离散数学重要公式定理汇总分解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学重要公式定理汇总分解
离散数学是计算机科学领域中的一门基础课程,它主要研究离散结构和离散对象之间的关系。
离散数学中有许多重要的公式和定理,这些公式和定理在计算机科学和其他领域中有广泛的应用。
下面是对离散数学中一些重要的公式和定理的汇总。
1.集合:
-幂集公式:一个集合的幂集是所有它子集的集合。
一个集合有n个元素,那么它的幂集有2^n个元素。
-集合的并、交、差运算规则:并集运算满足交换律、结合律和分配律;交集运算也满足交换律、结合律和分配律;差集运算不满足交换律和结合律。
2.逻辑:
-代数运算规则:多个逻辑表达式的与、或、非运算满足交换律、结合律和分配律。
-归结原理:对于一个给定的只包含“合取”和“析取”的合式公式集合,如果假设集合中的每个合式公式都为真,以及从这些前提出发,不能推导出这个集合中的一个假命题,则称这个假设集合是不一致的。
3.图论:
-图的欧拉路径和欧拉回路:对于一个连通的图,如果它存在欧拉路径,那么这个图中最多只有两个度数为奇数的节点;如果一个连通的图存在欧拉回路,那么所有节点的度数都是偶数。
-图的哈密顿路径和哈密顿回路:对于一个图,如果它存在哈密顿路径,那么这个图中任意两个不相邻的节点u和v之间必然存在一条边;如果一个图存在哈密顿回路,那么从任意一个节点开始,可以经过图中的所有节点且最后回到起点。
4.代数结构:
-子群定理:如果G是群H的一个子集,并且G是关于群H的运算封闭的,那么G是H的一个子群。
- 同态定理:如果f是从群G到群H的一个满射同态,那么G的核ker(f)是G的一个正规子群,而H是G/ker(f)的同构像。
5.排列组合:
-排列公式:从n个元素中取出m个元素进行排列,有
P(n,m)=n!/(n-m)!
-组合公式:从n个元素中取出m个元素进行组合,有
C(n,m)=n!/(m!*(n-m)!)
以上只是离散数学中一小部分重要的公式和定理,这些公式和定理在计算机科学、密码学、图形学等领域中有广泛的应用。
对于学习离散数学的同学来说,熟悉这些公式和定理的含义和运用方法,能够帮助他们更好地理解和应用离散数学的知识。