机器学习——13-垃圾邮件分类2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器学习——13-垃圾邮件分类2 1.读取
file_path=r'C:\Users\AAAA\PycharmProjects\untitled\data\SMSSpamCollection' #读取⽂件
sms=open(file_path,'r',encoding='utf-8') #打开⽂件
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter='\t') #读取⽂件
for line in csv_reader: #对每封邮件做预处理
sms_label.append(line[0]) #第⼀个字段存为⼀个类别,标签
sms_data.append(preprocessing(line[1])) #第⼆个字段存为⼀个类别,邮件内容
sms.close()
print("邮件类别:",sms_label)
print("处理后的邮件内容:",sms_data)
2.数据预处理
注意:preprocessed_text = ' '.join(tokens) 引号⾥⾯要加空格
import csv
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
def get_wordnet_pos(treebank_tag):#根据词性,⽣成还原参数pos
if treebank_tag.startswith('J'):
return nltk.corpus.wordnet.ADJ
elif treebank_tag.startswith('V'):
return nltk.corpus.wordnet.VERB
elif treebank_tag.startswith('N'):
return nltk.corpus.wordnet.NOUN
elif treebank_tag.startswith('R'):
return nltk.corpus.wordnet.ADV
else:
return nltk.corpus.wordnet.NOUN
def preprocessing(text): #预处理
tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]#分词
print("去掉停⽤词前数据长度:", len(tokens))
stops = stopwords.words("english")#停⽤词
tokens = [token for token in tokens if token not in stops]#
print("去掉停⽤词后数据长度:",len(tokens))
tokens = [token.lower() for token in tokens if len(token) >= 3]#将⼤写字母变为⼩写
lemmatizer = WordNetLemmatizer() #构建词性转换器
tag = nltk.pos_tag(tokens) #
词性标注
tokens = [lemmatizer.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]
preprocessed_text = ' '.join(tokens)
return preprocessed_text #返回处理结果
3.数据划分—训练集和测试集数据划分
from sklearn.model_selection import train_test_split
x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train) from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(sms_data, sms_label, test_size=0.2,
random_state=0,stratify=sms_label)
print('原数据长度:', len(sms_data),
'\n训练数据长度:', len(x_train),
'\n测试数据长度:', len(x_test))
4.⽂本特征提取
sklearn.feature_extraction.text.CountVectorizer
sklearn.feature_extraction.text.TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf2 = TfidfVectorizer()
#向量化
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf2 = TfidfVectorizer()
X_train = tfidf2.fit_transform(x_train)
X_test = tfidf2.transform(x_test)
print('邮件以及向量关系数组:\n', X_train.toarray())
print('X_train矩阵:', X_train.toarray().shape, '\nX_test矩阵:', X_test.toarray().shape) #第⼀个数为邮件数,第⼆个数为单词数print('词汇表:\n', tfidf2.vocabulary_) #第⼀个为单词,第⼆个为该单词下标
观察邮件与向量的关系