2020年中考数学备考二次函数专题复习(含答案解析)
2020年中考数学培优复习题二次函数图像和性质(含解析)
7.对于二次函数 y x2 2x ,有下列四个结论,其中正确的结论的个数为(
)
①它的对称轴是直线 x 1 ;
②设 y1 x12 2x1, y2 x22 2x2 ,则 x2 x1 时,有 y2 y1 ;
③它的图象与 x 轴的两个交点是(0,0)和(2,0)
④当 0 x 2 时, y 0
平移 3 个单位长度,则经过这两次平移后所得抛物线的顶点坐标是
.
14.二次函数 y x2 2x 4 的图象的开口方向是 ,对称轴是 ,顶点坐标是
15.抛物线 y 2x2 4x 3 绕坐标原点旋转 180°所得的抛物线的表达式是
.
16.若抛物线 y x2 4x c 的顶点在直线 y x 1上,求 c 的值______
17.已知点 P(m,n)在抛物线 y ax2 x a 上,当 m≥﹣1 时,总有 n≤1 成立,则 a 的
取值范围是
.
三、解答题(共有 6 道小题)
18.抛物线 y 3x 32 与 x 轴交点为 A,与 y 轴交点为 B,求 A,B 两点坐标及△AOB 的
面积
19.已知,在同一平面直角坐标系中,反比例函数 y 5 与二次函数 y x2 2x c 的图 x
A.1 B.2 C.3 D.4
8.已知二次函数 y ax2 bx c 的 y 与 x 的部分对应值如下表:
x …… -1 0 1 3 ……
y …… -3 1 3 1 ……
则下列判断中正确的是(
)
A.抛物线开口向上
B.抛物线与 y 轴交于负半轴
C.图象对称轴为直线 x=1 D.方程 ax2 bx c 0 有一个根在 3 与 4 之间
象交于点 A(-1,m). (1)求 m,c 的值; (2)求二次函数图象的对称轴和顶点坐标.
2020中考数学专题复习 二次函数与不等式(组)的综合应用(含解析)
二次函数与不等式(组)的综合应用一、单选题1.已知二次函数y1=ax2+bx+c (a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2),如图所示,能使y1>y2成立的x取值范围是()A. x<﹣2B. ﹣2<x<8 C. x>8 D. x<﹣2 或x>82.如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()A. x>1B. x<-1 C. 0<x<1 D. -1<x<03.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A. x<﹣4或x>2B. ﹣4≤x≤2 C. x≤﹣4或x≥2 D. ﹣4<x<24.已知函数y=-x2+x+2,则当y<0时,自变量x的取值范围是()A. x<-1或x>2B. -1<x<2 C. x<-2或x>1 D. -2<x<15.如图,抛物线与双曲线的交点A的横坐标是1,则关于x的不等式的解集是()A. x>1B. x<1C. 0<x<1D. -1<x<06.如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是2,则关于x的不等式 -+ x2+1>0的解集是 ( )A. x>2B. x<0 或x>2 C. 0<x<2D. -2<x<07.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A. y=60(300+20x)B. y=(60﹣x)(300+20x)C. y=300(60﹣20x) D.y=(60﹣x)(300﹣20x)8.函数中,当时,函数值的取值范围是()A. B.C. D.9.二次函数的图象如图所示.当y<0时,自变量x的取值范围是().A. -1<x<3B. x<-1 C. x>3 D. x<-1或x>310.抛物线y=﹣x2+bx+c的部分图象如图所示,对称轴是直线x=﹣1,与x轴交于点(1,0),若y<0,则x的取值范围是()A. x>0B. x>1 C. x<﹣3或x>1 D. ﹣3<x<111.方程x2﹣+1=﹣4x的正数根的取值范围是()A. 0<x<1B. 1<x<2 C. 2<x<3 D. 3<x<412.二次函数y=x2﹣x﹣2的图象如图所示,则函数值y<0时x的取值范围是()A. x<﹣1B. x>2 C. ﹣1<x<2 D. x<﹣1或x>2二、填空题13.已知二次函数y=ax2+bx+c(a>0)与一次函数y=kx+m的图象相交于A(﹣2,1)、B(3,6)两点,则能使关于x的不等式ax2+bx+c<kx+m成立的x的取值范围是________.14.如图,抛物线y1=﹣x2+4x和直线y2=2x在同一直角坐标系中.当y1>y2时,x的取值范围是________.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c<0的解集是________.16.如图,二次函数y1=ax2+bx+c与一次函数y2=kx的图象交于点A和原点O,点A的横坐标为﹣4,点A和点B 关于抛物线的对称轴对称,点B的横坐标为1,则满足0<y1<y2的x的取值范围是________.17.如图.已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(﹣2,4),B(8,2),根据图象能使y1>y2成立的x取值范围是________.18.根据下列要求,解答相关问题.请补全以下求不等式﹣2x2﹣4x>0的解集的过程.①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为________;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.19.二次函数y1=ax2+bx+c的图象与一次函数y2=kx+b的图象如图所示,当y2>y1时,根据图象写出x的取值范围________.三、解答题20.春节期间,物价局规定花生油的最低价格为4.1元/kg,最高价格为4.5元/kg,小王按4.1元/kg购入,若原价出售,则每天平均可卖出200kg,若价格每上涨0.1元,则每天少卖出20kg,若油价定为X元,每天获利W 元,求W与X满足怎样的关系式?21.如图,抛物线y1=x2+mx+n与直线y2=x﹣1交于点A(a,﹣2)和B(b,2).(1)求a,b的值;(2)观察图象,直接写出当y1<y2时x的取值范围.四、综合题22.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.观察图像可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图像,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(1)、(2)、(3)补充完整:(1)①将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;②构造函数,画出图像设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图像.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(2)确定两个函数图像公共点的横坐标观察所画两个函数的图像,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为________(3)借助图像,写出解集结合(1)的讨论结果,观察两个函数的图像可知:不等式x3+4x2﹣x﹣4>0的解集为________ 23.如图,已知抛物线y1=﹣2x2+2与直线y2=2x+2交于A、B两点(1)求线段AB的长度;(2)结合图象,请直接写出﹣2x2+2>2x+2的解集.答案解析部分一、单选题1.已知二次函数y1=ax2+bx+c (a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2),如图所示,能使y1>y2成立的x取值范围是()A. x<﹣2B. ﹣2<x<8 C. x>8 D. x<﹣2 或x>8【答案】D【考点】二次函数与不等式(组)【解析】【解答】解:∵A(﹣2,4)、B(8,2),∴能使y1>y2成立的x的取值范围是x<﹣2或x>8.故选D.【分析】根据函数图象写出抛物线在直线上方部分的x的取值范围即可.2.如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()A. x>1B. x<-1 C. 0<x<1 D. -1<x<0【答案】D【考点】二次函数与不等式(组)【解析】【解答】∵抛物线y=x2+1与双曲线y=的交点A的横坐标是1,∴x=1时,=x2+1,再结合图象当0<x<1时,>x2+1,∴-1<x<0时,||>x2+1,∴+x2+1<0,∴关于x的不等式+x2+1<0的解集是-1<x<0.故选:D.【分析】根据图形双曲线y= k x 与抛物线y=x2+1的交点A的横坐标是1,即可得出关于x的不等式 k x +x2+1<0的解集.本题主要考查了二次函数与不等式.解答此题时,利用了图象上的点的坐标特征来解双曲线与二次函数的解析式.3.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A. x<﹣4或x>2B. ﹣4≤x≤2 C. x≤﹣4或x≥2 D. ﹣4<x<2【答案】D【考点】二次函数与不等式(组)【解析】【解答】解:∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<2.故选D.【分析】由抛物线与x轴的交点及对称轴求出另一个交点坐标,根据抛物线开口向下,根据图象求出使函数值y >0成立的x的取值范围即可.4.已知函数y=-x2+x+2,则当y<0时,自变量x的取值范围是()A. x<-1或x>2B. -1<x<2 C. x<-2或x>1 D. -2<x<1【答案】A【考点】二次函数与不等式(组)【解析】【分析】先求出函数的图象与x轴的交点坐标,再根据函数的图象开口向下,即可得出当y<0时自变量x的取值范围.【解答】当y=0时,-x2+x+2=0,(x+1)(-x+2)=0,x1=-1,x2=2,由于函数开口向下,可知当y<0时,自变量x的取值范围是x<-1或x>2.故选A【点评】此题考查了二次函数与不等式,用到的知识点是抛物线与x轴的交点及二次函数图象的性质,根据抛物线与x轴的交点坐标及二次函数的图象求出不等式的解集是解题的关键.5.如图,抛物线与双曲线的交点A的横坐标是1,则关于x的不等式的解集是()A. x>1B. x<1C. 0<x<1D. -1<x<0【答案】C【考点】二次函数与不等式(组)【解析】【分析】由得,,∵点A的横坐标为1,∴不等式的解集为:6.如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是2,则关于x的不等式 -+ x2+1>0的解集是 ( )A. x>2B. x<0 或x>2 C. 0<x<2D. -2<x<0【答案】B【考点】二次函数与不等式(组)【解析】【解答】∵-+x2+1>0,∴x2+1>,∵抛物线y=x2+1与双曲线y=的交点A的横坐标是2,结合图象可得:当x<0 或x>2时,x2+1>,即关于x的不等式-+x2+1>0的解集是:x<0 或x>2.故选B.【分析】由- k x +x2+1>0,即可得x2+1> k x ,又由抛物线y=x2+1与双曲线y= k x 的交点A的横坐标是2,观察图象可得当x<0 或x>2时,x2+1> k x ,继而求得关于x的不等式- k x +x2+1>0的解集.此题考查了二次函数与不等式的关系.此题难度适中,注意掌握图象与不等式的关系是解此题的关键,注意数形结合思想的应用.7.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A. y=60(300+20x)B. y=(60﹣x)(300+20x)C. y=300(60﹣20x) D.y=(60﹣x)(300﹣20x)【答案】B【考点】二次函数与不等式(组)【解析】【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.8.函数中,当时,函数值的取值范围是()A. B.C. D.【答案】A【考点】二次函数与不等式(组)的综合应用【解析】【解答】∵函数y=x ²−2x-3中,a=1>0,∴此抛物线开口向上,∵此函数可化为:y=(x−1) ²-4,∴其顶点坐标为:(1,-4),∴当x=1时此函数取得最小值y=-4;当x=-2时此函数取得最大值y=5,∴函数y的取值范围为:-4⩽y⩽5.故答案为:A.【分析】先根据二次函数解析式得出抛物线开口向上,且对称轴是x=1,当x=1时此函数取得最小值y=-4,当x=-2时此函数取得最大值y=5,即可求出y的取值范围。
2020届中考数学总复习(17)二次函数-精练精析(2)及答案解析
函数——二次函数2一.选择题(共9小题)1.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个2如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①② B.①④ C.①③④D.②③④3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0D.9a+c>3b4.如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④ C.①③④D.①②5.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<06.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.57.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位 B.向右平移2个单位 C.向上平移2个单位 D.向下平移2个单位8.将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()A.(0,2)B.(0,3)C.(0,4)D.(0,7)9.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2二.填空题(共6小题)10.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=_________ .11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________ 米.12.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________ .13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________ 元.14.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_________ .15.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是_________ .三.解答题(共8小题)16.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).17.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18.已知二次函数y=x2﹣4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.19.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.21.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?23.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?函数——二次函数2参考答案与试题解析一.选择题(共9小题)1.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个 C 2个D.1个考点:二次函数图象与系数的关系.专题:数形结合.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选:B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用.2.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①②B.①④C.①③④D.②③④考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组).专题:数形结合.分析:根据抛物线与x轴有两个交点可得b2﹣4ac>0,进而判断①正确;根据题中条件不能得出x=﹣2时y的正负,因而不能得出②正确;如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判断③错误;先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.解答:解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故①正确;②x=﹣2时,y=4a﹣2b+c,而题中条件不能判断此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=﹣2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2,故④正确.故选:B.点评:主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用.3二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 Bb>0 C.2a+b≠0D.9a+c>3b考点:二次函数图象与系数的关系.专题:压轴题;数形结合.分析:由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;根据抛物线的对称性得到抛物线对称轴为直线x=﹣,若x=1,则2a+b=0,故可能成立;由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.解答:解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;故B错误;∵抛物线对称轴为直线x=﹣,∴若x=1,即2a+b=0;故C错误;∵当x=﹣3时,y>0,∴9a﹣3b+c>0,即9a+c>3b.故选:D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.4.如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B③④C.①③④D.①②考点:二次函数图象与系数的关系.专题:数形结合.分析:①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c 的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④求出点(﹣2,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(﹣2,y1)关于直线x=的对称点的坐标是(3,y1),又∵当x>时,y随x的增大而减小,<3,∴y1<y2.故④正确;综上所述,正确的结论是①②④.故选:A.点评:本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.5如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对C选项进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以B选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以C选项错误;∵当x=2时,y>0,∴4a+2b+c>0,所以D选项错误.故选:A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.6.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B﹣1 C.2 D.5考点:二次函数图象上点的坐标特征.专题:整体思想.分析:把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.7.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位 B.向右平移2个单位C向上平移2个单位D.向下平移2个单位考点:二次函数图象与几何变换.分析:根据图象左移加,可得答案.解答:解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.点评:本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减.8.将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()A.(0,2)B.(0,3)C.(0,4)D.(0,7)考点:二次函数图象与几何变换.专题:几何变换.分析:先根据顶点式确定抛物线y=(x﹣1)2+3的顶点坐标为(1,3),再利用点的平移得到平移后抛物线的顶点坐标为(0,3),于是得到移后抛物线解析式为y=x2+3,然后求平移后的抛物线与y轴的交点坐标.解答:解:抛物线y=(x﹣1)2+3的顶点坐标为(1,3),把点(1,3)向左平移1个单位得到点的坐标为(0,3),所以平移后抛物线解析式为y=x2+3,所以得到的抛物线与y轴的交点坐标为(0,3).故选:B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:C.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二.填空题(共6小题)10.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= a(1+x)2.考点:根据实际问题列二次函数关系式.专题:计算题.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.12.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4 .考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25 元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.14.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是﹣1<x<3 .考点:二次函数与不等式(组).专题:计算题.分析:利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.解答:解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴﹣1<x<3故填:﹣1<x<3点评:此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.15.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是y=﹣(x+2)2等.考点:二次函数的性质.专题:开放型.分析:在对称轴左侧部分是上升的抛物线必然开口向下,即a<0,直线x=﹣2为对称轴可直接利用配方法的形式写出一个二次函数的解析式.解答:解:根据题意得:y=﹣(x+2)2.(答案不唯一).点评:配方法:将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.二次函数当a>0,函数开口向上,当a<0,函数开口向下.三.解答题(共8小题)16.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).考点:待定系数法求二次函数解析式;二次函数的性质.专题:计算题.分析:(1)将A与B代入抛物线解析式求出a与c的值,即可确定出抛物线解析式;(2)利用顶点坐标公式表示出D点坐标,进而确定出E点坐标,得到DE与OE的长,根据B点坐标求出BO的长,进而求出BE的长,在直角三角形BED中,利用勾股定理求出BD的长.解答:解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),∴将A与B坐标代入得:,解得:,则抛物线解析式为y=﹣x2+2x+3;(2)点D为抛物线顶点,由顶点坐标(﹣,)得,D(1,4),∵对称轴与x轴交于点E,∴DE=4,OE=1,∵B(﹣1,0),∴BO=1,∴BE=2,在Rt△BED中,根据勾股定理得:BD===2.点评:此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.17.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.考点:抛物线与x轴的交点;待定系数法求二次函数解析式;二次函数与不等式(组).专题:待定系数法.分析:(1)根据抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)根据图象直接写出答案.解答:解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.点评:本题考查了抛物线与x轴的交点,待定系数法求二次函数解析式以及二次函数与不等式组.解题时,要注意数形结合数学思想的应用.另外,利用待定系数法求二次函数解析式时,也可以采用顶点式方程.18.已知二次函数y=x2﹣4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.考点:抛物线与x轴的交点;二次函数的性质;二次函数的三种形式.专题:数形结合.分析:(1)配方后求出顶点坐标即可;(2)求出A、B的坐标,根据坐标求出AB、CD,根据三角形面积公式求出即可.解答:解:(1)y=x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1,所以顶点C的坐标是(2,﹣1),当x<2时,y随x的增大而减少;当x>2时,y随x的增大而增大;(2)解方程x2﹣4x+3=0得:x1=3,x2=1,即A点的坐标是(1,0),B点的坐标是(3,0),过C作CD⊥AB于D,∵AB=2,CD=1,∴S△ABC=AB×CD=×2×1=1.点评:本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.19.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.考点:抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;相似三角形的判定与性质.专题:代数几何综合题.分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标;(2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比.解答:解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质,得出△EMF∽△BNF是解题关键.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.考点:二次函数的应用;反比例函数的应用.专题:应用题;数形结合.分析:(1)①利用y=﹣200x2+400x=﹣200(x﹣1)2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班.解答:解:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴x=1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.点评:此题主要考查了反比例函数与二次函数综合应用,根据图象得出正确信息是解题关键.21.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?。
2020年中考数学复习二次函数和一元二次方程专题练习(部分有答案)
2020年中考数学复习二次函数与一元二次方程专题练习一、单选题1.将二次函数24y x x a =-+的图象向左平移1个单位长度,再向上平移1个单位长度,若得到的函数图象与直线2y =有两个交点,则a 的取值范围是( )A .3a <B .3a <C .5a <D .5a >2.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤43.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=k x在同一坐标系内的大致图象是( ) A . B . C . D .4.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( ) A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 5.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =- B .11x =,23x = C .11x =-,23x = D .13x =-,21x =6.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根; C .当1x >时,y 的值随x 值的增大而减小; D .当13x 时,()210.ax b x c +-+> 7.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点B 坐标为(3,0),对称轴为直线x =1.下列结论正确的是( )A .abc <0B .b 2<4acC .a +b +c >0D .当y <0时,﹣1<x <3 8.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点 9.已知抛物线265y x x =-+与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连接AC ,BC ,则cos CAB ∠的值为( )A .12BC .2D 10.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②m +n =3;③抛物线与x 轴的另一个交点是(﹣1,0);④方程ax 2+bx +c =3有两个相等的实数根;⑤当1≤x ≤4时,有y 2<y 1,其中正确的是( )A .①②③B .①②④C .①②⑤D .②④⑤二、填空题 11.已知二次函数2y x bx c =++的图象与x 轴的两个交点的横坐标分别为1x 、2x ,一元二次方程22140x b x ++=的两实根为3x 、4x ,且23143x x x x -=-=,则二次函数的顶点坐标为____________. 12.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是_____.13.抛物线22y ax ax =-与直线22y x a =-在同一平面直角坐标系中,若抛物线始终在直线的同一侧不与直线相交,则a 的取值范围是_____.14.已知:y 关于x 的函数22(21)1y k x k x =--+的图象与坐标轴只有两个不同的交点A 、B ,P 点坐标为(3,2),则PAB △的面积为_____.15.对于实数a ,b ,定义新运算“⊗”:a ⊗b= ()()22a ab a b b ab a b ⎧-≤⎪⎨->⎪⎩;若关于x 的方程()()211x x t +⊗-=恰好有两个不相等的实根,则t 的值为_________________.16.已知二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,且128x x -=,则k =________. 17.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_______.18.若抛物线y=x 2+bx-3的对称轴为直线2x =,则关于x 的方程250x bx +-=的解为_______. 19.已知关于x 的一元二次方程x 2+bx ﹣c =0无实数解,则抛物线y =﹣x 2﹣bx +c 经过____象限.20.如图,抛物线2815y x x =-+与x 轴交于A B 、两点,对称轴与x 轴交于点C ,点()0,2D -,点()06,-E ,点P 是平面内一动点,且满足=90,∠︒DPE M 是线段PB 的中点,连结CM .则线段CM 的最大值是________________.三、解答题21.已知点A (1,1)在抛物线y =x 2+(2m +1)x ﹣n ﹣1上(1)求m 、n 的关系式;(2)若该抛物线的顶点在x 轴上,求出它的解析式.22.己知函数223y ax x =--(a 是常数)(1)当1a =时,该函数图像与直线1y x =-有几个公共点?请说明理由;(2)若函数图像与x 轴只有一公共点,求a 的值.23.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.24.已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积.25.若一次函数y =mx +n 与反比例函数y =k x同时经过点P(x ,y)则称二次函数y =mx 2+nx -k 为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断y =2x -1与y =3x是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件t<n<8m ,并且一次函数y=(1+n)x+2m+2与反比例函数y =2020x 存在“共享函数”y=(m+t)x 2+(10m−t)x−2020,求m 的值.(3)若一次函数y =x +m 和反比例函数y =213m x+在自变量x 的值满足m ≤x ≤m +6的情况下,其“共享函数”的最小值为3,求其“共享函数”的解析式.26.在二次函数的学习中,教材有如下内容:例1 函数图象求一元二次方程212202x x --=的近似解(精确到0.1). 解:设有二次函数2122y x x =--,列表并作出它的图象(图1).观察抛物线和x 轴交点的位置,估计出交点的横坐标分别约为0.8-和4.8,所以得出方程精确到0.1的近似解为10.8x ≈-,2 4.8x ≈,利用二次函数2y ax bx c =++的图象求出一元二次方程20ax bx c ++=的解的方法称为图象法,这种方法常用来求方程的近似解.小聪和小明通过例题的学习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探宄方程32210x x -+=的近似解,做法如下:小聪的做法:令函数3221y x x =-+,列表并画出函数的图象,借助图象得到方程32210x x -+=的近似解. 小明的做法:因为0x ≠,所以先将方程32210x x -+=的两边同时除以x ,变形得到方程212x x x -=-,再令函数212y x x =-和21y x=-,列表并画出这两个函数的图象,借助图象得到方程32210x x -+=的近似解.请你选择小聪或小明的做法,求出方程32210x x -+=的近似解(精确到0.1).27.阅读材料:若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 也在抛物线1L 上(点A 与点B 不重合),我们称这样的两条抛物线1L 、2L 互为“友好”抛物线,如图1.解决问题:如图2,已知物线238:24L y x x =-+与y 轴交于点C .(1)若点D 与点C 关于抛物线3L 的对称轴对称,求点D 的坐标;(2)求出以点D 为顶点的3L 的“友好”抛物线4L 的解析式;(3)直接写出3L 与4L 中y 同时随x 增大而增大的自变量x 的取值范围.28.如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,﹣2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线x =﹣1.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且PE =14OD ,求△PBE 的面积. (3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M ,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.参考答案1.C2.D3.D4.C5.C6.C7.D8.B9.D10.B11.325,24⎛⎫-- ⎪⎝⎭ 12.k <413.1a <或1a >14.1或1215.2.25或016.-1217.13x18.121,5x x =-=19.三、四.20.7221.(1)n =2m ;(2)y =x 2或y =x 2﹣4x +4. 22.(1)函数图像与直线有两个不同的公共点;(2)0a =或13a =-.23.(1)x 1=1,x 2=3;(2)1<x <3;(3)k <2.24.(1)y=﹣x 2+4x+5;(2)15.25.(1)存在共享函数,共享点的坐标为(1,3)--,3,22⎛⎫ ⎪⎝⎭;(2)2m =;(3)2429y x x =+-或2(9155y x x =---26.选择小明的作法,10.6x ≈-,21.0x ≈,3 1.6x ≈ 27.(1)点D 坐标为(4,4)(2)抛物线4L 的解析式为22(4)4y x =--+(3)24x ≤≤28.(1)y =14x 2+12x ﹣2;(2)58;(3)M 坐标为(205+)或(﹣285,45).。
2020届中考数学专题复习二次函数_二次函数解决实际问题专题训练及参考答案
二次函数--二次函数解决实际问题1. 如图,用长8m 的铝合金条制成矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A.6425m2B.43m2C.83m2 D.4m2 2. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米3. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要每间隔0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m ,如图所示,则防护栏不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m4. 河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-125x2,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为( )A.-20mB.10mC.20mD.-10m5. 某幢建筑物,从10米高的窗口A 用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M 离墙1米,离地面403米,则水流下落点B 离墙距离OB 是( )A.2米B.3米C.4米D.5米6. 如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A.3cm2B.323cm2C.923cm2D.2723cm2 7. 若某商品的利润y(元)与售价x(元)之间的函数关系式是y =-x2+8x +9,且售价x 的范围是1≤x≤3,则最大利润是( )A.16元B.21元C.24元D.25元8. 一件工艺品进价为100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.3600元9. 如图,隧道的截面是抛物线,可以用y =-116x2+4表示,该隧道内设双行道,限高为3m ,那么每条行道宽是( )A.不大于4mB.恰好4mC.不小于4mD.大于4m ,小于8m10. 如图所示,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m 长的篱笆围成中间有一道篱笆的养鸡场,设它的长为xm ,要使鸡场的面积最大,鸡场的长为 m.11. 比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系式y =-29x2+89x +109,则羽毛球飞出的水平距离为 米.12. 如图,有一抛物线形的立交拱桥,这个拱桥的最大高度为16m ,跨度为40m ,现把它的图形放在坐标系中.若在离跨度中心M 点5m 处垂直竖立一根铁柱支撑拱顶,这根铁柱应取 m.13. 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y(单位:米2),当x = 米时菜园的面积最大.14. 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形,则这两个正方形面积之和的最小值是__________cm2.15. 已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式:y =-x2+1200x -357600,则卖出盒饭数量为________盒时,获得最大利润为________元.16. 某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天销售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为____________元时,该服装店平均每天的销售利润最大17. 杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y =-35x2+3x +1的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.18. 一种进价为每件40元的T 恤,若销售单价为60元,则每周可卖出300件,可提高利润,欲对该T 恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出10件.请确定该T 恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价为多少元时,每周的销售利润最大?19. 如图,某足球运动员站在点O 练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y =at2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?20. 如图,隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m.按照图中所示的直角坐标系,抛物线可以用y =-16x2+bx +c 表示,且抛物线时的点C 到墙面OB 的水平距离为3m ,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?参考答案:1—9 CACCB CCAA10. 2511. 512. 1513. 1514. 25215. 600 240016. 2217. 解:(1)y =-35x2+3x +1=-35(x -52)2+194,∵-35<0,∴函数的最大值是194.答:演员弹跳的最大高度是194米; (2)当x =4时,y =-35×42+3×4+1=3.4=BC ,所以这次表演成功. 18. 解:由题意,得y =(x -40)[300-10(x -60)],即y =-10x2+1300x -36000(60≤x≤90).配方,得y =-10(x -65)2+6250.∵-10<0,∴当x =65时,y 有最大值6250,因此,当该T 恤销售单价为65元时,每周的销售利润最大.19. 解:(1)由题意得:函数y =at2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴⎩⎪⎨⎪⎧ 0.5=c 3.5=0.82a -5×0.8+c ,解得:⎩⎪⎨⎪⎧ a =-2516c =12,∴抛物线的解析式为:y =-2516t2+5t +12,∴当t =85时,y 最大=4.5;(2)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =-2516×2.82+5×2.8+12=2.25<2.44,∴他能将球直接射入球门.20. 解:(1)根据题意得B(0,4),C(3,172),把B(0,4),C(3,172)代入y =-16x2+bx +c 得⎩⎪⎨⎪⎧ c =4-16×32+3b +c =172,解得⎩⎪⎨⎪⎧ b =2c =4,所以抛物线解析式为y =-16x2+2x +4,则y =-16(x -6)2+10,所以D(6,10),所以拱顶D 到地面OA 的距离为10m ;(2)由题意得货运汽车最外侧于地面OA 的交点为(2,0)或(10,0),当x =2或x =10时,y =223>6,所以这辆货车能安全通过;(3)令y =0,则-16(x -6)2+10=8,解得x1=6+23,x2=6-23,则x1-x2=43,所以两排灯的水平距离最小是43m.。
2020年初三数学下册中考专题复习 二次函数的存在性问题【含答案】
2020年初三数学下册中考专题复习二次函数的存在性问题一.解答题(共20小题)1.如图,在▱OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和▱OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,▱O1A1B1C1与▱OABC重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W1的顶点为F,若点M是x 轴上的动点,点N是抛物线W1上的动点,是否存在这样的点M、N,使以D、F、M、N 为顶点的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.2.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点A(1,0)、B(5,0)、C(0,4)三点.(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由(请在图2中探索)3.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.5.如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.6.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.7.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.8.如图,抛物线y=ax2+2x+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线与直线y=﹣x﹣1交于A,E两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得△AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B的左侧,若以P,B,C为顶点的三角形与△ABE相似,求点P的坐标.9.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)如图1,连接BC,PB,PC,设△PBC的面积为S.求S关于t的函数表达式,并求出当t为何值时,△PBC的面积S有最大值;(3)如图2,设抛物线的对称轴为直线l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.10.综合与探究如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为,点P的坐标为;(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.11.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(l)求抛物线的表达式;(2)如图l,若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时E点的坐标;(3)如图2,在x轴上是否存在一点D使得△ACD为等腰三角形?若存在,请求出所有符合条件的点D的坐标;若不存在,请说明理由.12.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.13.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,已知点P为抛物线第一象限上一动点,连接PB、PC、BC.(1)求抛物线的解析式,并直接写出抛物线的顶点坐标;(2)当△PBC的面积最大时,求出点P的坐标;(3)如图②,当点P与抛物线顶点重合时,过点B的直线与抛物线交于点E,在直线BE上方的抛物线上是否存在一点M,使得∠BEM=∠PBC?若存在,求出点M 的坐标;若不存在,请说明理由.14.如图,抛物线y=﹣x2+2x+3与坐标轴分别交于A,B,C三点,连接AC,BC.(1)直接写出A,B,C三点的坐标;(2)点M是线段BC上一点(不与B,C重合),过点M作x轴的垂线交抛物线于点N,连接CN.若点M关于直线CN的对称点M'恰好在y轴上,求出点M的坐标;(3)在平面内是否存在一点P,使△AOC关于点P的对称△A'O'C'(点A',O',C'分别是点A,O,C的对称点)恰好有两个顶点落在该抛物线上?若存在,求出点P的坐标;若不存在,说明理由.如果没有解题思路,可以这样考虑:变换后,A'O'与AO,O'C'与OC有什么样的位置关系?进而分析点O',A',C'的坐标关系!15.如图1,过原点的抛物线与x轴交于另一点A,抛物线顶点C的坐标为,其对称轴交x轴于点B.(1)求抛物线的解析式;(2)如图2,点D为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点D的坐标;(3)在对称轴上是否存在点P,使得点A关于直线OP的对称点A'满足以点O、A、C、A'为顶点的四边形为菱形.若存在,请求出点P的坐标;若不存在,请说明理由.16.综合与探究如图,已知抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,对称轴为直线l,顶点为D.(1)求抛物线的解析式及点D坐标;(2)在直线l上是否存在一点M,使点M到点B的距离与到点C的距离之和最小?若存在,求出点M的坐标;若不存在,请说明理由.(3)在x轴上取一动点P(m,0),﹣3<m<﹣1,过点P作x轴的垂线,分别交抛物线,AD,AC于点E,F,G.①判断线段FP与FG的数量关系,并说明理由②连接EA,ED,CD,当m为何值时,四边形AEDC的面积最大?最大值为多少?17.如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A、B,已知点A坐标(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a、b、k的值;(2)在该抛物线的对称轴上是否存在点P使得△POB为等腰三角形?若存在请求出所有的P点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M,恰使得MA=MB=MO,现要求在y轴上找出点Q使得△BQM的周长最小,请求出M的坐标和△BQM周长的最小值.18.如图,已知,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,过点A的直线y=kx+k与该抛物线交于点C,点P是该抛物线上不与A,B重合的动点,过点P 作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)若k=﹣1,当PE=2DE时,求点P坐标;(3)当(2)中直线PD为x=1时,是否存在实数k,使△ADE与△PCE相似?若存在请求出k的值;若不存在,请说明你的理由.19.如图,抛物线y=ax2+bx﹣过点A(﹣,0)和点B(,2),连结AB交y轴于点C.(1)求抛物线的函数解析式;(2)点P在线段AB下方的抛物线上运动,连结AP,BP.设点P的横坐标为m,△ABP 的面积为s.①求s与m的函数关系式;②当s取最大值时,抛物线上是否存在点Q,使得S△ACQ=s.若存在,求点Q的坐标;若不存在,说明理由.20.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y =﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF =BF时,求sin∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.详细答案一.解答题(共20小题)1.【解答】解:(1)设抛物线W的函数解析式为y=ax2+bx,图象经过A(4,0),C(﹣2,3)∴抛物线W的函数解析式为,顶点D的坐标为(2,﹣1);(2)根据题意,由O(0,0),C(﹣2,3),得O1(4,﹣m),C1(2,3﹣m)设直线O1C1的函数解析式为y=kx+b把O1(4,﹣m),C1(2,3﹣m)代入y=kx+b得:,直线O1C1与x轴交于点H∴过C1作C1E⊥HA于点E,∵0<m<3∴,∴,∵,抛物线开口向下,S有最大值,最大值为∴当时,;(3)当时,由D(2,﹣1)得F(6,)∴抛物线W1的函数解析式为,依题意设M(t,0),以D,F,M,N为顶点的四边形是平行四边形,分情况讨论:①以DF为边时∵D(2,﹣1),F点D,F横坐标之差是4,纵坐标之差是,若点M、N的横纵坐标与之有相同规律,则以D,F,M,N为顶点的四边形是平行四边形,∵M(t,0),∴把分别代入得t1=0,t2=4,t3=6,t4=14∴M1(0,0),M2(4,0),M3(6,0),M4(14,0)②以DF为对角线时,以点D,F,M,N为顶点不能构成平行四边形.综上所述:M1(0,0),M2(4,0),M3(6,0),M4(14,0).2.【解答】解:(1)将点A、B的坐标代入二次函数表达式得:y=a(x﹣1)(x﹣5)=a(x2﹣6x+5),则5a=4,解得:a=,抛物线的表达式为:y=(x2﹣6x+5)=x2﹣x+4,函数的对称轴为:x=3,顶点坐标为(3,﹣);(2)连接B、C交对称轴于点P,此时PA+PC的值为最小,将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得:,直线BC的表达式为:y=﹣x+4,当x=3时,y=,故点P(3,);(3)存在,理由:四边形OEBF是以OB为对角线且面积为12的平行四边形,=OB×|y E|=5×|y E|=12,则S四边形OEBF点E在第四象限,故:则y E=﹣,将该坐标代入二次函数表达式得:y=(x2﹣6x+5)=﹣,解得:x=2或4,故点E的坐标为(2,﹣)或(4,﹣).3.【解答】解:(1)把A(﹣3,0),B(1,0),C(0,3)代入抛物线解析式y=ax2+bx+c 得,解得,所以抛物线的函数表达式为y=﹣x2﹣2x+3.(2)如解(2)图1,过P点作PQ平行y轴,交AC于Q点,∵A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,设P点坐标为(x,﹣x2﹣2x+3.),则Q点坐标为(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.=,∴S△P AC∴,解得:x1=﹣1,x2=﹣2.当x=﹣1时,P点坐标为(﹣1,4),当x=﹣2时,P点坐标为(﹣2,3),综上所述:若△PAC面积为3,点P的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D点作DF垂直x轴于F点,过A点作AE垂直BC于E点,∵D为抛物线y=﹣x2﹣2x+3的顶点,∴D点坐标为(﹣1,4),又∵A(﹣3,0),∴直线AD为y=2x+6,AF=2,DF=4,tan∠DAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直线BC解析式为y=﹣3x+3.∵AB=4,∴AE=AB•sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠DAB=2,∴∠ACB=∠DAB,∴使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM=∠CAB=45°时,△ABC∽△OMA,即OM为y=﹣x,设OM与AD的交点M(x,y)依题意得:,解得,即M点为(﹣2,2).Ⅱ.若∠AOM=∠CBA,即OM∥BC,∵直线BC解析式为y=﹣3x+3.∴直线OM为y=﹣3x,设直线OM与AD的交点M(x,y).则依题意得:,解得,即M点为(,),综上所述:存在使得以M,A,O为顶点的三角形与△ABC相似的点M,其坐标为(﹣2,2)或(,),4.【解答】解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)如图1,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,=1,∴S△AEB=,∵S△AOC∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).5.【解答】解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx﹣中,得0=﹣4k﹣,解得k=,∴直线l解析式为y=x﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m=•(﹣2m)﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB=,在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y=﹣x,解方程组,得,,∴点P的横坐标为:或.6.【解答】解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2,则点C(0,2),函数的对称轴为:x=﹣1;(2)连接OP,设点P(x,﹣x2﹣x+2),=S△APO+S△CPO﹣S△ODC=×AO×y P+×OC×|x P|﹣×CO×OD 则S=S四边形ADCP=(﹣x2﹣x+2)×2×(﹣x)﹣=﹣x2﹣3x+2,∵﹣1<0,故S有最大值,当x=﹣时,S的最大值为;(3)存在,理由:△MNO为等腰直角三角形,且∠MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(△M1N1O):设点N1的坐标为(x,﹣x2﹣x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∠FN1O+∠M1N1E=90°,∠M1N1E+∠EM1N1=90°,∴∠EM1N1=∠FN1O,∠M1EN1=∠N1FO=90°,ON1=M1N1,∴△M1N1E≌△N1OF(AAS),∴M1E=N1F,即:x+1=﹣x2﹣x+2,解得:x=(舍去负值),则点N1(,);N2的情况(△M2N2O):同理可得:点N2(,);②当点N在x轴下方时,点N的位置为N3、N4,同理可得:点N3、N4的坐标分别为:(,)、(,);综上,点N的坐标为:(,)或(,)或(,)或(,).7.【解答】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t=S△P AF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)∴S△P AB2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.8.【解答】解:(1)将A(﹣1,0),C(0,3)代入y=ax2+2x+c,得,解得,,∴抛物线的解析式为:y=﹣x2+2x+3;(2)联立,解得,或,∴E(4,﹣5),如图1,当点Q在x轴上时,设Q(m,0),∵AE为底边,∴QA=QE,∴QA2=QE2,即(m+1)2=52+(m﹣4)2,解得,m=4,∴Q1(4,0);当点Q在y轴上时,设Q(0,n),∵AE为底边,∴QA=QE,∴QA2=QE2,即n2+12=42+(n+5)2,解得,n=﹣4,∴Q2(0,﹣4);综上所述,Q1(4,0),Q2(0,﹣4);(3)如图2,过点E作EH⊥x轴于点H,∵A(﹣1,0),E(4,﹣5),∴AH=EH=5,AE==5,∠BAE=45°,又OB=OC=3,∴∠ABC=45°,AB=4,BC==3,设P(t,0),则BP=3﹣t,∵∠BAE=∠ABC=45°,∴只可能存在△PBC∽△BAE和△PBC∽△EAB两种情况,当△PBC∽△BAE时,,∴=,∴t=,∴P1(,0);当△PBC∽△EAB时,,∴=,∴t=﹣,∴P2(﹣,0),综上所述,点P的坐标为(,0)或(﹣,0).9.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得,,解得,,∴抛物线的表达式为y=﹣x2+2x+3;(2)如图1,过点P作PF∥y轴,交BC于点F,设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得,,解得,,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+,∵﹣<0,∴当t=时,S取最大值,最大值为;(3)如图2,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,∵x D﹣x C=1,∴x P﹣x M=1,∴x P=2,∴P(2,3),在y=﹣x2+2x+3中,当x=0时,y=3,∴C(0,3),∴y C﹣y D=3,∴y M﹣y P=3,∴y M=6,∴点M的坐标为(1,6);当x P≠2时,不存在,理由如下,若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为1,∴点P的横坐标t=1×2﹣0=2,又∵x P≠2,∴不存在,综上所述,点M的坐标为(1,6).10.【解答】解:(1)∵在抛物线y=ax2+bx+c中,当x=﹣4和x=2时,二次函数y=ax2+bx+c 的函数值y相等,∴抛物线的对称轴为x==﹣1,又∵抛物线y=ax2+bx+c与x轴交于A(﹣3,0)、B两点,由对称性可知B(1,0),∴可设抛物线的解析式为y=a(x+3)(x﹣1),将C(0,)代入y=a(x+3)(x﹣1),得,﹣3a=,解得,a=﹣,∴此抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣x+;(2)△ABC为直角三角形,理由如下:∵A(﹣3,0),B(1,0),C(0,),∴OA=3,OB=1,OC=,∴AB=OA+OB=4,AC==2,BC==2,∵AC2+BC2=16,AB2=16,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)∵点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,∴BM=BN=t,由翻折知,△BMN≌△PMN,∴BM=PM=BN=PN=t,∴四边形PMBN是菱形,∴PN∥AB,∴△CPN∽△CAB,设PM与y轴交于H,∴==,即==,解得,t=,CH=,∴OH=OC﹣CH=﹣=,∴y P=,设直线AC的解析式为y=kx+,将点A(﹣3,0)代入y=kx+,得,k=,∴直线AC的解析式为y=x+,将y P=代入y=x+,∴x=﹣1,∴P(﹣1,),故答案为:,(﹣1,);(4)设直线BC的解析式为y=kx+,将点B(1,0)代入y=kx+,得,k=﹣,∴直线BC的解析式为y=﹣x+,由(2)知△ABC为直角三角形,∠ACB=90°,如图2,当∠ACF=90°时,点B,C,F在一条直线上,在y=﹣x+中,当x=﹣1时,y=2,∴F1(﹣1,2);当∠CAF=90°时,AF∥BC,∴可设直线AF的解析式为y=﹣x+n,将点A(﹣3,0)代入y=﹣x+n,得,n=﹣3,∴直线AF的解析式为y=﹣x﹣3,在y=﹣x﹣3中,当x=﹣1时,y=﹣2,∴F2(﹣1,﹣2);∴点F的坐标为F1(﹣1,2),F2(﹣1,﹣2).11.【解答】解:(1)将点A(1,0),B(﹣3,0)代入y=ax2+bx+3,得,,解得,,∴抛物线表达式为y=﹣x2﹣2x+3;(2)如图1,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴===,最大,且最大值为;∴当时,S四边形BOCE当时,,此时,点E坐标为;(3)如图2,连接AC,①当CA=CD时,此时CO为底边的垂直平分线,满足条件的点D1,与点A关于y轴对称,点D1坐标为(﹣1,0);②当AD=AC时,在Rt△ACO中,∵OA=1,OC=3,由勾股定理得,AC==,以点A为圆心,AC的长为半径作弧,交x轴于两点D2,D3,即为满足条件的点,此时它们的坐标分别为,;③当DA=DC时,线段AC的垂直平分线与x轴的交点D4,即为满足条件的点,设垂直AC的垂直平分线交y轴于点P,过AC中点Q,∵∠AOC=∠BOC=∠PQC=∠PQA=90°,∠D4PO=∠CPQ,∴∠ACO=∠OD4P,∴△D4AQ∽△CAO,∴=,即=,∴D4A=5,∴OD4=D4A﹣OA=4,∴点D4的坐标为(﹣4,0);综上所述,存在符合条件的点D,其坐标为D1(﹣1,0)或或或D 4(﹣4,0).12.【解答】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,得,解得,,∴二次函数的解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线BM的解析式为y=kx+b,将点B(3,0),M(1,4)代入,得,解得,∴直线BM的解析式为y=﹣2x+6,∵PD⊥x轴且OD=m,∴P(m,﹣2m+6),=PD•OD=m(﹣2m+6)=﹣m2+3m,∴S=S△PCD即S=﹣m2+3m,∵点P在线段BM上,且B(3,0),M(1,4),∴1≤m≤3;②∵S=﹣m2+3m=﹣(m﹣)2+,∵﹣1>0,∴当m=时,S取最大值,∴P(,3);(3)存在,理由如下:如图2﹣1,当∠CPD=90°时,∵∠COD=∠ODP=∠CPD=90°,∴四边形CODP为矩形,∴PD=CO=3,将y=3代入直线y=﹣2x+6,得,x=,∴P(,3);如图2﹣2,当∠PCD=90°时,∵OC=3,OD=m,∴CD2=OC2+OD2=9+m2,∵PD∥OC,∴∠PDC=∠OCD,∴cos∠PDC=cos∠OCD,∴=,∴DC2=PD•OC,∴9+m2=3(﹣2m+6),解得,m1=﹣3﹣3(舍去),m2=﹣3+3,∴P(﹣3+3,12﹣6),当∠PDC=90°时,∵PD⊥x轴,∴不存在,综上所述,点P的坐标为(,3)或(﹣3+3,12﹣6).13.【解答】解:(1)将点A(﹣1,0)、B(3,0)代入y=ax2+bx+3,得,解得,∴抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为(1,4);(2)如图1,过点P作x轴的垂线,交BC于点N,在y=﹣x2+2x+3中,当x=0时,y=3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,得3k+3=0,∴k=﹣1,∴直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3),则N(x,﹣x+3),∴PN=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,=×PN×OB=(﹣x2+3x)×3=﹣(x﹣)2+,∴S△PBC∴当x=时,△PBC的面积最大,∴P(,);(3)存在,如图2,过点P作PH⊥x轴于H,设直线与y轴交于点Q,则Q(0,﹣),在Rt△OBQ中,tan∠OBQ===,在Rt△PHB中,tan∠BPH===,∴∠OBQ=∠BHP,∵∠BPH+∠PBH=90°,∴∠OBQ+∠PBH=90°,即∠PBE=90°,将点B(3,0)代入直线,得3k﹣=0,∴k=,∴y=x﹣,联立,解得,x1=3,x2=﹣,∴E(﹣,﹣),过点E作EF⊥BC于点F,则∠FEB+∠FBE=90°,∵∠PBC+∠FBE=90°,∴∠FEB=∠PBC,则此时射线EF与抛物线的交点即为所求的点M,∵BC==3,PC==,PB==2,∴BC2+PC2=PB2,∴△PCB为直角三角形,且∠PCB=90°,∴sin∠PBC===,∴sin∠FEB==,∵EB==,∴FB=,过点F作FD⊥x轴于点D,∵OB=OC=3,∴∠OBC=∠OCB=45°,∴∠DBF=∠DFB=45°,∴DB=DF=FB=,∴F(,),设直线EF的解析式为y=kx+b,将点E(﹣,﹣),F(,)代入y=kx+b,得,解得,∴直线EF的解析式为y=x﹣,联立,解得,x1=,x2=﹣,当x=时,y=,∴M(,).14.【解答】解:(1)在抛物线y=﹣x2+2x+3中,当y=0时,x1=﹣1,x2=3;当x=0时,y=3,∴A(﹣1,0),B(3,0),C(0,3)(2)∵点M'与点M关于直线CN对称,且点M'在y轴上,∴∠M'CN=∠MCN,∵MN∥y轴,∴∠M'CN=∠CNM,∴∠MCN=∠CNM,∴MN=CM,∵点C的坐标为(0,3),∴可设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,得,3k+3=0,∴k=﹣1,∴直线BC的解析式为y=﹣x+3,设点M的横坐标为t,则M(t,﹣t+3),N(t,﹣t2+2t+3),∴MN=(﹣t2+2t+3)﹣(﹣t+3)=﹣t2+3t,,∴,∵t≠0,∴,∴,(3)根据题意,A'O'平行于x轴,O'C'平行于y轴,A'O'=1,O'C'=3,点A'在点O'的右边,点C'在点O'的下方,设点O'的横坐标为m,则A'的横坐标为m+1,点C'的横坐标为m,①若A'、O'在抛物线上,则﹣m2+2m+3=﹣(m+1)2+2(m+1)+3,∴,∴,则点P在OO'的中点处,∴;②若A'、C'在抛物线上,则﹣(m+1)2+2(m+1)+3=﹣m2+2m+3+3∴m=﹣1,∴O'(﹣1,3),则点P在OO'的中点处,∴,综上所述,存在点或,使△AOC关于点P的对称△A'O'C'恰好有两个顶点落在该抛物线上.15.【解答】解:(1)设抛物线解析式为y=a(x﹣h)2+k,(a≠0)∵顶点,∴,又∵图象过原点,∴,解出:,∴,即;(2)令y=0,即,解得:x1=0,x2=4,∴A(4,0),设直线AC的解析式为y=kx+b,将点A(4,0),代入,得,解得,∴直线AC的解析式为y=﹣x+4,过点D作DF∥y轴交AC于点F,设,则,∴,∴=,有最大值,∴当m=3时,S△ACD当m=3时,,∴;(3)∵∠CBO=∠CBA=90°,OB=AB=2,,∴,∴OA=OC=AC=4,∴△AOC为等边三角形,①如图3﹣1,当点P在C时,OA=AC=CA'=OA',∴四边形ACA'O是菱形,∴;②作点C关于x轴的对称点C',当点A'与点C'重合时,OC=AC=AA'=OA',∴四边形OCAA'是菱形,∴点P是∠AOA'的角平分线与对称轴的交点,记为P2,∴,∵∠OBP2=90°,OB=2,∴OP2=2BP2,∵∠OBP2=90°,OB=2,∴OP2=2BP2,设BP2=x,∴OP2=2x,又∵,∴(2x)2=22+x2,解得或,∴;综上所述,点P的坐标为或.16.【解答】解:(1)由抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;由y=﹣x2﹣2x+3=﹣(x+1)2+4,得,点D坐标为(﹣1,4);(2)在直线l上存在一点M,到点B的距离与到点C的距离之和最小,根据抛物线对称性MA=MB,∴MB+MC=MA+MC,∴使MB+MC的值最小的点M应为直线AC与对称轴l:x=﹣1的交点,当x=0时,y=3,∴C(0,3),设直线AC解析式为直线y=kx+b,把A(﹣3,0)、C(0,3)分别代入y=kx+b,得,,解得,,∴直线AC解析式为y=x+3,把x=﹣1代入y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)①PF=2FG,理由如下,设直线AD解析式为y=k'x+b',把A(﹣3,0)、D(﹣1,4)分别代入直线y=k'x+b',得,,解得,∴直线AD解析式为y=2x+6,则点F的坐标为(m,2m+6),同理G的坐标为(m,m+3),则FG=(2m+6)﹣(m+3)=m+3,FP=2m+6=2(m+3),∴FP=2FG;②根据题意得点E的坐标为(m,﹣m2﹣2m+3),设直线l与x轴交于点N,EF=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3=﹣(m+2)2+1=S△AEF+S△EFD==∴S△AED,的最大值为1,∴当m为﹣2时,S△AED如图,过点D作DH∥x轴,交y轴于点H,在△DHC中,∠DHC=180°﹣∠AOB=90°,,在Rt△AOC中,,在Rt△ADN中,,∵,∴DC2+AC2=AD2,∴∠ACD=90°,∴,∴,∴当m为﹣2时,四边形AEDC的面积最大,最大值为4.17.【解答】解:(1)将A(1,4)代入y=,得,k=4,∴双曲线解析式为y=,设B(m,)(m<0),连接AB,交x轴于点C,设直线AB的解析式为y=kx+b,将点A(1,4),B(m,)代入,得,解得,,∴直线AB的解析式为y=﹣x+,当y=0时,x=m+1,∴C(m+1,0),OC=﹣m﹣1,=OC•(y A﹣y B)∴S△AOB=(﹣m﹣1)(4﹣),∵△AOB的面积为3,∴(﹣m﹣1)(4﹣)=3,整理,得2m2+3m﹣2=0,解得,m1=(舍去),m2=﹣2,∴B(﹣2,﹣2),将A(1,4),B(﹣2,﹣2)代入y=ax2+bx,得,,解得,,∴抛物线的解析式为y=x2+3x,∴a=1,b=3,k=4;(2)在抛物线y=x2+3x中,对称轴为x=﹣,设P(﹣,y),∵O(0,0),B(﹣2,﹣2),∴PO2=+y2,OB2=8,PB2=+(y+2)2,。
2020年中考数学二次函数压轴题专题复习 (含答案)
2020年中考数学二次函数压轴题专题复习1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.3.如图,二次函数错误!未找到引用源。
的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.4.综合与探究:如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c 经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA上一个动点,过点M垂直于x轴直线与直线AC和抛物线分别交于点P、N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.5.已知抛物线y=0.5x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE= ;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.7.如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A出发,以每秒错误!未找到引用源。
2020年中考数学考点一遍过考点11二次函数(含解析)
3.抛物线的移动主要看顶点的移动, y=ax2 的顶点是( 0,0), y=a( x–h)2 的顶点是( h,0), y=a
(x–
h) 2+k 的顶点是( h, k).
4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.
典例 7 如果将抛物线 y=–x2–2 向右平移 3 个单位长度,那么所得到的新抛物线的表达式是
左侧 y 随 x 的增大而增大,在对称轴右侧 y 随 x 的增大而减小
6.( 2019 ·南通市启秀中学初三期中)关于下列说法:(
1)反比例函数 y 1 ,在每个象限内 y
3mx
随 x 的增大而减小; ( 2)函数 y
1 x , y 随 x 的增大减小; ( 3)函数 y
3
12 x ,当 x 0 时,
A . –1 【答案】 A
B.2
C. –1 或 2
【解析】依题意
m2 m 2
,解得 m=–1,故选 A.
m20
【名师点睛】此题主要考察二次函数的定义,需要注意
a 0.
典例 2 ( 2019·河北初三期中)下列函数是二次函数的是
D. m 不存在
A . y=2x+2 【答案】 C
B . y=﹣ 2x
【解析】直接根据二次函数的定义判定即可.
二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称 轴与抛物线的交点叫做抛物线的顶点 .
典例 3 函数 y=ax2+bx+a+b( a≠0)的图象可能是
A.
B.
C.
D.
【答案】 C
【解析】 A ,由图象可知,开口向下,则 a<0 ,又因为顶点在 y 轴左侧,则 b<0 ,则 a+b<0,而图象 与 y 轴交点为( 0, a+b)在 y 轴正半轴,与 a+b<0 矛盾,故此选项错误; B,由图象可知,开口向下,则 a<0,又因为顶点在 y 轴左侧,则 b<0,则 a+b<0,而图象与 y 轴交 点为( 0, 1)在 y 轴正半轴,可知 a+b=1 与 a+b<0 矛盾,故此选项错误; C,由图象可知,开口向上,则 a>0,顶点在 y 轴右侧,则 b<0, a+b=1 可能成立,故此选项正确; D,由图象可知,开口向上,则 a>0,顶点在 y 轴右侧,则 b<0 ,与 y 轴交于正半轴,则 a+b>0,而 图象与 x 轴的交点为 (1,0),则 a+b+a+b=0,显然 a+b=0 与 a+b>0 矛盾, 故此选项错误. 故选 C. 典例 4 如果二次函数 y=ax2+bx+c( a≠0)的图象如图所示,那么下列不等式成立的是
2020届中考数学二轮复习专题训练:二次函数与几何(含答案)
2020届中考数学二轮复习专题训练:二次函数与几何1. 如图,抛物线1C :y =ax 2+bx+1的顶点坐标为D (1,0),(1)求抛物线1C 的解析式;(2)如图1,将抛物线1C 向右平移1个单位,向下平移1个单位得到抛物线2C ,直线y x c =+,经过点D 交y 轴于点A ,交抛物线2C 于点B ,抛物线2C 的顶点为P,求△DBP 的面积(3)如图2,连结AP,过点B 作BC ⊥AP 于C,设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结 BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.图1yxO P DBA图2QyxO P F E CDB A【解答】(1)∵抛物线顶点为(1,0)P ,经过点(0,1)∴可设抛物线的解析式为:2(1)y a x =-,得: 1a = ∴抛物线的解析式为221y x x =-+(2)根据题意的p (2,-1)∴抛物线的解析式为:2(2)1y x =--,∴A(0,-1),B(4,3)∴△DBP 的面积 =3(3)过点Q 作QM AC ⊥于点M ,过点Q 作QN BC ⊥于点N ,设点Q 的坐标是2(,43)t t t -+,则2(2)QM CN t ==-,4MC QN t ==-.∵//QM CE ∴PQM ∆∽PEC ∆ ∴QM PM EC PC = 即2(2)12t t EC --=,得2(2)EC t =- ∵//QN FC ∴BQN ∆∽BFC ∆ ∴QN BN FC BC = 即243(43)4t t t FC ---+=,得4FC t = 又∵4AC =∴4()[42(2)]8FC AC EC t t+=+-==,即()FC AC EC +为定值8.2. 如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(3分)(2)如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分) (3)如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)(1)由抛物线C 1:()522-+=x a y 得顶点P 的为(-2,-5)∵点B (1,0)在抛物线C 1上∴()52102-+=a ,∴a =59 (2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G∵点P 、M 关于点B 成中心对称,∴PM 过点B ,且PB =MB ∴△PBH ≌△MBG ,∴MG =PH =5,BG =BH =3∴顶点M 的坐标为(4,5),抛物线C 2由C 1关于x 轴对称得到,抛物线C 3由C 2平移得到∴抛物线C 3的表达式为()54952+--=x y (3)∵抛物线C 4由C 1绕点x 轴上的点Q 旋转180°得到∴顶点N 、P 关于点Q 成中心对称由(2)得点N 的纵坐标为5设点N 坐标为(m ,5) 作PH ⊥x 轴于H ,作NG ⊥x 轴于G ,作PK ⊥NG 于K ∵旋转中心Q 在x 轴上 ∴EF =AB =2BH =6 ∴FG =3,点F 坐标为(m +3,0)H 坐标为(2,0),K 坐标为(m ,-5), 根据勾股定理得 PN 2=NK 2+PK 2=m 2+4m +104PF 2=PH 2+HF 2=m 2+10m +50 NF 2=52+32=34①当∠PNF =90º时,PN 2+ NF 2=PF 2,解得m =443,∴Q 点坐标为(193,0)②当∠PFN =90º时,PF 2+ NF 2=PN 2,解得m =103,∴Q 点坐标为(23,0) ③∵PN >NK =10>NF ,∴∠NPF ≠90º综上所得,当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点的三角形是直角三角形.3. 已知: 如图1, 二次函数y =a (x -1)2-4的图象交x 轴负半轴于点A , 交x 轴正半轴于点B , 交y 轴负半轴于点C , 且OB =3OA . (1) 求二次函数的解析式;(2) 如图2, M 是抛物线的顶点, P 是抛物线在B 点右侧上一点, Q 是对称轴上一点, 并且AQ ⊥PQ , 是否存在这样的点P , 使得∠P AQ =∠AMQ ? 若存在, 请求出P 点坐标; 若不存在, 请说明理由.(3)如图3, 设(1)中抛物线的顶点为M ,R 为x 轴正半轴上一点,将(1)中抛物线绕R 旋转1800得到抛物线C 1: y =-a (x -h)2+k 交x 轴于D,E 两点,.若tan ∠BME=1,求R 点的坐标。
2020年九年级中考数学专题复习:二次函数图像与坐标轴的交点问题(含解析)
九年级中考数学专题训练:二次函数图像与坐标轴的交点问题(含解析)班级:姓名:一、单选题1.二次函数y=kx2-6x+3的图象与x轴有两个交点,则k的取值范围是( )A. k<3B. k<0且k≠0C. k≤3D. k≤3且k≠02.如图图形中阴影部分的面积相等的是()A. ①②B. ②③C. ①③D. ①②③3.在如图所示的二次函数y=ax2+bx+c的图象中,大伟同学观察后得出了以下四条结论:①a<0,b>0,c>0;②b2﹣4ac=0;③<c;④关于x的一元二次方程ax2+bx+c=0有一个正根,你认为其中正确的结论有()A. 1条B. 2条C. 3条D. 4条4.若函数的图象与坐标轴有三个交点,则的取值范围是()A. B.C. D.5.二次函数y=(x﹣1)(x﹣2)﹣1与x轴的交点x1 ,x2 ,x1<x2 ,则下列结论正确的是( )A. x1<1<x2<2B. x1<1<2<x2C. x2<x1<1D. 2<x1<x26.对某个函数给定如下定义:若存在实数M>0,对于任意的函数值y,都满足|y|≤M,则称这个函数是有界函数.在所有满足条件的M中,其中最小值称为这个函数的边界值.现将有界函数(0 x m,1≤m≤2)的图象向下平移m个单位,得到的函数边界值是t,且≤t≤2,则m的取值范围是()A. 1≤m≤B. ≤m≤C. ≤m≤D. ≤m≤27.二次函数y=x2-(m-1)x+4的图像与x轴有且只有一个交点,则m的值为()A. 1或-3B. 5或-3C. -5或3D. 以上都不对8.如图,在平面直角坐标系中,抛物线y=α(x﹣1)2+k与x轴交于A.B两点,与y轴交于C点.CD∥x轴与抛物线交于D点且A(﹣1,0)则OB+CD=()A. 4B. 5C. 6D. 79.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.﹣﹣苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是()A. 有三个实数根B. 有两个实数根C. 有一个实数根D. 无实数根10.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A. k>-B. k>- 且k≠0C. k≥-D. k≥-且k≠011.抛物线y=ax2+bx+c(a>0)的对称轴为x=1,它与x轴的一个交点的坐标为(﹣3,0),则它与x轴另一个交点的坐标为( )A. (﹣2,0)B. (﹣1,0)C. (2,0)D. (5,0)二、填空题12.抛物线y=ax2+bx+c与x轴的公共点是(﹣1,0),(3,0),则关于x的方程ax2+bx+c=0的两个根是________.13.二次函数y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是________.14.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为________.15.已知y=﹣x2+2与x轴交于A,B两点,与y轴交于C点,则△ABC的面积为________.16.二次函数y=ax2+bx+c (a≠0)(a≠0,a,b,C为常数)的图象,若关于x的一元二次方程ax2+bx+c=m有实数根,则m的取值范围是________.17.已知正整数a满足不等式组(x为未知数)无解,则a的值为________ ;函数y=(3﹣a)x2﹣x﹣3图象与x轴的交点坐标为________18.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(-3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是________.三、解答题19.使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)(1)当m=0时,求该函数的零点.(2)证明:无论m取何值,该函数总有两个零点.20.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,tan∠CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,△BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.四、综合题21.已知二次函数为y=x2﹣2x+m(1)写出它的图象的开口方向,对称轴;(2)m为何值时,其图象顶点在x轴上方?22.已知在平面直角坐标系内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求△ABC的面积.23.已知二次函数y=x2﹣2x﹣3与x轴交于A、B两点(A在B的左边),与y轴交于点C.(1)求出点A、B、C的坐标.(2)求S△ABC(3)在抛物线上(除点C外),是否存在点N,使得S△NAB=S△ABC ,若存在,求出点N的坐标,若不存在,请说明理由.答案解析部分一、单选题1.【答案】D【考点】抛物线与x轴的交点【解析】【分析】利用kx2-6x+3=0有实数根,根据判别式可求出k取值范围。
2020人教版数学中考考点(3.4):二次函数(含答案)
2020人教版数学中考考点(3.4):二次函数【★★★★】总分:100分班级:__________ 姓名:__________ 学号:__________ 得分:__________说明:(1)本节考点:二次函数的图象、性质及应用,二次函数的三种形式,待定系数法;(2)最大难度:☆☆☆☆一、选择题(共10小题;共30分)1. 如果将抛物线向下平移个单位,那么所得新抛物线的表达式是A. B.C. D.2. 若二次函数的图象经过,,,,,则,,的大小关系是A. B. C. D.3. 已知二次函数,当时,的值随值的增大而减小,则实数的取值范围是A. B. C. D.4. 对于抛物线,当时,,则这条抛物线的顶点一定在A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 以为自变量的二次函数的图象不经过第三象限,则实数的取值范围是A. B. 或C. D.6. 如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为A. B. C. D.7. 已知二次函数的图象如图所示,给出以下结论:①;②;③;④.其中所有正确结论的序号是A. ③④B. ②③C. ①④D. ①②③8. 定义:若点在函数的图象上,将以为二次项系数,为一次项系数构造的二次函数称为函数的一个“派生函数”.例如:点在函数的图象上,则函数称为函数的一个“派生函数”.现给出以下两个命题:(1)存在函数的一个“派生函数”,其图象的对称轴在轴的右侧(2)函数的所有“派生函数”的图象都经过同一点,下列判断正确的是A. 命题(1)与命题(2)都是真命题B. 命题(1)与命题(2)都是假命题C. 命题(1)是假命题,命题(2)是真命题D. 命题(1)是真命题,命题(2)是假命题9. 如图,正方形的边长为,动点,同时从点出发,以的速度分别沿和的路径向点运动,设运动时间为(单位:),四边形的面积为(单位:),则与之间函数关系可以用图象表示为A. B.C. D.10. 如图,在四边形中,,,,设的长为,四边形的面积为,则与之间的函数关系式是A. B. C. D.二、填空题(共6小题;共18分)11. 把抛物线向右平移个单位,然后向上平移个单位,则平移后抛物线的解析式为.12. 如图,隧道的截面由抛物线和长方形构成,长方形的长是,宽是,抛物线的最高点到路面的距离为米,该抛物线的函数表达式为.13. 如图,在平面直角坐标系中,抛物线交轴的负半轴于点.点是轴正半轴上一点,点关于点的对称点恰好落在抛物线上.过点作轴的平行线交抛物线于另一点.若点的横坐标为,则的长为.14. 已知二次函数中,函数值与自变量的部分对应值如下表:则关于的一元二次方程的根是.15. 如图,抛物线与轴交于点,点,点是抛物线上的动点.若是以为底的等腰三角形,则点的坐标为.16. 已知二次函数的图象如图所示,给出以下结论:①;②;③;④;⑤,其中结论正确的是.(填正确结论的序号)三、解答题(共5小题;共52分)17. 校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度与水平距离之间的函数关系式为.求:(1)铅球的出手时的高度;(2)小明这次试掷的成绩.18. 某商店购买一批单价为元的日用品,如果以单价元销售,那么半月内可以售出件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少件.如何提高销售价,才能在半月内获得最大利润?19. 如图,某公路隧道横截面为抛物线,其最大高度为米,底部宽度为米.现以点为原点,所在直线为轴建立直角坐标系.(1)直接写出点及抛物线顶点的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架” ,使,点在抛物线上,,点在地面上,则这个“支撑架”总长的最大值是多少?20. 如图,在矩形中,,,是上的一个动点(不与,重合),过点的反比例函数的图象与边交于点.(1)当为的中点时,求该函数的解析式;(2)当为何值时,的面积最大,最大面积是多少?21. 如图,抛物线与轴交于,两点(在的左侧),与轴交于点,已知对称轴.(1)求抛物线的解析式;(2)将抛物线向下平移个单位长度,使平移后所得抛物线的顶点落在内(包括的边界),求的取值范围;(3)设点是抛物线上任意一点,点在直线上,能否成为以点为直角顶点的等腰直角三角形?若能,求出符合条件的点的坐标;若不能,请说明理由.答案第一部分1. C2. D 【解析】经过,,二次函数的对称轴,,,与对称轴的距离最远,最近,,.3. D 【解析】如图,抛物线开口向下,在对称轴右侧的值随值的增大而减小,所以为了满足题意,直线必须在对称轴或对称轴的右侧,建立不等式即可.4. C5. A【解析】因为二次函数的图象不经过第三象限,所以抛物线在轴的上方或在轴的下方经过一、二、四象限,当抛物线在轴的上方时,因为二次项系数,所以抛物线开口方向向上,所以,,解得;当抛物线在轴的下方经过一、二、四象限时,设抛物线与轴的交点的横坐标分别为,,所以,所以,①,②,③由①得,由②得,所以此种情况不存在,所以.6. B 【解析】根据抛物线解析式计算出的顶点坐标,过点作轴于点,根据抛物线的对称性可知阴影部分的面积等于矩形的面积,然后求解即可.7. B 【解析】时,;时,;因为,所以;因为,,,所以.8. C 【解析】(1)因为在上,所以和同号,所以对称轴在轴左侧,所以存在函数的一个“派生函数”,其图象的对称轴在轴的右侧是假命题.(2)因为函数的所有“派生函数”为,所以时,,所以所有“派生函数”为经过原点,所以函数的所有“派生函数”,的图象都进过同一点,是真命题.9. B 【解析】①时,;②时, .10. C【解析】过点作,垂足为 .设,则 .,,.而,,., ..在中,,,即,又四边形的面积三角形的面积三角形的面积,.第二部分11.12.13.【解析】当时,,解得,,则,点关于点的对称点为,点的横坐标为,点的坐标为,抛物线解析式为,当时,,则,当时,,解得,,则,的长为.14. ;15.【解析】依题意,得,因为三角形是等腰三角形,所以,点在线段的垂直平分线上,线段的垂直平分线为:,解方程组:即:,解得:,所以,点的坐标为.16. ①②⑤【解析】函数与轴有两个交点,则其相应方程的判别式大于;由图象得,,对称抽;又解析式可以写成,当时,;且当时,.第三部分17. (1)当时,,铅球的出手时的高度为.(2)由题意可知,把代入解析式得:,解得,(舍去),即该运动员的成绩是米.18. 设销售单价为元,销售利润为元.根据题意,得当时,最大,这时,.所以,销售单价提高元,才能在半月内获得最大利润元.19. (1),.(2)根据顶点的坐标,可设抛物线的解析式为.将点代入解析式求得.所以这条抛物线的解析式为(3)设点的坐标为,则,.设这个支架的总长为.根据题意,得.则当时,最大所以这个"支撑架"总长的最大值是米.20. (1)在矩形中,,,,为的中点,,点在反比例函数的图象上,,该函数的解析式为.(2)由题意知,两点坐标分别为,,.当时,有最大值,最大值21. (1)因为抛物线的对称轴,,所以,因为抛物线过点,所以当时,.又因为抛物线过点,,所以所以所以抛物线的解析式为:.(2)因为,,所以直线解析式为,因为,所以顶点坐标为,因为对于直线,当时,;将抛物线向下平移个单位长度,所以当时,抛物线顶点落在上;当时,抛物线顶点落在上,所以将抛物线向下平移个单位长度,使平移后所得抛物线的顶点落在内(包括的边界),则.(3)设,,①当点在轴上方时,过点作垂直于轴,交轴与点,过点作垂直于的延长线于点,如图1.因为,所以是以点为直角顶点的等腰直角三角形,所以,,则,,在和中,所以,所以,因为,根据点坐标可得,且,所以,解得:或,所以或.②当点在轴下方时,过点作垂直于于点,过点作垂直于的延长线与点,如图 2.同理可得,所以,所以,,则,解得或.所以或.综上可得,符合条件的点的坐标是,,或.。
2020年中考数学压轴题专题复习:二次函数-答案
∴y=x+40,
∴y与x的函数关系式为:
y= ,(2分)
由数据可知每天的销售量p与时间x成一次函数关系.
设每天的销售量p与时间x的函数关系式为p=mx+n(m,n为常数,且m≠0),
∵p=mx+n过点(60,80),(30,140),
∴ ,解得 ,
∴p=-2x+200(0≤x≤90,且x为整数),(3分)
11.【答案】(1+ ,2)或(1- ,2)【解析】抛物线y=-x2+2x+3与y轴交于点C,则点C坐标是(0,3),∵点D(0,1),点P在抛物线上,且△PCD是以CD为底的等腰三角形,∴易得点P的纵坐标是2,当y=2时,∴-x2+2x+3=2,则x2-2x-1=0,解得方程的两根是x= =1± ,∴点P的坐标是(1+ ,2)或(1- ,2).
14.【答案】
解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得:
,(1分)
解得 ,(2分)
∴抛物线的解析式为y= x2-x+2.(3分)
(2)抛物线解析式化为顶点式:y= (x-1)2+ ,则抛物线顶点D(1, ),(4分)
如解图①所示,过点B、D、C分别向x轴作垂线,垂足分别为点M、N、H,则有:
6.【答案】C【解析】抛物线开口向上,所以a>0,对称轴在y轴右侧,所以a、b异号,所以b<0,抛物线与y轴交于负半轴,所以c<0,所以直线y=ax+b过第一、三、四象限,反比例函数y= 位于第二、四象限,故答案为C.
二、填空题(本大题共5道小题)
7.【答案】(1,4)【解析】∵A(0,3)、B(2,3),两点纵坐标相同,∴A、B两点关于直线x=1对称,∴抛物线的对称轴是直线x=1,即- =1,解得b=2,∵当x=0时,y=3,∴c=3,∴抛物线的解析式为y=-x2+2x+3,当x=1时,y=-x2+2x+3=-12+2×1+3=4,∴抛物线的顶点坐标是(1,4).
中考数学二次函数 专题复习题(含答案)
二次函数专题复习题1.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)2.已知二次函数y=ax2+bx+6的图象开口向下,与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P是该函数图象上的一个动点(不与点C重合).(1)求二次函数的关系式;(2)如图1,当点P是该函数图象上一个动点且在线段AC的上方,若△PCA的面积为12,求点P的坐标;(3)如图2,该函数图象的顶点为D,在该函数图象上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.3.如图1,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C(0,﹣3),点D为该二次函数图象顶点.(1)求该二次函数解析式,及D点坐标;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD 相切,求点P的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMC=S△AOC,点E为直线AM上一动点,在x轴上是否存在点F,使以点F、E、B、C为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标,若不存在,请说明理由.4.抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是该抛物线上的动点,且位于y轴的左侧.①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.5.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,A点坐标为(﹣2,0),与y轴交于点C(0,4),直线y=﹣x+m与抛物线交于B,D两点.(1)求抛物线的函数表达式.(2)求m的值和D点坐标.(3)点P是直线BD上方抛物线上的动点,过点P作x轴的垂线,垂足为H,交直线BD 于点F,过点D作x轴的平行线,交PH于点N,当N是线段PF的三等分点时,求P点坐标.(4)如图2,Q是x轴上一点,其坐标为(﹣,0).动点M从A出发,沿x轴正方向以每秒5个单位的速度运动,设M的运动时间为t(t>0),连接AD,过M作MG⊥AD 于点G,以MG所在直线为对称轴,线段AQ经轴对称变换后的图形为A′Q′,点M在运动过程中,线段A′Q′的位置也随之变化,请直接写出运动过程中线段A′Q′与抛物线有公共点时t的取值范围.6.如图,已知二次函数y=ax2+bx+4的图象与y轴交于点A,与x轴交于点B(﹣2,0),点C(8,0),直线y=经过点A,与x轴交于D点.(1)求该二次函数的表达式;(2)点E为线段AC上方抛物线上一动点,若△ADE的面积为10,求点E的坐标;(3)点P为抛物线上一动点,连接AP,将线段AP绕点A逆时针旋转到AP',并使∠P′AP=∠DAO,是否存在点P使点P′恰好落到坐标轴上?如果存在,请直接写出此时点P的横坐标;如果不存在,请说明理由.7.在平面直角坐标系中,抛物线y=﹣x2+kx﹣2k的顶点为N.(1)若此抛物线过点A(﹣3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C 坐标;(3)已知点M(2﹣,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°时,求抛物线的解析式.8.如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和∠CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N 以每秒个单位的速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q 为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.(每写出一组正确的结果得1分,至多得4分)9.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n过B,C两点.(1)求抛物线和直线BC的表达式;(2)点P是抛物线上的一个动点.①如图1,若点P在第一象限内,连接P A,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.10.如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线y=x2﹣2x经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线y=﹣x+b经过点A,与y轴交于点B,连接OM.(1)求b的值及点M的坐标;(2)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°;(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G.当∠BEF=2∠BAO时,是否存在点E,使得3GF=4EF?若存在,求出点E的坐标;若不存在,请说明理由.12.如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.13.如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE 并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:;(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.14.如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.15.已知抛物线y=ax2﹣2ax+c过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.16.如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.参考答案1.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)【解答】解:(1)把C(﹣1,7),D(5,7)代入y=ax2+bx+12,可得,解得,∴抛物线的解析式为y=﹣x2+4x+12.(2)如图1中,过点E作EM⊥AB于M,过点D作DN⊥AB于N.对于抛物线y=﹣x2+4x+12,令y=0,得到,x2﹣4x﹣12=0,解得x=﹣2或6,∴A(﹣2,0),B(6,0),∵D(5,7),∴OA=2,DN=7,ON=5,AN=7∵△CED的面积与△CAD的面积之比为1:7,∴DE:AD=1:7,∴AE:AD=6:7,∵EM∥DN,∵===,∴==,∴AM=EM=6,∴E(4,6),∴直线BE的解析式为y=﹣3x+18,由,解得或,∴F(1,15),过点P作PQ∥y轴交BF于Q,设P(t,﹣t2+4t+12)则Q(t,﹣3t+18),∴PQ=﹣t2+4t+12﹣(﹣3t+18)=﹣t2+7t﹣6,∵S△PBF=•(﹣t2+7t﹣6)•5=﹣(t﹣)2+,∵﹣<0,∴t=时,△BFP的面积最大,最大值为.(3)对于抛物线y=﹣x2+4x+12,当y=16时,﹣x2+4x+12=16,解得x1=x2=2,当y=12时,﹣x2+4x+12=12,解得x=0或4,观察图2可知:当0≤x≤2或2≤x≤4时,12≤y≤16,∴m=0,n=2或m=2,n=4或m=0,n=4,∴﹣4≤m﹣n≤﹣22.已知二次函数y=ax2+bx+6的图象开口向下,与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P是该函数图象上的一个动点(不与点C重合).(1)求二次函数的关系式;(2)如图1,当点P是该函数图象上一个动点且在线段AC的上方,若△PCA的面积为12,求点P的坐标;(3)如图2,该函数图象的顶点为D,在该函数图象上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.【解答】解:(1)因为点A(﹣6,0)和点B(2,0),设函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),则﹣12a=6,解得:a=﹣,函数的表达式为:y=﹣x2﹣2x+6…①,顶点D坐标为(﹣2,8);(2)解法一:如图1所示,过点P作直线m∥AC交抛物线于点P′,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,∵OA=OC,∴∠PHG=∠CAB=45°,则HP=PG,S△PCA=PG×AC=×PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,则直线m的表达式为:y=x+10…②,联立①②并解得:x=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);解法二:如图1,过点P作PH∥y轴交AC于点H,设P(x,﹣x2﹣2x+6).∵△PCA的面积为12,∴OA•PH=12,即×6•PH=12.∴PH=4,∴PH•|x A﹣x P|+PH•|x P|=12,即×4•|﹣6﹣x P|+×4•|x P|=12,∴x P=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);(3)点A、B、C、D的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),则AC=,CD=,AD=,则∠ACD=90°,sin∠DAC==,延长DC至D′使CD=CD′,连接AD′,过点D作DH⊥AD′,则DD′=2,AD=AD′=,S△ADD′=DD′×AC=DH×AD′,即:2×=DH×,解得:DH=,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,①当点E在AB上方时,则直线AE的表达式为:y=x+b,将点A坐标代入上式并解得:直线AE的表达式为:y=x+…④,联立①④并解得:x=(不合题意值已舍去),即点E(,);②当点E在AB下方时,同理可得:点E(,﹣).综上,点E(,)或(,﹣).3.如图1,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C(0,﹣3),点D为该二次函数图象顶点.(1)求该二次函数解析式,及D点坐标;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD 相切,求点P的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMC=S△AOC,点E为直线AM上一动点,在x轴上是否存在点F,使以点F、E、B、C为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标,若不存在,请说明理由.【解答】解:(1)设该二次函数解析式为y=a(x+1)(x﹣3),把点C(0,﹣3)代入得:﹣3=a×1×(﹣3),解得:a=1,二次函数解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴二次函数图象顶点D坐标为(1,﹣4);(2)由(1)得:抛物线对称轴为直线x=1,∵点P是抛物线的对称轴上一点,∴设点P的坐标为(1,m),设直线CD的解析式为y=kx+b,把点C(0,﹣3),点D(1,﹣4)代入得:,解得:,∴直线CD的解析式为y=﹣x﹣3,当y=0时,x=﹣3,∴直线CD与x轴的交点为G(﹣3,0),∴OG=3,∴GN=ON+OG=1+3=4,∵抛物线顶点D坐标为(1,﹣4),∴DN=4=GN,∴△DNG是等腰直角三角形,∴∠NDG=45°,设直线CD与圆P相切于点Q,连接PQ、P A,如图3所示:∵以点P为圆心的圆经过A、B两点,且与直线CD相切,∴PQ⊥CD,PQ=P A,∴△PQD是等腰直角三角形,∴PD=PQ=P A,∵PD=|m+4|,P A==,∴|m+4|=,整理得:m2﹣8m﹣8=0,解得:m=4±2,∴点P的坐标为(1,4+2)或(1,4﹣2);(3)存在,理由如下:∵S△AMC=S△AOC,A(﹣1,0)、B(3,0),∴S△ABC﹣S△ABM=S△AOC,AB=OA+OB=4,∴×4×3﹣×4×|y M|=×1×3,∴|y M|=,∵y M<0,∴y M=﹣,设直线BC的解析式为y=k'x+b',则,解得:,∴直线BC的解析式为y=x﹣3,当y=﹣时,﹣=x﹣3,∴x=,∴M(,﹣),同理得:AM的解析式为y=﹣x﹣,分三种情况:①如图4所示:四边形BCEF是平行四边形,则CE∥BF,CE=BF,由题意得:∵点E为直线AM上一动点,点F在x轴上,∴点E的纵坐标为﹣3,∴﹣3═﹣x﹣,∴x=,∴点E(,﹣3),∴BF=CE=,∴OF=OB+BF=3+=,∴点F的坐标为(,0);②如图5所示:四边形BF'CE是平行四边形,同①得:点F'的坐标为(,0);③四边形BCF''E是平行四边形,如图6所示:点F(,0)关于点A的对称点为F''(﹣,0);综上所述,在x轴上存在点F,使以点F、E、B、C为顶点的四边形为平行四边形,点F 的坐标为(,0)或(,0)或(﹣,0)4.抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是该抛物线上的动点,且位于y轴的左侧.①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),∴,解得:,∴抛物线解析式为:y=x2+x﹣6;(2)①设点P(a,a2+a﹣6),∵点P位于y轴的左侧,∴a<0,PE=﹣a,∵PD=2PE,∴|a2+a﹣6|=﹣2a,∴a2+a﹣6=﹣2a或a2+a﹣6=2a,解得:a1=,a2=(舍去)或a3=﹣2,a4=3(舍去)∴PE=2或;②存在点P,使得∠ACP=∠OCB,理由如下,∵抛物线y=x2+x﹣6与x轴交于点C,∴点C(0,﹣6),∴OC=6,∵点B(2,0),点A(﹣3,0),∴OB=2,OA=3,∴BC===2,AC===3,如图,过点A作AH⊥CP于H,∵∠AHC=∠BOC=90°,∠ACP=∠BCO,∴△ACH∽△BCO,∴,∴=,∴AH=,HC=,设点H(m,n),∴()2=(m+3)2+n2,()2=m2+(n+6)2,∴或,∴点H(﹣,﹣)或(﹣,),当H(﹣,﹣)时,∵点C(0,﹣6),∴直线HC的解析式为:y=﹣x﹣6,∴x2+x﹣6=﹣x﹣6,解得:x1=﹣2,x2=0(舍去),∴点P的坐标(﹣2,﹣4);当H(﹣,)时,∵点C(0,﹣6),∴直线HC的解析式为:y=﹣7x﹣6,∴x2+x﹣6=﹣7x﹣6,解得:x1=﹣8,x2=0(舍去),∴点P的坐标(﹣8,50);综上所述:点P坐标为(﹣2,﹣4)或(﹣8,50).5.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,A点坐标为(﹣2,0),与y轴交于点C(0,4),直线y=﹣x+m与抛物线交于B,D两点.(1)求抛物线的函数表达式.(2)求m的值和D点坐标.(3)点P是直线BD上方抛物线上的动点,过点P作x轴的垂线,垂足为H,交直线BD 于点F,过点D作x轴的平行线,交PH于点N,当N是线段PF的三等分点时,求P点坐标.(4)如图2,Q是x轴上一点,其坐标为(﹣,0).动点M从A出发,沿x轴正方向以每秒5个单位的速度运动,设M的运动时间为t(t>0),连接AD,过M作MG⊥AD 于点G,以MG所在直线为对称轴,线段AQ经轴对称变换后的图形为A′Q′,点M在运动过程中,线段A′Q′的位置也随之变化,请直接写出运动过程中线段A′Q′与抛物线有公共点时t的取值范围.【解答】解:(1)把A(﹣2,0),C(0,4)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+x+4.(2)令y=0,则有﹣x2+x+4=0,解得x=﹣2或4,∴B(4,0),把B(4,0)代入y=﹣x+m,得到m=2,∴直线BD的解析式为y=﹣x+2,由,解得或,∴D(﹣1,).(3)设P(a,﹣a2+a+4),则N(a,),F(a,﹣a+2),∴PN=﹣a2+a+4﹣=﹣a2+a+,NF=﹣(﹣a+2)=a+,∵N是线段PF的三等分点,∴PN=2NF或NF=2PN,∴﹣a2+a+=a+1或a+=﹣a2+2a+3,解得a=±1或﹣1或,∵a>0,∴a=1或,∴P(1,)或(,).(4)如图2中,∵A(﹣2,0),D(﹣1,),∴直线AD的解析式为y=x+5,∵A′Q′与AQ关于MG对称,MG⊥AD,∴QQ′∥AD,∵Q(﹣,0),∴直线QQ′的解析式为y=x+2,设直线QQ′交抛物线于E,由,解得或,∴E(1,),当点A′与D重合时,直线GM的解析式为y=﹣x+,可得M(,0),此时t=,当点Q′与E重合时,直线GM经过点(,),∵GM⊥AD,∴GM的解析式为y=﹣x+,令y=0,可得x=,∴M(,0),此时t==,观察图象可知,满足条件的t的值为≤t≤.6.如图,已知二次函数y=ax2+bx+4的图象与y轴交于点A,与x轴交于点B(﹣2,0),点C(8,0),直线y=经过点A,与x轴交于D点.(1)求该二次函数的表达式;(2)点E为线段AC上方抛物线上一动点,若△ADE的面积为10,求点E的坐标;(3)点P为抛物线上一动点,连接AP,将线段AP绕点A逆时针旋转到AP',并使∠P′AP=∠DAO,是否存在点P使点P′恰好落到坐标轴上?如果存在,请直接写出此时点P的横坐标;如果不存在,请说明理由.【解答】解:(1)把点B、C的坐标代入抛物线的解析式得,,解得,,∴二次函数的解析式为:;(2)设E(m,)(0<m<8),过E作EQ⊥x轴于点Q,则EQ=,∵D(3,0),∴DQ=m﹣3,∴S△ADE=S梯形AOQE﹣S△AOD﹣S△DEQ==,解得,m=8(舍),或m=,∴E点的坐标为(,);(3)①当P点在第一象限内,P′点在y轴上时,如图2,过P作PE⊥x轴于点E,过A作AM⊥PE于M,设P(m,+4),则AM=m,PM=,∵PE∥AO,∴∠APM=∠P′AP,∵∠P AP′=∠DAO,∴∠APM=∠DAO,∵∠AMP=∠AOD=90°,∴△APM∽△DAO,∴,即,解得,m=0(舍),或m=,∴此时P点的横坐标为;②当P点在y轴左边,P′在x轴上时,如图3,过P作PM⊥y轴于M,过P′作P′M′⊥AD于M′,则∠AMP=∠AM′P′,设P(m,+4),则AM=,PM=﹣m,∵∠P AP′=∠DAO,∴∠P AM=∠P′AM′,∵AP=AP′,∴△APM≌△AP′M′(AAS),∴PM=P′M′=﹣m,AM=AM′═,∵∠DM′P′=∠DOA=90°,∠P′DM′=∠ADO,∴△DP′M′∽△DAO,∴,即,∴,∵DM′+AM′=AD=5,∴,解得,m=,或m=(舍),∴此时P点的横坐标为;③当P点在第四象限内,P′点在x轴上时,如图4,过P作PM⊥y轴于M,过P′作P′M′⊥AD于点M′,则∠AMP=∠AM′P′,设P(m,+4),则AM=,PM=m,∵∠P AP′=∠DAO,∴∠P AM=∠P′AM′,∵AP=AP′,∴△APM≌△AP′M′(AAS),∴PM=P′M′=m,AM=AM′═,∵∠DM′P′=∠DOA=90°,∠P′DM′=∠ADO,∴△DP′M′∽△DAO,∴,即,∴,∵AM′﹣DM′=AD=5,∴,解得,m=(舍),或m=.∴此时P点的横坐标为.综上,存在,其中P点的横坐标为或或.7.在平面直角坐标系中,抛物线y=﹣x2+kx﹣2k的顶点为N.(1)若此抛物线过点A(﹣3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C 坐标;(3)已知点M(2﹣,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°时,求抛物线的解析式.【解答】解:(1)把A(﹣3.1)代入y=﹣x2+kx﹣2k,得﹣9﹣3k﹣2k=1.解得k=﹣2,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)如图1,设C(t,﹣t2﹣2t+4),则E(t,﹣﹣t+2),设直线AB的解析式为y=kx+b,把A(﹣3,1),(0,4)代入得到,,解得,∴直线AB的解析式为y=x+4,∵E(t,﹣﹣t+2)在直线AB上,∴﹣﹣t+2=t+4,解得t1=t2=﹣2,∴C(﹣2,4).(3)由y=﹣x2+kx﹣2k=k(x﹣2)﹣x2,当x﹣2=0时,x=2,y=﹣4,∴无论k取何值,抛物线都经过定点H(2,﹣4),二次函数的顶点N(,﹣2k),①如图2中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G,若>2时,则k>4,∵M(2﹣,0),H(2,﹣4),∴MI=,HI=4,∴tan∠MHI==,∴∠MHI=30°,∵∠MHN=60°,∴∠NHI=30°,即∠GNH=30°,由图可知,tan∠GNH===,解得k=4+2或4(不合题意舍弃).②如图3中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G.若<2,则k<4,同理可得,∠MHI=30°,∵∠MHN=60°,∴NH⊥HI,即﹣2k═﹣4,解得k=4(不符合题意舍弃).③若=2,则N,H重合,不符合题意舍弃,综上所述,抛物线的解析式为y=﹣x2+(4+2)x﹣(8+4).8.如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和∠CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N 以每秒个单位的速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q 为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.(每写出一组正确的结果得1分,至多得4分)【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣x2+x+1,令y=0,可得x2﹣3x﹣4=0,解得x=﹣1或4,∴A(﹣1,0),令y=0,得到x=1,∴C(0,1),∴OA=OC=1,∴∠CAO=45°.(2)如图1中,过点C作CE⊥OA于E,过点D作DF⊥AB于F.∵∠NEM=∠DFM=∠NMD=90°,∴∠NME+∠DMF=90°,∠DMF+∠MDF=90°,∴∠NME=∠MDF,∵NM=DM,∴△MEN≌△DFM(AAS),∴NE=MF,EM=DF,∵∠CAO=45°,AN=t,AM=3t,∴AE=EN=t,∴EM=AM﹣AE=2t,∴DF=2t,MF=t,OF=4t﹣1,∴D(4t﹣1,2t),∴﹣(4t﹣1)2+(4t﹣1)+1=2t,∵t>0,故可以解得t=,经检验,t=时,M,N均没有达到终点,符合题意,∴D(2,).(3)如图3﹣1中,当点Q在点C的下方,点P在y的右侧,∠QCP=∠MDB时,取E(,0),连接EC,过点E作EG⊥EC交PC于G,∵M(,0),D(2,),B(4,0)∴FM=2﹣=,DM=,BM=,BD=,∴DF=2MF,∵OC=2OE,∴tan∠OCE=tan∠MDF=,∴∠OCE=∠MDF,∴∠OCP=∠MDB,∴∠ECG=∠FDB,∴tan∠ECG=tan∠FDB=,∴EG=,可得G(,),∴直线CP的解析式为y=﹣x+1,由,解得或,∴P(,),∴PC=,当=或=时,△QCP与△MDB相似,可得CQ=或,∴Q(0,﹣)或(0,﹣).如图3﹣2中,当点Q在点C的下方,点P在y的右侧,∠QCP=∠DMB时,设PC交x轴于k.∵tan∠OCK=tan∠DMB=2,∴OK=2OC=2,∴点K与F重合,∴直线PC的解析式为y=﹣x+1,由,解得或,∴P(5,﹣),当=或=时,△QCP与△MDB相似,可得CQ=或,∴Q(0,﹣)或(0,﹣).当点Q在点C的下方,点P在y的右侧,∠QCP=∠DBM时,同法可得P(,﹣),Q(0,﹣)或(0,),当点Q在点C上方,∠QCP=∠DMB时,同法可得P(1,),Q(0,)或(0,),当点Q在点C上方,∠QCP=∠MDB时,同法可得P(,),Q(0,)或(0,),当点Q在点C下方,点P在y轴的左侧时,∠QCP=∠DBM时,同法可得P(﹣,﹣),Q(0,﹣)或(0,﹣).9.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n过B,C两点.(1)求抛物线和直线BC的表达式;(2)点P是抛物线上的一个动点.①如图1,若点P在第一象限内,连接P A,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+3得:,解得∴抛物线的表达式为y=﹣x2+2x+3,∴点C坐标为(0,3),把B(3,0),C(0,3)代入y=kx+n得:,解得∴直线BC的表达式为y=﹣x+3.(2)①∵P A交直线BC于点D,∴设点D的坐标为(m,﹣m+3),设直线AD的表达式为y=k1x+b1,∴,解得,∴直线AD的表达式,y=x+,∴x+=﹣x2+2x+3,整理得,(x﹣)(x+1)=0解得x=或﹣1(不合题意,舍去),∴点D的横坐标为m,点P的横坐标为,分别过点D、P作x轴的垂线,垂足分别为M、N,如图1中:∴DM∥PN,OM=m,ON=,OA=1,∴=====,设=t,则t=整理得,(t+1)m2+(2t﹣3)m+t=0,∵△≥0,∴(2t﹣3)2﹣4t(t+1)≥0,解得t≤∴有最大值,最大值为.②存在,理由如下:过点F作FG⊥OB于G,如图2中,∵y=﹣x2+2x+3的对称轴为x=1,∴OE=1,∵B(3,0),C(0,3)∴OC=OB=3,又∵∠COB=90°,∴△OCB是等腰直角三角形,∵∠EFB=90°,BE=OB﹣OE=2,∴△EFB是等腰直角三角形,∴FG=GB=EG=1,∴点F的坐标为(2,1),当EF为边时,∵四边形EFPQ为平行四边形,∴QE=PF,QE∥PF∥y轴,∴点P的横坐标与点F的横坐标同为2,当x=2时,y=﹣22+2×2+3=3,∴点P的坐标为(2,3),∴QE=PF=3﹣1=2,点Q的坐标为(1,2),根据对称性当P(0,3)时,Q(1,4)时,四边形EFQP也是平行四边形.当EF为对角线时,如图3中,∵四边形PEQF为平行四边形,∴QE=PF,QE∥PF∥y轴,同理求得:点P的坐标为(2,3),∴QE=PF=3﹣1=2,点Q的坐标为(1,﹣2);综上,点P的坐标为(2,3)时,点Q的坐标为(1,2)或(1,﹣2),P(0,3)时,Q(1,4).10.如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)针对于直线y=x﹣2,令x=0,则y=﹣2,∴C(0,﹣2),令y=0,则0=x﹣2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=x2+bx+c中,得,∴,∴抛物线的解析式为y=x2﹣x﹣2;(2)①∵PM⊥x轴,M(m,0),∴P(m,m2﹣m﹣2),D(m,m﹣2),∵P、D、M三点中恰有一点是其它两点所连线段的中点,∴Ⅰ、当点D是PM的中点时,∴Ⅰ、当点D是PM的中点时,(0+m2﹣m﹣2)=m﹣2,∴m=1或m=4(此时点D,M,P三点重合,舍去),Ⅱ、当点P是DM的中点时,(0+m﹣2)=m2﹣m﹣2,∴m=﹣或m=4(此时点D,M,P三点重合,舍去),Ⅲ、当点M是DP的中点时,(m2﹣m﹣2+m﹣2)=0,∴m=﹣2或m=4(此时点D,M,P三点重合,舍去),即满足条件的m的值为﹣或1或﹣2;②由(1)知,抛物线的解析式为y=x2﹣x﹣2,令y=0,则0=x2﹣x﹣2,∴x=﹣1或x=4,∴点A(﹣1,0),∴OA=1,∵B(4,0),C(0,﹣2),∴OB=4,OC=2,∴,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠OAC=∠OCB,∠ACO=∠OBC,∵△PNC与△AOC相似,∴Ⅰ、当△PNC∽△AOC,∴∠PCN=∠ACO,∴∠PCN=∠OBC,∴CP∥OB,∴点P的纵坐标为﹣2,∴m2﹣m﹣2=﹣2,∴m=0(舍)或m=3,∴P(3,﹣2);Ⅱ、当△PNC∽△COA时,∴∠PCN=∠CAO,∴∠OCB=∠PCD,∵PD∥OC,∴∠OCB=∠CDP,∴∠PCD=∠PDC,∴PC=PD,由①知,P(m,m2﹣m﹣2),D(m,m﹣2),∵C(0,﹣2),∴PD=2m﹣m2,PC==,∴2m﹣m2=,∴m=或m=0(舍),∴P(,﹣),即满足条件的点P的坐标为(3,﹣2)或(,﹣).11.如图,在平面直角坐标系中,抛物线y=x2﹣2x经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线y=﹣x+b经过点A,与y轴交于点B,连接OM.(1)求b的值及点M的坐标;(2)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°;(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G.当∠BEF=2∠BAO时,是否存在点E,使得3GF=4EF?若存在,求出点E的坐标;若不存在,请说明理由.【解答】(1)解:对于抛物线y=x2﹣2x,令y=0,得到x2﹣2x=0,解得x=0或6,∴A(6,0),∵直线y=﹣x+b经过点A,∴0=﹣3+b,∴b=3,∵y=x2﹣2x=(x﹣3)2﹣3,∴M(3,﹣3).(2)证明:如图1中,设平移后的直线的解析式y=﹣x+n.∵平移后的直线经过M(3,﹣3),∴﹣3=﹣+n,∴n=﹣,∴平移后的直线的解析式为y=﹣x﹣,过点D(2,0)作DH⊥MC于H,则直线DH的解析式为y=2x﹣4,由,解得,∴H(1,﹣2),∵D(2,0),M(3,﹣3),∴DH==,HM==,∴DH=HM.∴∠DMC=45°,∵∠ADM=∠DMC+∠ACM,∴∠ADM﹣∠ACM=45°.(3)解:如图2中,过点G作GH⊥OA于H,过点E作EK⊥OA于K.∵∠BEF=2∠BAO,∠BEF=∠BAO+∠EF A,∴∠EF A=∠BAO,∵∠EF A=∠GFH,tan∠BAO===,∴tan∠GFH=tan∠EFK=,∵GH∥EK,∴==,设GH=4k,EK=3k,则OH=HG=4k,FH=8k,FK=AK=6k,∴OF=AF=12k=3,∴k=,∴OF=3,FK=AK=,EK=,∴OK=,∴E(,).12.如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.【解答】解:(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y1=3,∴C(0,3).(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H,连接BD′.∵D′是抛物线的顶点,∴D′B=D′B′,D′(a,b),∵∠BD′B′=90°,D′H⊥BB′,∴BH=HB′,∴D′H=BH=HB′=b,∴a=1+b,又∵y2=﹣(x﹣a)2+b,经过B(1,0),∴b=(1﹣a)2,解得a=2或1(不合题意舍弃),b=1,∴B′(3,0),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.(3)如图2中,观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.对于y1=﹣x2﹣2x+3,令y1=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),令y1=﹣3,则x2+2x﹣6=0,解得x=﹣1,可得P2(﹣1﹣,﹣3),P3(﹣1+,﹣3),对于y2=﹣x2+4x﹣3,令y2=3,方程无解,令y2=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1﹣,﹣3)或(﹣1+,﹣3)或(0,﹣3)或(4,﹣3).13.如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE 并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:(1,0);(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.【解答】解:(1)对于抛物线y=﹣ax2+2ax+3a,对称轴x=﹣=1,∴E(1,0),故答案为(1,0).(2)如图,连接EC.对于抛物线y=﹣ax2+2ax+3a,令x=0,得到y=3a,令y=0,﹣ax2+2ax+3a=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),C(0,3a),∵C,D关于对称轴对称,∴D(2,3a),CD=2,EC=DE,当∠HEF=90°时,∵ED=EC,∴∠ECD=∠EDC,∵∠DCF=90°,∴∠CFD+∠EDC=90°,∠ECF+∠ECD=90°,∴∠ECF=∠EFC,∴EC=EF=DE,∵EA∥DH,∴F A=AH,∴AE=DH,∵AE=2,∴DH=4,∵HE⊥DFEF=ED,∴FH=DH=4,在Rt△CFH中,则有42=22+(6a)2,解得a=或﹣(不符合题意舍弃),∴a=.当∠HFE=90°时,∵OA=OE,FO⊥AE,∴F A=FE,∴OF=OA=OE=1,∴3a=1,∴a=,综上所述,满足条件的a的值为或.(3)结论:EH∥GK.理由:由题意A(﹣1,0),F(0,﹣3a),D(2,3a),H(﹣2,3a),E(1,0),∴直线AF的解析式y=﹣3ax﹣3a,直线DF的解析式为y=3ax﹣3a,由,解得或,∴K(6,﹣21a),由,解得或,∴G(﹣3,﹣12a),∴直线HE的解析式为y=﹣ax+a,直线GK的解析式为y=﹣ax﹣15a,∵k相同,∴HE∥GK.14.如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴,得到6b+c=9,又∵对称轴为x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:。
中考数学专题复习(有答案)二次函数的图象与性质
第4节二次函数的图象与性质A组1.(2020无锡)请写出一个函数表达式,使其图象的对称轴为y轴:y=x2(答案不唯一) .2.(2020上海)如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是y =x2+3 .3.(2020泰安)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:下列结论:①a>0(-8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=-5有两个不相等的实数根.其中,正确结论的序号是①③④.(把所有正确结论的序号都填上)4.(2020临沂改编)已知抛物线y=ax2-2ax-3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式.解:(1)∵抛物线y=ax2-2ax-3+2a2=a(x-1)2+2a2-a-3.∴这条抛物线的对称轴为直线x=1.(2)∵抛物线的顶点在x轴上,∴2a2-a-3=0.解得a1=32,a2=-1.∴抛物线的解析式为y=32-3x+32或y=-x2+2x-1.2xB组5.(2020深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示.以下结论错误的是(C)A.abc>0B.4ac-b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根6.(2020鹤岗)如图,已知二次函数y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C,已知△ABC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在,请求出P坐标;若不存在,请说明理由.解:(1)令x=0,得y=-a.∴C(0,-a).令y=0,即-x2+(a+1)x-a=0,解得x1=a,x2=1.由图象知,a<0,∴A(a,0),B(1,0).∵S△ABC=6,∴12(1-a)(-a)=6.解得a=-3或a=4(舍去).(2)∵a=-3,∴C(0,3).∵S△ABP=S△ABC,∴点P的纵坐标为±3,把y=3代入y=-x2-2x+3得-x2-2x+3=3,解得x1=-2,x2=0(与C重合,舍去).把y=-3代入y=-x2-2x+3得-x2-2x+3=-3,解得x1=-1+7,x2=-1-7.∴点P的坐标为(-2,3),(-1+7,-3),(-1-7,-3).C组7.(2020枣庄改编)如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y 轴交于点C ,连接AC ,BC .M 为线段OB 上的一个动点,过点M 作PM ⊥x 轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN ⊥BC ,垂足为点N .设点M 的坐标为M (m ,0),请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?解:(1)将点A ,B 的坐标代入y =ax 2+bx +4,得⎩⎪⎨⎪⎧9a -3b +4=0,16a +4b +4=0.解得⎩⎨⎧a =-13,b =13.∴抛物线的表达式为y =-13x 2+13x +4.(2)令x =0,得y =4,∴点C (0,4).设直线BC 的函数表达式为y =kx +b ,将点B ,C 坐标代入,得直线BC 的表达式为y =-x +4.∵M (m ,0),∴点P ⎝⎛⎭⎫m ,-13m 2+13m +4,点Q (m ,-m +4). ∴PQ =-13m 2+13m +4+m -4=-13m 2+43m .∵OB =OC ,∴∠ABC =∠OCB =45°. ∴∠PQN =∠BQM =45°. ∴PN =PQ sin45°=22⎝⎛⎭⎫-13m 2+43m =-26(m -2)2+223. ∵-26<0,∴当m =2时,PN 有最大值,最大值是223.。
2020年初三数学下册中考专题复习 二次函数面积最值问题(含答案)
2020年初三数学下册中考专题复习二次函数面积最值问题1.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.2.如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.3.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接P A,PB使得△P AB的面积最大,并求出这个最大值.4.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使P A+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.5.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.6.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.7.如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的表达式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S 取最大值时的点C的坐标.8.如图A(0,3),B(3,0),C(1,0)分别是抛物线:y=ax2+bx+c(a≠0)上的三点,点P为抛物线上一动点.(1)求此抛物线的解析式.(2)当△P AB是以AB为一直角边的直角三角形时,求此时点P的坐标.(3)若点P在抛物线上A、B两点之间移动时,是否存在一个位置,使△P AB的面积最大?若存在,请求此时点P的坐标.若不存在,请说明理由.9.如图,抛物线y=ax2+bx+c经过A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.点P为直线AE上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的表达式;(2)当t为何值时,△P AE的面积最大?并求出最大面积;(3)是否存在点P使△P AE为直角三角形?若存在,求出t的值;若不存在,说明理由.10.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C (0,﹣3)(1)求出该抛物线的函数关系式及对称轴(2)点P是抛物线上的一个动点,设点P的横坐标为t(0<t<3).当△PCB的面积的最大值时,求点P的坐标(3)在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形时,求P点的坐标.11.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线解析式并求出点D的坐标;(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE是等腰三角形时,请直接写出m的值.12.如图1,在平面直角坐标系中,直线y=x﹣与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣8.点P是直线AB上方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线,垂足为E,交直线AB于点C,作PD⊥AB于点D,交x轴于点F.(1)求该抛物线的解析式;(2)求sin∠ACE的值;(3)连接P A、PB(如图2所示),设△P AB的面积为S,点P的横坐标为x,求S关于x的函数关系式,并求出S的最大值.13.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A.经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E;PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小.若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.14.如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.15.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?16.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1,P为抛物线上的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P的纵坐标为2时,求点P的横坐标;(3)当点P在运动过程中,求四边形P ABC面积最大时的值及此时点P的坐标.17.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△P AC的面积最大?并求出此时P点的坐标和△P AC的最大面积.18.如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴方程.(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.(3)在抛物线上BC之间是否存在一点D,使得△DBC的面积最大?若存在请求出点D 的坐标和△DBC的面积;若不存在,请说明理由.19.如图1,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A(﹣4,0)、B(1,0)两点,与y轴交于C点,对称轴x=﹣,点N(n,0)是线段AB上的一个动点(N与A、B两点不重合),请回答下列问题:(1)求出抛物线的解析式,并写出C点的坐标;(2)试求出当n为何值时,△ANC恰能构成是等腰三角形.(3)如图2,过N作NF∥BC,与AC相交于D点,连结CN,请问在N点的运动过程中,△CDN的面积是否存在最大值;若存在,试求出该最大面积,若不存在,请说明理由.20.抛物线y=ax2+bx+c与x轴交于点A(1,0)和点B(5,0),与y轴交于点C(0,3).该抛物线与直线相交于C,D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M,N.(1)求该抛物线所对应的函数解析式;(2)连结PC,PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;(3)连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.详细答案一.解答题(共20小题)1.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.2.【解答】解:(1)当y=0时,﹣x2+2x+3=0,解得x1=3,x2=﹣1,则C(﹣1,0),A′(3,0);当x=0时,y=3,则A(0,3);(2)∵四边形ABOC为平行四边形,∴AB∥OC,AB=OC,而C(﹣1,0),A(0,3),∴B(1,3)∴OB==,S△AOB=×3×1=,又∵平行四边形ABOC旋转90°得平行四边形A′B′OC′,∴∠ACO=∠OC′D,OC′=OC=1,又∵∠ACO=∠ABO,∴∠ABO=∠OC′D.又∵∠C′OD=∠AOB,∴△C′OD∽△BOA,∴=()2=()2=,∴S△C′OD=×=;(3)设M点的坐标为(m,﹣m2+2m+3),0<m<3,作MN∥y轴交直线AA′于N,易得直线AA′的解析式为y=﹣x+3,则N(m,﹣m+3),∵MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴S△AMA′=S△ANM+S△MNA′=MN•3=(﹣m2+3m)=﹣m2+m=﹣(m﹣)2+,∴当m=时,S△AMA'的值最大,最大值为,此时M点坐标为().3.【解答】解:(1)抛物线的顶点D的横坐标是2,则x=﹣=2…①,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3…②,联立①、②解得:a=,b=﹣,c=﹣3,∴抛物线的解析式为:y=x2﹣x﹣3,当x=2时,y=﹣,即顶点D的坐标为(2,﹣);(2)A(0,﹣3),B(5,9),则AB=13,①当AB=AC时,设点C坐标(m,0),则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0);②当AB=BC时,设点C坐标(m,0),则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0),③当AC=BC时,设点C坐标(m,0),则:点C为AB的垂直平分线于x轴的交点,则点C坐标为(,0),故:存在,点C的坐标为:(4,0)或(﹣4,0)或(5,0)或(5﹣2,0)或(,0);(3)过点P作y轴的平行线交AB于点H,设:AB所在的直线过点A(0,﹣3),则设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k=,故函数的表达式为:y=x﹣3,设:点P坐标为(m,m2﹣m﹣3),则点H坐标为(m,m﹣3),S△P AB=•PH•x B=(﹣m2+12m),当m=2.5时,S△P AB取得最大值为:,答:△P AB的面积最大值为.4.【解答】解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时P A+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),则S△MOC=MH×x C=(﹣x2+4x﹣x)=﹣x2+x,∵﹣<0,故x=,故当点M(,)时,S△MOC最大值为.5.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.6.【解答】解:(1)将B(4,0)代入y=﹣x2+3x+m,解得,m=4,∴二次函数解析式为y=﹣x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2﹣4x+b=0,∴△=16﹣4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,﹣m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=﹣m2+3m+4,∴m=1±,∴P(1+,1+)或P(1﹣,1﹣),②如图,设点P(t,﹣t2+3t+4),过点P作y轴的平行线l,过点C作l的垂线,∵点D在直线BC上,∴D(t,﹣t+4),∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,BE+CF=4,∴S四边形PBQC=2S△PCB=2(S△PCD+S△PBD)=2(PD×CF+PD×BE)=4PD=﹣4t2+16t,∵0<t<4,∴当t=2时,S四边形PBQC最大=167.【解答】解:(1)∵由题意得解得:,∴y=﹣x2+2x+.(2)设直线AB为:y=kx+b.则,解得直线AB的解析式为y=+.如图所示:记CD与x轴的交点坐标为E.过点B作BF⊥DC,垂足为F.设D(m,﹣m2+2m+)则C(m,m+).∵CD=(﹣m2+2m+)﹣(m+)=m2+m+2,∴S=AE•DC+CD•BF=CD(AE+BF)=DC=m2+m+5.∴S=m2+m+5.∵﹣<0,∴当m=时,S有最大值.∴当m=时,m+=×+=.∴点C(,).8.【解答】解:(1)将A(0,3),B(3,0),C(1,0)代入y=ax2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点P的坐标为(m,m2﹣4m+3).∵点A的坐标为(0,3),点B的坐标为(3,0),∴AP2=(m﹣0)2+(m2﹣4m+3﹣3)2=m4﹣8m3+17m2,BP2=(m﹣3)2+(m2﹣4m+3)2=m4﹣8m3+23m2﹣30m+18,AB2=(3﹣0)2+(0﹣3)2=18.分两种情况考虑:①当∠BAP=90°时,AB2+AP2=BP2,即18+m4﹣8m3+17m2=m4﹣8m3+23m2﹣30m+18,整理,得:m2﹣5m=0,解得:m1=0(舍去),m2=5,∴点P的坐标为(5,8);②当∠ABP=90°时,AB2+BP2=AP2,即18+m4﹣8m3+23m2﹣30m+18=m4﹣8m3+17m2,整理,得:m2﹣5m+6=0,解得:m3=2,m3=3(舍去),∴点P的坐标为(2,﹣1).综上所述:当△P AB是以AB为一直角边的直角三角形时,点P的坐标为(5,8)或(2,﹣1).(3)存在,如图过点P作PD∥y轴交直线AB于点D.设直线AB的解析式为y=kx+d(k≠0),将A(0,3),B(3,0)代入y=kx+d,得:,解得:,∴直线AB的解析式为y=﹣x+3.设点P的坐标为(n,n2﹣4n+3)(0<n<3),则点D的坐标为(n,﹣n+3),∴PD=(﹣n+3)﹣(n2﹣4n+3)=﹣n2+3n,∴S△P AB=OB•PD=﹣n2+n=﹣(n﹣)2+.∵﹣<0,∴当n=时,S△P AB取得最大值,此时最大值为,∴当△P AB的面积取最大值时,点P的坐标为(,﹣).9.【解答】解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴==,∴t=时,△P AE的面积最大,最大值是.(3)由图可知∠PEA≠90°,∴只能有∠P AE=90°或∠APE=90°,①当∠P AE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠P AG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠P AQ=90°,∴∠P AQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,∴,即t2﹣t﹣1=0,解得:t=或t=<0(舍去),综上可知存在满足条件的点P,t的值为1或.10.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线与y轴交于点C(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1∴设抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,对称轴为直线x=1;(2)设P(t,t2﹣2t﹣3),S△PCB=S△POC+S△POB﹣S△BOC=×3t+×3×|t2﹣2t﹣3|﹣=∵a=<0,∴函数有最大值,当t=时,面积最大,∴P()(3)设Q(1,n)),①当PQ、PC为平行四边形的对角线时,P(4,n+3),∴42﹣2×4﹣3=n+3,n=2,∴P(4,5);②当CQ、BP为平行四边形的对角线时,P(﹣2,n﹣3),∴(﹣2)2﹣2×(﹣2)﹣3=n﹣3,n=8,∴P(﹣2,5);综上所述,以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形时,P点的坐标(4,5),(﹣2,5).11.【解答】解:(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2+2x+3;把C(0,3)代入y=﹣x+m,解得m=3,∴直线CD的解析式为y=﹣x+3,解方程组,解得或,∴D点坐标为(,);(2)存在.设P(m,﹣m2+2m+3),则E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,当m=时,△CDP的面积存在最大值,最大值为;(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m =,综上所述,m的值为或或.12.【解答】解:(1)当x=﹣8时,y=x﹣=﹣,则B(﹣8,﹣),当y=0时,x﹣=0,解得x=2,则A(2,0),把B(﹣8,﹣),A(2,0)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式y=﹣x2﹣x+;(2)当x=0时,y=x﹣=﹣,则G(0,﹣),在Rt△AOG中,∵OG=,OA=2,∴AG==,∴sin∠AGO===,∵PC⊥x轴,∴PC∥OG,∴∠ACE=∠AGO,∴sin∠ACE=;(3)设P(x,﹣x2﹣x+),则C(x,x﹣),∴PC=﹣x2﹣x+﹣(x﹣)=﹣x2﹣x+4,∴S=•(2+8)•(﹣x2﹣x+4)=﹣x2﹣x+20=﹣(x+3)2+,当x=﹣3时,S的最大值为.13.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.14.【解答】(1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∴AC=,在Rt△BOC中,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD=x,∵,∴,∴AD=x,∴CD=CA﹣AD=﹣x,∵,∴,∴DE=5﹣x,∴S=GD•DE=x•(5﹣x)=﹣x2+5x=﹣[(x﹣1)2﹣1]=﹣(x﹣1)2+,即x=1时,S最大,为.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为.15.【解答】解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QCP==,∴=,解得t=;当∠PQC=90°时,∵cos∠QCP==,∴=,解得t=.∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则,解得.故直线AC的解析式为y=﹣2x+6.∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+,∴Q点的横坐标为1+,将x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q点的纵坐标为4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ•AG+FQ•DG=FQ(AG+DG)=FQ•AD=×2(t﹣)=﹣+t=﹣(t2+4﹣4t﹣4)=﹣(t﹣2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.16.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A和点B(1,0),与y 轴交于点C(0,3),其对称轴l为x=﹣1,∴A(﹣3,0),∴解得:,∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).(2)设点P(x,2)即y=﹣x2﹣2x+3=2,解得x1=﹣1或x2=﹣﹣1,∴点P(﹣1,2)或(﹣﹣1,2).(3)设点P(x,y),则y=﹣x2﹣2x+3,∵S四边形BCP A=S△OBC+S△OAP+S△OPC,∴=,∵﹣<0,∴当x=﹣时,四边形P ABC的面积有最大值,所以点P(﹣,).17.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△P AC=S△P AQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△P AC的面积最大为;此时,P点的坐标为(3,).18.【解答】解:(1)∵B点的坐标为B(8,0),∴﹣16+8b+4=0,解得b=,∴抛物线的解析式为y═﹣+x+4,对称轴方程为x=﹣=3;(2)∵由(1)知,抛物线的对称轴方程为x=3,B(8,0)∴A(﹣2,0),C(0,4),∴OA=2,OC=4,OB=8,∴tan∠ACO=tan∠CBO=,∴∠ACO=∠CBO.∵∠AOC=∠COB=90°,∴△AOC∽△COB.(3)设BC解析式为y=kx+b,把(8,0),(0,4)分别代入解析式得,,解得,解得y=﹣x+4,作DH⊥x轴,交BC于H.设D(t,﹣t2+t+4),H(t,﹣t+4),S△BCD=DH•OB=×(﹣t2+t+4+t﹣4)×8=﹣t2+8t=﹣(t2﹣8t+42﹣16)=﹣(t﹣4)2+16,当t=4时,△DBC的最大面积为16,此时D点坐标为(4,6).19.【解答】解:(1)∵抛物线y=﹣x2+bx+c(a≠0)与x轴交于A(﹣4,0)、B(1,0)两点,不妨设抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+2.∴C(0,2).(2)分两种情形:①当AN=AC时,如图1中,∵AC==2,∴n﹣(﹣4)=2,∴n=2﹣4.②当NA=NC时,如图2中,在Rt△NOC中,OC=2,∵NC=NA=n﹣(﹣4)=n+4,ON=n,∴n2+22=(n+)2,解得n=﹣.综上所述,当n=2﹣4或﹣时,△ANC是等腰三角形.(3)如图3中,由题意可知:直线BC的解析式为y=﹣2x+2,直线AC的解析式为y=x+2,设N(n,0),易知N在线段OB上时,△CDN的面积较小,不妨设n<0,∵ND∥BC,设ND的解析式为y=﹣2x+b,代入(n,0)可得b=2n,∴ND的解析式为y=﹣2x+2n,由,可得点D的纵坐标:y D=(8+2n),∴S△CDN=S△AOC﹣S△ADN﹣S△CON=[2×4﹣2|n|﹣(8+2n)(n+4)=﹣(n+)2+,∵﹣<0,∴当n=﹣时,△DCN的面积最大,最大值为.20.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、点B(5,0)和点C(0,3),因为与y轴相较于点C,所以c=3.∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的垂线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;(3)存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,﹣);当时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,﹣)或(,﹣).。
2020年中考数学二轮复习压轴专题:二次函数(题目+解析版)
解:(1)y=ax2﹣8ax+12a=a(x﹣6)(x﹣2), 故 OA=2,OB=6,
△OCA∽△OBC,则
,即:OC2=OA•OB,
解得:CO=2 ;
(2)过点 C 作 CD⊥x 轴于点 D,
2020 年中考数学二轮复习压轴专题 微信:东方君编辑
△OCA∽△OBC,则
,
设 AC=2x,则 BC=2 x,而 AB=4, 故 16=(2x)2+(2 x)2,解得:x=1, 故 AC=2,BC=2 ,
2020 年中考数学二轮复习压轴专题
3.如图已知直线 y= x+ 与抛物线 y=ax2+bx+c 相交于 A(﹣1,0),B(4,m)两点,抛 物线 y=ax2+bx+c 交 y 轴于点 C(0,﹣ ),交 x 轴正半轴于 D 点,抛物线的顶点为 M. (1)求抛物线的解析式; (2)设点 P 为直线 AB 下方的抛物线上一动点,当△PAB 的面积最大时,求△PAB 的面积 及点 P 的坐标; (3)若点 Q 为 x 轴上一动点,点 N 在抛物线上且位于其对称轴右侧,当△QMN 与△MAD 相似时,求 N 点的坐标.
2020 年中考数学二轮复习压轴专题
9.如图 1,过原点的抛物线与 x 轴交于另一点 A,抛物线顶点 C 的坐标为 对称轴交 x 轴于点 B.
,其
(1)求抛物线的解析式; (2)如图 2,点 D 为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点 D 的坐标; (3)在对称轴上是否存在点 P,使得点 A 关于直线 OP 的对称点 A'满足以点 O、A、C、A' 为顶点的四边形为菱形.若存在,请求出点 P 的坐标;若不存在,请说明理由.
2020年中考数学 考前大专题复习:函数(解析版)
2020中考数学考前大专题复习:函数(含答案)一、选择题(本大题共6道小题)1. 二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大2. 正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是 ()3. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,-1)D.(2020,0)4. 如图,☉O的半径为2,双曲线的解析式分别为y=1x和y=-1x,则阴影部分的面积为()A.4πB.3πC.2πD.π5. 如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACCB=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.52,52C.83,83D.(3,3)6. 如图,函数y={1x(x>0),-1x(x<0)的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q二、填空题(本大题共6道小题)7. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图K11-3是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.图K11-38. 如图,已知直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为.9. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是(填写序号).10. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=kx(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.11. 如图,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.12. 如图,抛物线y=-14x2+12x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.三、解答题(本大题共5道小题)13. 已知二次函数y=2x2+bx+1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.14. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表: 售价x(元/件) 50 60 80周销售量y(件) 100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.15. 如图①,在平面直角坐标系xOy中,已知抛物线y=ax2-2ax-8a与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q,使得以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.①16. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.17. 如图,在直角坐标系中,抛物线经过点A(0,4)、B(1,0)、C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2020中考数学考前大专题复习:函数-答案一、选择题(本大题共6道小题)1. 【答案】C[解析]选项A,由对称轴为直线x=2可得--a2=2,∴a=4,正确;选项B,∵a=4,b=-4,∴代入解析式可得,y=x2-4x-4,当x=2时,y=-8,∴顶点的坐标为(2,-8),正确;选项C,由图象可知,x=-1时,y<0,即1+4+b<0,∴b<-5,∴错误;选项D,由图象可以看出当x>3时,在对称轴的右侧,y随x的增大而增大,正确,故选C.2. 【答案】A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.3. 【答案】C[解析]点P运动一个半圆用时为2π2÷π2=2(秒).∵2019=1009×2+1,∴2019秒时,P在第1010个半圆的中点处,∴此时点P坐标为(2019,-1).故选C.4. 【答案】C[解析]根据反比例函数y=1x,y=-1x及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴S阴影=12π×22=2π.故选C.5. 【答案】C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=14x+2,解方程组{y=14x+2,y=x,得{x=83,y=83.∴P83,83.故选C.6. 【答案】A[解析]∵函数y=1x(x>0)与y=-1x(x<0)的图象关于y轴对称,∴直线MP是y轴所在直线,∵两支曲线分别位于一、二象限,∴直线MN是x轴所在直线,∴坐标原点为M.二、填空题(本大题共6道小题)7. 【答案】(32,4800)[解析]根据题意,得{s=240(t-12),s=150t,解得{t=32,s=4800.故答案为(32,4800).8. 【答案】-2≤x≤-1[解析]如图,直线OA的解析式为y=-2x,当-2≤x≤-1时,0≤kx+b≤-2x.9. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-b2a=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax 2+bx +c ,得y=a -b +c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a -b +c=0,故②错误;当x=1时,y=a +b +c>0.∵b=-2a ,∴-b2+b +c>0,即b +2c>0,故③正确; 由图象可以直接看出④正确.故答案为:①③④.10. 【答案】4[解析]过点D 作DH ⊥x 轴于H 点,交OE 于M ,∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴S △ODH =S △ODA =S △OEC =k2,∴S △ODH -S △OMH =S △OEC -S △OMH ,即S △OMD =S 四边形EMHC , ∴S △ODE =S 梯形DHCE =3,设D (m ,n ),∵D 为AB 的中点,∴B (2m ,n ).∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴E 2m ,n2,∴S 梯形DHCE =12n 2+nm=3, ∴k=mn=4.11. 【答案】8[解析]过点B 作BE ⊥x 轴,垂足为点E ,过点A 作AF ⊥x 轴,垂足为点F ,直线AB 交y 轴于点D ,因为△ABC 与△ABE 同底等高, 所以S △ABE =S △ABC =4, 因为四边形ABEF 为矩形, 所以S 矩形ABEF =2S △ABE =8, 因为k 1=S 矩形OF AD ,k 2=S 矩形OEBD , 所以k 1-k 2=S 矩形OF AD -S 矩形OEBD =S 矩形ABEF =8.12. 【答案】2√5 [解析]当y=0时,-14x 2+12x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-14x 2+12x +2=2,∴点C 的坐标为(0,2). 当y=2时,-14x 2+12x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0), 将A (-2,0),D (2,2)代入y=kx +b ,得{-2k +b =0,2k +b =2,解得{k =12,b =1,∴直线AD 的解析式为y=12x +1.当x=0时,y=12x +1=1,∴点E 的坐标为(0,1). 当y=1时,-14x 2+12x +2=1,解得x 1=1-√5,x 2=1+√5, ∴点P 的坐标为(1-√5,1),点Q 的坐标为(1+√5,1), ∴PQ=1+√5-(1-√5)=2√5.三、解答题(本大题共5道小题)13. 【答案】解:(1)∵二次函数y=2x 2+bx +1的图象过点(2,3), ∴3=8+2b +1,∴b=-3,∴该二次函数的表达式为y=2x 2-3x +1. (2)∵点P (m ,m 2+1)在该二次函数的图象上, ∴m 2+1=2m 2-3m +1,解得m 1=0,m 2=3, ∴点P 的坐标为(0,1)或(3,10).14. 【答案】解:(1)①设y 与x 的函数关系式为y=kx +b ,依题意,有{50k +b =100,60k +b =80,解得{k =-2,b =200,∴y 与x 的函数关系式是y=-2x +200..②设进价为t 元/件,由题意,1000=100×(50-t ),解得t=40,∴进价为40元/件; 周销售利润w=(x -40)y=(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800.(2)依题意有,w=(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m=-2x -m+14022+12m 2-60m +1800.∵m>0,∴对称轴x=m+1402>70,∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x=65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m=5.15. 【答案】[解析](1)令y=0求得点A ,B 坐标,再由点C 坐标求得抛物线的解析式及线段AC 的长;(2)过点C 作x 轴的平行线交抛物线于点P ,通过分类讨论确定点Q 坐标. 解:(1)点A 的坐标为(-2,0),点B 的坐标为(4,0); 线段AC 的长为2√5, 抛物线的解析式为:y=12x 2-x -4. (2)过点C 作x 轴的平行线交抛物线于点P .∵点C (0,-4),∴-4=12x 2-x -4,解得x 1=2,x 2=0,∴P (2,-4).∴PC=2,若四边形BCPQ 为平行四边形,则 BQ=CP=2,∴OQ=OB +BQ=6,∴Q (6,0).若四边形BPCQ 为平行四边形,则BQ=CP=2, ∴OQ=OB -BQ=2,∴Q (2,0).故以点B ,C ,P ,Q 为顶点的四边形是平行四边形时,Q 点的坐标为(6,0),(2,0).16. 【答案】(1)根据题意得,ab 2 =3,即b =-6a ,则抛物线的解析式为y =ax 2-6ax +4,将B (8,0)代入得,0=64a -48a +4,解得a =-14,b =32,∴抛物线的解析式为y =-14x 2+32x +4;(2)设直线BC 的解析式为y =kx +d ,由抛物线解析式可知:当x =0时,y =4,即点C (0,4),将B (8,0),C (0,4)代入得:804k d d +=⎧⎨=⎩,解得⎩⎪⎨⎪⎧k =-12d =4,∴直线BC 的解析式为y =-12x +4,设点M 的横坐标为x (0<x <8),则点M 的纵坐标为-14x 2+32x +4,点N 的纵坐标为-12x +4,∵点M 在抛物线上,点N 在线段BC 上,MN ∥y 轴,∴MN =-14x 2+32x +4-(-12x +4)=-14x 2+32x +4+12x -4=-14x 2+2x=-14(x -4)2+4,∴当x =4时,MN 的值最大,最大值为4;(3)存在.理由如下:令-14x 2+32x +4=0,解得x 1=-2,x 2=8,∴A (-2,0),又∵C (0,4),由勾股定理得,AC =22+42=25,如解图,过点C 作CD ⊥对称轴于点D ,连接AC .解图∵抛物线对称轴为直线x =3,则CD =3,D (3,4).①当AC =CQ 时,DQ =CQ 2-CD 2=(25)2-32=11,当点Q 在点D 的上方时,点Q 到x 轴的距离为4+11,此时,点Q 1(3,4+11),当点Q 在点D 的下方时,点Q 到x 轴的距离为4-11,此时点Q 2(3,4-11);②当AQ =CQ 时,点Q 为对称轴与x 轴的交点,AQ =5,CQ =32+42=5, 此时,点Q 3(3,0);③当AC =AQ 时,∵AC =25,点A 到对称轴的距离为5,25<5,∴不可能在对称轴上存在Q 点使AC =AQ ,综上所述,当点Q 的坐标为(3,4+11)或(3,4-11)或(3,0)时,△ACQ 为等腰三角形.17. 【答案】(1)设抛物线的解析式为y =a (x -1)(x -5)(a ≠0),把点A (0,4)代入上式,解得a =45,∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165,∴抛物线的对称轴是直线x =3;(2)存在,P 点坐标为(3,85).理由如下:如解图①,连接AC 交对称轴于点P ,连接BP ,BA ,解图①∵点B 与点C 关于对称轴对称,∴PB =PC ,∴C △P AB =AB +AP +PB =AB +AP +PC =AB +AC ,∴此时△P AB 的周长最小,设直线AC 的解析式为y =kx +b (k ≠0),把A (0,4),C (5,0)代入y =kx +b 中,得⎩⎨⎧=+=054b k b ,解得,454⎪⎩⎪⎨⎧=-=b k ∴直线AC 的解析式为y =-45x +4,∵点P 的横坐标为3,∴y =-45×3+4=85,∴P 点坐标为(3,85);(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如解图②,设N 点的横坐标为t ,此时点N (t ,45t 2-245t +4)(0<t <5). 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作AD ⊥NG ,垂足为点D .解图②由(2)可知直线AC 的解析式为y =-45x +4,把x =t 代入y =-45x +4得y =-45t +4,则G (t ,-45t +4).此时NG =-45t +4-(45t 2-245t +4)=-45t 2+4t ,∵AD +CF =OC =5,∴S △NAC =S △ANG +S △CNG=12NG ·AD +12NG ·CF=12NG ·OC=12×(-45t 2+4t )×5=-2t 2+10t=-2(t -52)2+252,∴当t =52时,△NAC 的面积最大,最大值为252,由t =52,得y =45t 2-245t +4=-3,∴N 点坐标为(52,-3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考备考专题复习:二次函数一、单选题(共12题;共24分)1、已知二次函数y=x2+x+c的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是( )A、(1,0)B、(-1,0)C、(2,0)D、(-2,0)2、如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A、-1<x<5B、x>5C、x<-1且x>5D、x<-1或x>53、(2016•德州)下列函数中,满足y的值随x的值增大而增大的是()A、y=﹣2xB、y=3x﹣1C、y=D、y=x24、(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A、当a=1时,函数图象过点(﹣1,1)B、当a=﹣2时,函数图象与x轴没有交点C、若a>0,则当x≥1时,y随x的增大而减小D、若a<0,则当x≤1时,y随x的增大而增大5、(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A、y=﹣(x﹣)2﹣B、y=﹣(x+ )2﹣C、y=﹣(x﹣)2﹣D、y=﹣(x+ )2+6、(2016•黄石)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A、b≥B、b≥1或b≤﹣1C、b≥2D、1≤b≤27、(2016•兰州)二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A、y=(x﹣1)2+2B、y=(x﹣1)2+3C、y=(x﹣2)2+2D、y=(x﹣2)2+48、(2016•毕节市)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A 、B 、C 、D 、9、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、010、(2016•绍兴)抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A、4B、6C、8D、1011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A 、B 、C 、D 、12、(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A 、B 、C 、D 、二、填空题(共5题;共5分)13、如果函数是关于x的二次函数, 则k=________ 。
14、(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.15、(2016•大庆)直线y=kx+b与抛物线y= x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为________.16、(2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是________ (只填写序号).17、(2016•菏泽)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=________.三、综合题(共6题;共81分)18、(2016•宁夏)在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.19、(2016•菏泽)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.20、(2016•百色)正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.21、(2016•漳州)如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.22、(2016•梅州)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=________,c=________,点B的坐标为________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.23、(2016•包头)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.答案解析部分一、单选题【答案】D【考点】解一元二次方程-因式分解法,抛物线与x轴的交点,图象法求一元二次方程的近似根,二次函数图象上点的坐标特征【解析】【解答】∵二次函数y=x2+x+c的图象与x轴的一个交点为(1,0),∴0=1+1+c,∴c=-2,∴y=x2+x-2,当y=0时,x2+x-2=0,解得x1=1,x2=-2.故另一个交点坐标是(-2,0).故选D.【分析】先将已知交点坐标代入二次函数的解析式求出c值,再当y=0时,求出关于x的一元二次方程的解,就可以求出另一个交点坐标.【答案】D【考点】二次函数与不等式(组)【解析】【解答】由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(-1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<-1或x>5.故选:D.【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c <0的解集.【答案】B【考点】反比例函数的性质,二次函数的性质,一次函数的性质【解析】【解答】解:A、在y=﹣2x中,k=﹣2<0,∴y的值随x的值增大而减小;B、在y=3x﹣1中,k=3>0,∴y的值随x的值增大而增大;C、在y= 中,k=1>0,∴y的值随x的值增大而减小;D、二次函数y=x2,当x<0时,y的值随x的值增大而减小;当x>0时,y的值随x的值增大而增大.故选B.【分析】根据一次函数、反比例函数、二次函数的性质考虑4个选项的单调性,由此即可得出结论.本题考查了一次函数的性质、反比例函数的性质以及二次函数的性质,解题的关键是根据函数的性质考虑其单调性.本题属于基础题,难度不大,解决该题型题目时,熟悉各类函数的性质及其图象是解题的关键.【答案】D【考点】二次函数的图象,二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+ ,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+ ﹣3=﹣(x﹣)2﹣.故选A.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【答案】A【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∴抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,∵二次项系数a=1,∴抛物线开口方向向上,∴b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥ ;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=2(b﹣2)≥0,b2﹣1≥0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1>0,③由①得b<,由②得b>2,∴此种情况不存在,∴b≥ ,故选A.【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b 的不等式组解决问题.【答案】B【考点】二次函数的三种形式【解析】【解答】解:y=x2﹣2x+4配方,得y=(x﹣1)2+3,故选:B.【分析】根据配方法,可得顶点式函数解析式.本题考查了二次函数的三种形式,配方法是解题关键.【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a ﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】A【考点】二次函数的性质【解析】【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.【分析】根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.本题考查二次函数的性质、解不等式,解题关键是明确题意,列出相应的关系式.【答案】C【考点】一次函数的图象,反比例函数的图象,二次函数的图象【解析】【解答】解:∵一次函数y=ax+b经过一、二、四象限,∴a<0,b>0,∵反比例函数y= 的图象在一、三象限,∴c>0,∵a<0,∴二次函数y=ax2+bx+c的图象的开口向下,∵b>0,∴>0,∵c>0,∴与y轴的正半轴相交,故选C.【分析】根据一次函数的图象的性质先确定出a、b的取值范围,然后根据反比例函数的性质确定出c的取值范围,最后根据二次函数的性质即可做出判断.本题主要考查的是二次函数、一次函数和反比例函数的性质,掌握相关性质是解题的关键.【答案】A【考点】二次函数的图象,二次函数的应用【解析】【解答】解:S△AEF = AE×AF= x2,S△DEG = DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+ x+ ,则y=4×(﹣x2+ x+ )=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题【答案】0【考点】二次函数的定义【解析】【解答】∵函数y=(k-1)x k²-k+2+kx-1是关于x的二次函数,∴k-1≠0且k2-k+2=2,解得k=0或k=1,∴k=0.故答案为0.【分析】根据二次函数的定义得到k-1≠0且k2-k+2=2,然后解不等式和方程即可得到k的值.【答案】(1,4)【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.【答案】(0,4)【考点】二次函数的性质,一次函数的性质【解析】【解答】解:∵直线y=kx+b与抛物线y= x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b= ,化简,得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【分析】根据直线y=kx+b与抛物线y= x2交于A(x1,y1)、B(x2,y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k的乘积为﹣1.【答案】②【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征【解析】【解答】解:由题意二次函数图象如图所示,∴a<0.b<0,c>0,∴abc>0,故①正确.∵a+b+c=0,∴c=﹣a﹣b,∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又∵x=﹣1时,y>0,∴a﹣b+c>0,∴b﹣a<c,∵c>O,∴b﹣a可以是正数,∴a+3b+2c≤0,故②错误.故答案为②.∵函数y′= x2+x= (x2+ x)= (x+ )2﹣,∵>0,∴函数y′有最小值﹣,∴x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1,1,∵x1•1= =﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又a﹣b+c>0,所以b﹣a<c,故b﹣a可以是正数,由此可以周长判断.③正确.利用函数y′= x2+x= (x2+ x)= (x+ )2﹣,根据函数的最值问题即可解决.④令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1,1,则x1•1= =﹣,求出x1即可解决问题.本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.【答案】-1【考点】二次函数图象与几何变换,抛物线与x轴的交点【解析】【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.三、综合题【答案】(1)解:∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ = AD•AQ= ×4x=2x,S△BPQ = BQ•BP= (3﹣x)x= x﹣x2,S△PCD = PC•CD= •(4﹣x)•3=6﹣x,又S矩形ABCD=AB•BC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)= x2﹣2x+6= (x﹣2)2+4,即S= (x﹣2)2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S= ,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4(2)解:存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴,即,解得x= (舍去)或x= ,∴当x= 时QP⊥DP【考点】二次函数的最值,矩形的性质,相似三角形的判定与性质【解析】【分析】(1)可用x表示出AQ、BQ、BP、CP,从而可表示出S△ADQ、S△BPQ、S△PCD 的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,当QP⊥DP时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x的方程,可求得x的值.本题为四边形的综合应用,涉及知识点有矩形的性质、二次函数的最值、相似三角形的判定和性质及方程思想等.在(1)中求得S关于x的关系式后,求S的最值时需要注意x的范围,在(2)中证明三角形相似是解题的关键.本题考查知识点较多,综合性较强,难度适中.【答案】(1)解:由题意解得,∴抛物线解析式为y= x2﹣x+2.(2)解:∵y= x2﹣x+2= (x﹣1)2+ .∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC = •3+ •1=3.(3)解:由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b= ,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.【考点】二次函数的性质,待定系数法求二次函数解析式【解析】【分析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据S△BDC=S△BDH+S△DHC即可解决问题.(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.本题考查待定系数法确定二次函数解析式、二次函数性质等知识,解题的关键是求出对称轴与直线BC交点H坐标,学会利用判别式确定两个函数图象的交点问题,属于中考常考题型.【答案】(1)解:以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.①∵正方形OABC的边长为4,对角线相交于点P,∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).②设抛物线L的解析式为y=ax2+bx+c,∵抛物线L经过O、P、A三点,∴有,解得:,∴抛物线L的解析式为y=﹣+2x(2)解:∵点E是正方形内的抛物线上的动点,∴设点E的坐标为(m,﹣+2m)(0<m<4),∴S△OAE+S OCE = OA•y E + OC•x E=﹣m2+4m+2m=﹣(m﹣3)2+9,∴当m=3时,△OAE与△OCE面积之和最大,最大值为9【考点】二次函数的性质,待定系数法求二次函数解析式,三角形的面积,正方形的性质【解析】【分析】(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+S OCE关于m的函数解析式,根据二次函数的性质即可得出结论.本题考查了待定系数法求函数解析式、正方形的性质、三角形的面积公式以及二次函数的性质,解题的关键是:(1)建立直角坐标系.①根据正方形的性质找出点的坐标;②利用待定系数法求函数解析式;(2)利用二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,建立直角坐标系,找出点的坐标,再结合点的坐标利用待定系数法求出函数解析式是关键.【答案】(1)解:将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)解:设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣+ ,∴当m= 时,线段MN取最大值,最大值为.(3)解:假设存在.设点P的坐标为(2,n).当m= 时,点N的坐标为(,),∴PB= = ,PN= ,BN= = .△PBN为等腰三角形分三种情况:①当PB=PN时,即= ,解得:n= ,此时点P的坐标为(2,);②当PB=BN时,即= ,解得:n=±,此时点P的坐标为(2,﹣)或(2,);③当PN=BN时,即= ,解得:n= ,此时点P的坐标为(2,)或(2,).综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点的坐标为(2,)、(2,﹣)、(2,)、(2,)或(2,).【考点】二次函数的性质,两点间的距离,二次函数图象上点的坐标特征【解析】【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC 的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;(3)假设存在,设出点P的坐标为(2,n),结合(2)的结论可求出点N的坐标,结合点N、B 的坐标利用两点间的距离公式求出线段PN、PB、BN的长度,根据等腰三角形的性质分类讨论即可求出n值,从而得出点P的坐标.【答案】(1)-2;-3;(﹣1,0)(2)解:存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(3,0). 设AC 的解析式为y=kx ﹣3.∵将点A 的坐标代入得3k ﹣3=0,解得k=1, ∴直线AC 的解析式为y=x ﹣3. ∴直线CP 1的解析式为y=﹣x ﹣3.∵将y=﹣x ﹣3与y=x 2﹣2x ﹣3联立解得x 1=1,x 2=0(舍去), ∴点P 1的坐标为(1,﹣4). ②当∠P 2AC=90°时. 设AP 2的解析式为y=﹣x+b .∵将x=3,y=0代入得:﹣3+b=0,解得b=3. ∴直线AP 2的解析式为y=﹣x+3.∵将y=﹣x+3与y=x 2﹣2x ﹣3联立解得x 1=﹣2,x 2=3(舍去), ∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5). (3)解:如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短. 由(1)可知,在Rt △AOC 中, ∵OC=OA=3,OD ⊥AC , ∴D 是AC 的中点. 又∵DF ∥OC , ∴DF=OC=.DF=OC=∴点P 的纵坐标是- .∴,解得:.∴当EF 最短时,点P 的坐标是:(,-)或(,-).【考点】抛物线与x 轴的交点,二次函数的应用,垂线段最短,直角三角形全等的判定 【解析】【解答】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得: ,解得:b=﹣2,c=﹣3.∴抛物线的解析式为y=x 2﹣2x ﹣3. ∵令x 2﹣2x ﹣3=0,解得:x 1=﹣1,x 2=3. ∴点B 的坐标为(﹣1,0). 故答案为:﹣2;﹣3;(﹣1,0).【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标;(2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1 , P 2两点先求得AC 的解析式,然后可求得P 1C 和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(3)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【答案】(1)解:∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,∴∴,∴抛物线解析式为y=﹣x2+ x﹣2=﹣(x﹣2)2+ ;(2)解:如图1,过点A作AH∥y轴交BC于H,BE于G,由(1)有,C(0,﹣2),∵B(0,3),∴直线BC解析式为y= x﹣2,∵H(1,y)在直线BC上,∴y=﹣,∴H(1,﹣),∵B(3,0),E(0,﹣1),∴直线BE解析式为y=﹣x﹣1,∴G(1,﹣),∴GH= ,∵直线BE:y=﹣x﹣1与抛物线y=﹣x2+ x﹣2相较于F,B,∴F(,﹣),∴S△FHB = GH×|x G﹣x F |+ GH×|x B﹣x G| = GH×|x B﹣x F|= ××(3﹣)= .(3)解:如图2,由(1)有y=﹣x2+ x﹣2,∵D为抛物线的顶点,∴D(2,),∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴设M(2,m),(m>),∴OM2=m2+4,BM2=m2+1,AB2=9,∵∠OMB=90°,∴OM2+BM2=AB2,∴m2+4+m2+1=9,∴m= 或m=﹣(舍),∴M(0,),∴MD= ﹣,∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴t= ﹣;(4)解:存在点P,使∠PBF被BA平分,如图3,∴∠PBO=∠EBO,∵E(0,﹣1),∴在y轴上取一点N(0,1),∵B(3,0),∴直线BN的解析式为y=﹣x+1①,∵点P在抛物线y=﹣x2+ x﹣2②上,联立①②得,或(舍),∴P(,),即:在x轴上方的抛物线上,存在点P,使得∠PBF被BA平分,P(,).【考点】待定系数法求二次函数解析式,两点间的距离,角平分线的定义,勾股定理【解析】【分析】此题是二次函数综合题,主要考查了待定系数法求函数解析式,勾股定理,两点间的距离公式,角平分线的意义,解本题的关键是确定函数解析式.(1)用待定系数法求出抛物线解析式;(2)先求出GH,点F的坐标,用三角形的面积公式计算即可;(3)设出点M,用勾股定理求出点M的坐标,从而求出MD,最后求出时间t;(4)由∠PBF被BA平分,确定出过点B的直线BN的解析式,求出此直线和抛物线的交点即可.。