《圆锥的体积》教学反思优秀6篇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆锥的体积》教学反思优秀6篇
六年级数学下册《圆锥的体积》教案篇一
教学目标:
1、让学生掌握圆锥体积的计算方法,并能运用公式计算圆锥的体积,解决简单的实际问题。
2、通过动手操作实验,使学生经历圆锥体积公式的推导过程。
3、在观察与分析、操作与实验的学习活动中培养学生主动探究问题和空间想象能力。
教学重点、难点:掌握圆锥体积公式。
教具使用:课件,等底等高长方形、三角形彩纸,等底等高圆锥、圆柱教具,水。
教学过程:
一、创设情境,问题导入
1、师出示长方形、三角形纸各一张。
提问:等底等高的长方形与三角形面积有什么关系?
2、提问:旋转长方形,三角形各得到什么图形?
长方形沿着长旋转一周得到圆柱、直角三角形沿一条直角边旋转一周形成圆锥。
3、观察。旋转后得到的圆柱和圆锥你有什么发现?(等底等高)
4、猜想。旋转后得到的圆锥的体积与圆柱的体积又有怎样的关系?
二、探究新知
1、实验
师出示:等底等高的圆柱、圆锥学具、水。
师:现在我们就要做一个实验,看看圆柱和圆锥的体积有什么关系?
生动手实验:
预设方案:①先灌满圆锥,3次倒入圆柱
②先灌满圆柱,3次倒入圆锥
2、生演示汇报
师板书:圆锥的体积等于圆柱体积的
质疑:
追问:是否同意上面的结论。引导学生说出:和它等底等高补充板书。
3、小结操作过程,课件演示。
4、推导公式。让生说圆锥的体积用字母如何来表示?
v锥= sh= pi;r2h
三、实际应用
(1)、一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
生独立完成,师巡视,生板书。
强调:1912 是与圆锥等底等高圆柱的体积,再乘
1912=73(立方厘米)
(2)、在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.5米。每立方米小麦约重750千克,这堆小麦约有多少千克?
生独立完成,师巡视,生板书
(4divide;2)23.141.5=6.28(立方米)
6.28750=4710(千克)
3、填空
⑴一个圆锥的底面积是12平方厘米,高是6厘米,它的体积是()立方厘米。
⑴一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
⑴一个圆锥比与它等底等高的圆柱体积少12立方厘米,圆柱体积是()立方厘米。
4、判断:
⑴圆柱一定比圆锥体的体积大。()
⑴圆锥的体积等于和它等底等高的圆柱体积的。()
⑴正方体、长方体、圆锥体的体积都等于底面积高。()
⑴等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()
四、拓展提高
有一根底面直径是6厘米,长是15厘米的圆柱体钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?
法一:(v柱-v锥)(6divide;2)23.1415-(6divide;2)23.1415=282.6(立方厘米)法二:(v柱)(6divide;2)23.1415=282.6(立方厘米)
五、课堂小结:这节课你有哪些收获?
板书设计
圆锥的体积
圆锥的体积等于和它等底等高的圆柱体积的
v锥= sh= pi;r2h
1912=73(立方厘米)
(4divide;2)23.141.5=6.28(立方米)
6.28750=4710(千克)
小学数学《圆锥的体积》教案篇二
教学目标:
1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。
教学重点:通过实验的方法,得到计算圆锥体积的公式。
教学难点:运用圆锥体积公式正确地计算体积。
教学过程:
一、创设情境,引发猜想
在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。
小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
二、自主探索,操作实验
1、出示学习提纲
(1)利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?
(2)你们小组是怎样进行实验的?
(3)你能根据实验结果说出圆锥体的体积公式吗?
(4)要求圆锥体积需要知道哪两个条件?
2、小组合作学习
3、回报交流
结论:圆锥的体积是等底等高的圆柱体积的1/3.
公式:V=1/3Sh
4、问题解决
小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?
5、运用公式解决问题
教学例题1和例题2
三、巩固练习
1、圆锥的底面积是5,高是3,体积是()
2、圆锥的底面积是10,高是9,体积是()
3、求下面各圆锥的体积.
(1)底面面积是7.8平方米,高是1.8米.
(2)底面半径是4厘米,高是21厘米.
(3)底面直径是6分米,高是6分米.
4、判断对错,并说明理由.
(1)圆柱的体积相当于圆锥体积的3倍.()
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1.()
(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.()
四、拓展延伸
一个圆锥的底面周长是31?4厘米,高是9厘米,它的体积是多少立方厘米?
五、谈谈收获
六、作业
《圆锥的体积》教学反思篇三
在评教评学中我所讲的内容是《圆锥的体积》,是学生在掌握了圆锥的认识和圆柱的体积的基础上进行的。教学时我先让学生回顾上一节学过的内容,再让学生大胆的猜想圆锥的体积公式。然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,或圆柱的体积是等底等高圆锥体积的3倍。
并能运用这个关系计算圆锥的体积。本节课我重点让学生动手实验探究充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并记录下整个实验过程和发现的结果。在汇报时,由于准备的材料不同,范耀君同学的小组和郝子龙小组发生了争论,也是本课要解决的重点问题,我及时抓住这一个环节,引导学生得出必须在等底等高的条件下,从而推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。
在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识。遗憾的是学生动手实验时,占据了较长的时间,以至练习的时间不多,没有达到充分的巩固。在以后的教学中要合理的安排和调控好课堂,使学生有充分发挥的空间。
《圆锥的体积》教学反思篇四
最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:
1、结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体