘法分配律
158×61+42×61
=(158+42)×61
=2×61×3
=366
练习9:
计算下面各题。
238×36+36×62 624×48+76×48 138×27+27×62
【例题10】:计算下面各题。
(1)123×96÷16 (2)200÷(25÷4)
分析与解答:这两道题都是乘除混合运算式题,我们可以根据这两道题的特点,采用加括号或去括号的方法,使计算简便。
其方法与加减混合运算添、去括号的方法类似,可以概括为:括号前是乘号,添、去括号不变号;括号前是除号,添、去括号要变号。
(1)123×96÷16 (2)200÷(25÷4)
=123×(96÷16)=200÷25×4
=123×6 =8×4
=738 =32。