黑龙江省大庆市第五十一中学2024届中考联考数学试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省大庆市第五十一中学2024年中考联考数学试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在圆O中,直径AB平分弦CD于点E,且CD=43,连接AC,OD,若∠A与∠DOB互余,则EB的长是()
A.23B.4 C.3D.2
2.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()
A.60°B.65°C.70°D.75°
3.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()
A.16 B.12 C.24 D.18
4.“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了
某次单词复习中,,,
M N S T四位同学的单词记忆效率y与复习的单词个数x的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )
A.M B.N C.S D.T
5.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1
h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=5
4
或t=
15
4
.其中正确
的结论有()
A.①②③④B.①②④
C.①②D.②③④
6.为了配合“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A.140元B.150元C.160元D.200元
7.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积()
A.65πB.90πC.25πD.85π
8.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A .
B .
C .
D .
9.最小的正整数是( )
A .0
B .1
C .﹣1
D .不存在
10.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )
A .91,88
B .85,88
C .85,85
D .85,84.5 11.19-的值为( ) A .19 B .-19 C .9 D .-9
12.一个几何体的三视图如图所示,这个几何体是( )
A .三菱柱
B .三棱锥
C .长方体
D .圆柱体
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式:2242a a ++=__________________.
14.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是________.
15.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).
16.如图,已知在平行四边形ABCD 中,E 是边AB 的中点,F 在边AD 上,且AF :FD=2:1,如果AB →=a →,BC →=b →

那么EF →=_____.
17.一次函数y=kx+b 的图象如图所示,当y >0时,x 的取值范围是_____.
18.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,5CE =,F 为DE 的中点.若CEF ∆的周长为18,则OF 的长为________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.
(1)请您列表或画树状图列举出所有可能出现的结果;
(2)请你判断这个游戏对他们是否公平并说明理由.
20.(6分)如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE =CD .
21.(6分)(本题满分8分)如图,四边形ABCD 中,
,E 是边CD 的中点,连接
BE 并延长与AD 的延长线相较于点F .
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
22.(8分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.
(1)求证:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=1
2
,求⊙O的半径.
23.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:
(1)请你补全条形统计图;
(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;
(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
24.(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y与x之间的函数关系式
和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
25.(10分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
八年级(2)班参加球类活动人数情况统计表
项目篮球足球乒乓球排球羽毛球
人数 a 6 5 7 6
八年级(2)班学生参加球类活动人数情况扇形统计图
根据图中提供的信息,解答下列问题:a=,b=.该校八年级学生共有600人,则该年级参加足球活动的人数约人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
26.(12分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.
请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
27.(12分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解题分析】
连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.
【题目详解】
连接CO,∵AB平分CD,
∴∠COB=∠DOB,AB⊥CD,3
∵∠A与∠DOB互余,
∴∠A+∠COB=90°,
又∠COB=2∠A,
∴∠A=30°,∠COE=60°,
∴∠OCE=30°,
设OE=x,则CO=2x,
∴CO2=OE2+CE2
即(2x)2=x232
解得x=2,
∴BO=CO=4,
∴BE=CO-OE=2.
故选D.
【题目点拨】
此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.
2、C
【解题分析】
试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.
考点:切线的性质、三角形外角的性质、圆的基本性质.
3、A
【解题分析】
由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF 的周长.
【题目详解】
解:∵四边形ABCD是菱形,∴AB=BC.
∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.
故选A.
【题目点拨】
本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.4、C
【解题分析】
分析:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.
详解:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.
故选C.
点睛:考查函数的图象,正确理解题目的意思是解题的关键.
5、C
【解题分析】
观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.
【题目详解】
由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,
∴①②都正确;
设小带车离开A城的距离y与t的关系式为y小带=kt,
把(5,300)代入可求得k=60,
∴y小带=60t,
设小路车离开A城的距离y与t的关系式为y小路=mt+n,
把(1,0)和(4,300)代入可得
0 4300 m n
m n
+=


+=

解得
100
100 m
n
=


=-

∴y小路=100t-100,
令y小带=y小路,可得60t=100t-100,
解得t=2.5,
即小带和小路两直线的交点横坐标为t=2.5,
此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;
令|y小带-y小路|=50,
可得|60t-100t+100|=50,即|100-40t|=50,
当100-40t=50时,
可解得t=5
4

当100-40t=-50时,
可解得t=15
4

又当t=5
6
时,y小带=50,此时小路还没出发,
当t=25
6
时,小路到达B城,y小带=250.
综上可知当t的值为5
4

15
4

5
6

25
6
时,两车相距50 km,
∴④不正确.
故选C.
【题目点拨】
本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.
6、B
【解题分析】
试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
故选B.
考点:一元一次方程的应用
7、B
【解题分析】
根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可.
【题目详解】
由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,
所以圆锥的母线长=13,
所以圆锥的表面积=π×52+1
2
×2π×5×13=90π.
故选B.
【题目点拨】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
8、D
【解题分析】
A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.
9、B
根据最小的正整数是1解答即可.
【题目详解】
最小的正整数是1.
故选B.
【题目点拨】
本题考查了有理数的认识,关键是根据最小的正整数是1解答.
10、D
【解题分析】
试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,
把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.
考点:众数,中位数
点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题
11、A
【解题分析】
【分析】根据绝对值的意义进行求解即可得.
【题目详解】
1
9
-表示的是
1
9
-的绝对值,
数轴上表示
1
9
-的点到原点的距离是
1
9
,即
1
9
-的绝对值是
1
9

所以
1
9
-的值为
1
9

故选A.
【题目点拨】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.
12、A
【解题分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【题目详解】
由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.故选:B.
此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、22(1)a + 【解题分析】
原式提取2,再利用完全平方公式分解即可. 【题目详解】
原式()
()2
2
=221=21a a a +++
【题目点拨】
先考虑提公因式法,再用公式法进行分解,最后考虑十字相乘,差项补项等方法. 14、
326
π
-. 【解题分析】
试题解析:如图,连接OM 交AB 于点C ,连接OA 、OB ,
由题意知,OM ⊥AB ,且OC=MC=1, 在RT △AOC 中,∵OA=2,OC=1, ∴cos ∠AOC=
1
2
OC OA =,22=3OA OC - ∴∠AOC=60°,3, ∴∠AOB=2∠AOC=120°, 则S 弓形ABM =S 扇形OAB -S △AOB
=2120212313602
π⨯-⨯
=
433
π
- S 阴影=S 半圆-2S 弓形ABM =
1
2π×22-2(
433
π
2
3
π

故答案为
2
3
π

15、甲.
【解题分析】
乙所得环数的平均数为:
015910
5
++++
=5,
S2=
1
n
[2
1
x x
(-)+2
2
x x
(-)+2
3
x x
(-)+…+2
n
x x
(-)]
=
1
5
[2
05
(-)+2
15
(-)+2
55
(-)+2
95
(-)+2
105
(-)]
=16.4,
甲的方差<乙的方差,所以甲较稳定.
故答案为甲.
点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.
16、
21
32
b a
-
【解题分析】
根据
EF EA AF
=+,只要求出AE、AF
即可解决问题;
【题目详解】
∵四边形ABCD是平行四边形,
,
AD BC AD BC
∴=,
AD BC b
∴==,
2
AF DF
=,
2
3
AF b
∴=,
,
AB a AE EB
==,
1
2
AE a
∴=,
EF EA AF
=+,
2132EF b a =-.
故答案为21
32
b a -.
【题目点拨】
本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出AE 、AF . 17、2x < 【解题分析】
试题解析:根据图象和数据可知,当y>0即图象在x 轴的上方,x>1. 故答案为x>1. 18、
72
【解题分析】
先根据直角三角形的性质求出DE 的长,再由勾股定理得出CD 的长,进而可得出BE 的长,由三角形中位线定理即可得出结论. 【题目详解】
解:∵四边形ABCD 是正方形,
∴BO DO =,BC CD =,90BCD ︒∠=. 在Rt DCE ∆中,F 为DE 的中点, ∴1
2
CF DE EF DF =
==. ∵CEF ∆的周长为18,5CE =, ∴18513CF EF +=-=, ∴13DE DF EF =+=.
在Rt DCE ∆中,根据勾股定理,得12DC ==, ∴12BC =, ∴1257BE =-=.
在BDE ∆中,∵BO DO =,F 为DE 的中点, 又∵OF 为BDE ∆的中位线,
∴1722OF BE ==. 故答案为:7
2
.
【题目点拨】
本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)36(2)不公平
【解题分析】
(1)根据题意列表即可;
(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论.
【题目详解】
(1)列表得:
∴一共有36种等可能的结果,
(2)这个游戏对他们不公平,
理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,
而P(两次掷的骰子的点数相同)
61
. 366 ==
P(两次掷的骰子的点数的和是6)=5
. 36
∴不公平.
【题目点拨】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
20、证明见解析.
【解题分析】
由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
【题目详解】
解:∵AD∥BC
∴∠ADB=∠DBC
∵DC⊥BC于点C,AE⊥BD于点E
∴∠C=∠AED=90°
又∵DB=DA
∴△AED≌△DCB(AAS)
∴AE=CD
【题目点拨】
本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
21、(1)见解析;(2)6或
【解题分析】
试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;
(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.
试题解析:(1)证明:∵∠A=∠ABC=90°
∴AF∥BC
∴∠CBE=∠DFE,∠BCE=∠FDE
∵E是边CD的中点
∴CE=DE
∴△BCE≌△FDE(AAS)
∴BE=EF
∴四边形BDFC是平行四边形
(2)若△BCD是等腰三角形
①若BD=DC
在Rt△ABD中,AB=
∴四边形BDFC的面积为S=×3=6;
②若BD=DC
过D作BC的垂线,则垂足为BC得中点,不可能;
③若BC=DC
过D作DG⊥BC,垂足为G
在Rt△CDG中,DG=
∴四边形BDFC的面积为S=.
考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积
22、(1)详见解析;(2)OA=15
2

【解题分析】
(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.【题目详解】
(1)证明:连接OB,
∵BE为⊙O的切线,
∴OB⊥BE,
∴∠OBE=90°,
∴∠ABE+∠OBA=90°,
∵OA=OB,
∴∠OBA=∠OAB,
∴∠ABE+∠OAB=90°,
∵AD是⊙O的直径,
∴∠OAB+∠ADB=90°,
∴∠ABE=∠ADB,
∵四边形ABCD的外接圆为⊙O,
∴∠EAB=∠C,
∵∠E=∠DBC,
∴∠ABE=∠BDC,
∴∠ADB=∠BDC,
即DB平分∠ADC;
(2)解:∵tan∠ABE=1
2

∴设AB=x,则BD=2x,
∴225
AD AB BD x
=+=,
∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,
∴BE AB BD CD
=,
∴10
29
x
x
=,
解得x=35,
∴AB=5x=15,
∴OA=15
2

【题目点拨】
本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.
23、(1)详见解析;(2)72°;(3)
【解题分析】
(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;
(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【题目详解】
解:(1)∵抽查的总人数为:(人)
∴类人数为:(人)
补全条形统计图如下:
(2)“碳酸饮料”所在的扇形的圆心角度数为:
(3)设男生为、,女生为、、,
画树状图得:
∴恰好抽到一男一女的情况共有12 种,分别是
∴(恰好抽到一男一女).
【题目点拨】
本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
【解题分析】
(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;
(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;
(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.
【题目详解】
(1)y=300﹣10(x﹣44),
即y=﹣10x+740(44≤x≤52);
(2)根据题意得(x﹣40)(﹣10x+740)=2400,
解得x1=50,x2=64(舍去),
答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;
(3)w=(x﹣40)(﹣10x+740)
=﹣10x2+1140x﹣29600
=﹣10(x﹣57)2+2890,
当x<57时,w随x的增大而增大,
而44≤x≤52,
所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,
答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
【题目点拨】
本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.
25、(1)a=16,b=17.5(2)90(3)3 5
【解题分析】
试题分析:(1)首先求得总人数,然后根据百分比的定义求解;
(2)利用总数乘以对应的百分比即可求解;
(3)利用列举法,根据概率公式即可求解.
试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;
(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)=12
20
=
3
5

考点:列表法与树状图法;用样本估计总体;扇形统计图.
26、()1200名;()2见解析;()336;(4)375.
【解题分析】
()1根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
()2根据()1中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;()3根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;()4根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
【题目详解】
解:()113065%200
÷=,
答:此次抽样调查中,共调查了200名学生;
()2反对的人数为:2001305020
--=,
补全的条形统计图如右图所示;
()3扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:2036036
200
⨯=;
(4)
50 1500375
200
⨯=,
答:该校1500名学生中有375名学生持“无所谓”意见.
【题目点拨】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
27、10
【解题分析】
试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.
考点:相似的应用。

相关文档
最新文档