绝对值计算化简专项练习题有答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|
2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.
3.已知xy<0,x<y且|x|=1,|y|=2.
(1)求x和y的值;
(2)求的值.
4.计算:|﹣5|+|﹣10|÷|﹣2|.
5.当x<0时,求的值.
6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.
7.若|3a+5|=|2a+10|,求a的值.
8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.
9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.
10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.
11.若|x|=3,|y|=2,且x>y,求x﹣y的值.
12.化简:|3x+1|+|2x﹣1|.
13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.
14.++=1,求()2003÷(××)的值.
15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?
(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?
(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?
16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|
17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.
18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.
19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.
20.计算:.
21.计算:
(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|
22.计算
(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|
23.计算.
(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.
25.认真思考,求下列式子的值.
.
26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.
27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.
(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.
(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)
28.阅读:
一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:
(1)|3.14﹣π|= _________ ;
(2)计算= _________ ;
(3)猜想:= _________ ,并证明你的猜想.
29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________
(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.
30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.
绝对值化简求值参考答案:
1.解:∵a、c在原点的左侧,a<﹣1,
∴a<0,c<0,
∴2a<0,a+c<0,
∵0<b<1,
∴1﹣b>0,
∵a<﹣1,
∴﹣a﹣b>0
∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)
=﹣2a+a+c﹣1+b﹣a﹣b
=﹣2a+c﹣1.
故答案为:﹣2a+c﹣1
2.解:由图可知:b<0,c>a>0,
∴a﹣b>0,b﹣c<0,a﹣c<0,
∴|a﹣b|+|b﹣c|+|a﹣c|,
=(a﹣b)﹣(b﹣c)﹣(a﹣c),
=a﹣b﹣b+c﹣a+c,
=2c﹣2b
3.解:(1)∵|x|=1,∴x=±1,
∵|y|=2,∴y=±2,
∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;
当x取﹣1时,y取2,此时与xy<0成立,
∴x=﹣1,y=2;
(2)∵x=﹣1,y=2,
∴=|﹣1﹣|+(﹣1×2﹣1)2 =|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2
=|﹣|+(﹣3)2=+9
=10
4.解:|﹣5|+|﹣10|÷|﹣2|
=5+10÷2
=5+5
=10
5.解:∵x<0,
∴|x|=﹣x,
∴原式==0+=﹣
6.解:∵|a|<﹣c,
∴c<0,
∵abc<0,
∴ab>0,∴=++=1+1﹣1=1
7.解:∵|3a+5|=|2a+10|,
∴3a+5=2a+10或3a+5=﹣(2a+10),
解得a=5或a=﹣3
8.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,
∴m=﹣4,n=3或m=﹣4,n=﹣3.
∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;
当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,
∴a﹣b<0;
又∵|a|>|b|,
∴a+b<0;
原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],
=﹣a﹣(a﹣b)+(a+b),
=﹣a﹣a+b+a+b,
=﹣a+2b
10.解:由图可知:c<a<0<b,
则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,
|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,
=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),
=a﹣c﹣b+a﹣b+c﹣2a,
=﹣2b.
故答案为:﹣2b
11.解:因为x>y,
由|x|=3,|y|=2可知,x>0,即x=3.
(1)当y=2时,x﹣y=3﹣2=1;
(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.
所以x﹣y的值为1或5
12.解:分三种情况讨论如下:
(1)当x <﹣时,
原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;
(2)当﹣≤x <时,
原式=(3x+1)﹣(2x﹣1)=x+2;
(3)当x ≥时,
原式=(3x+1)+(2x﹣1)=5x.
综合起来有:|3x+1|+|2x﹣1|
=.
所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,
又∵+
+=1,
∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,
∴原式=()2003÷(××)=(﹣1)2003÷1=﹣1
15.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,
∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;
(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;
(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x ﹣20|的最小值=50
16.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)
=﹣+﹣+﹣+…+﹣
=﹣
=
17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,
不妨设为a=b,
则|c﹣a|=1,
∴c=a+1或c=a﹣1,
∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,
∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=2
18.解:根据数轴可得
c<b<0<a,
∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|
=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)
=a﹣b﹣2a+b+a﹣c+c=0
19.解:∵2005=2×1003﹣1,
∴共有1003个数,
∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)
=2(2+4+6+ (1002)
=2×
=503004
20.解:
=﹣+﹣+﹣+…+﹣
=﹣
=
21.解:(1)原式=2.7+2.7﹣2.7=2.7;
(2)原式=16+36﹣1=51
22. 解:(1)原式=5+10﹣9=6;
(2)原式=3×6﹣7×2=18﹣14=4
23.解:(1)原式=﹣+=;
(2)原式=﹣+=
24.解:∵x>0,y<0,
∴x﹣y+2>0,y﹣x﹣3<0
∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x ﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣1
25.解:原式=﹣+﹣+
﹣
=﹣
=
26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,
最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|
=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005
=1011030
27.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x 到2的距离的差,
∴x≥2时有最大值2﹣1=1;
(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,
∴x≥4时有最大值1+1=2;
(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x ﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.
故答案为50
28.解:(1)原式=﹣(3.14﹣π)
=π﹣3.14;
(2)原式=1﹣+﹣+﹣+…+﹣
=1﹣
=;
(3)原式=1﹣+﹣+﹣+…+﹣
=1﹣
=.
故答案为π﹣3.14;;
29.解:(1)∵|a﹣2|+|b+6|=0,
∴a﹣2=0,b+6=0,
∴a=2,b=﹣6,
∴a+b=2﹣6=﹣4;
(2)|﹣1|+|﹣|+…+|﹣|+|﹣|
=1﹣+﹣+…+﹣+﹣
=1﹣
=.
故答案为:﹣4,
30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,
∴﹣2m+m=0,即﹣m=0,
∴m=0.
由|n|=n,知n≥0,
由p•|p|=1,知p>0,即p2=1,且p>0,
∴p=1,
∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|
=n﹣2+1+n﹣2n﹣1=﹣2
Welcome !!
!
欢迎您的下
载,
资料仅供参
考!。