ESDA6V1-4F1晶体管手册
ESDAVLC6V1-1BM2资料
April 2008 Rev 11/13ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT2Single line low capacitance T ransil™ for ESD protectionFeatures■Single line bi-directional protection ■Breakdown voltage V BR = 6.1 V min.■Very low capacitance (6 pF typ. @ 3 V)■Lead-free packageBenefits■Very low capacitance for optimized data integrity■Very low reverse current < 0.1 µA■Low PCB space consumption: 0.6 mm 2 max ■High reliability offered by monolithic integrationComplies with the following standards:■IEC 61000-4-2 level 4–15 kV (air discharge)–8 kV (contact discharge)■MIL STD 883G - Method 3015-7: class 3 B –Human body modelApplicationsWhere transient overvoltage protection in ESD sensitive equipment is required, such as:■Computers ■Printers■Communication systems■Cellular phone handsets and accessories ■Video equipmentTM: Transil is a trademark of STMicroelectronicsDescriptionThe ESDAVLC6V1-1BM2 andESDAVLC6V1-1BT2 are monolithic application specific devices dedicated to ESD protection of high speed serial interfaces such as USB 2.0, display and camera interface.The devices are ideal for applications where both printed circuit board space and power absorption capability are required.Characteristics ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT22/131 CharacteristicsTable 1.Absolute maximum ratings (T amb = 25° C)Symbol ParameterValue Unit V PP (1)1.For a surge greater than the maximum values, the diode will fail in short-circuit.Peak pulse voltage IEC 61000-4-2 contact dischargeIEC 61000-4-2 air dischargeMIL STD 883G - Method 3015-7: class 3B 151525kV P PP (1)Peak pulse power dissipation (8/20 µs)T j initial = T amb30W IPP Peak pulse current (8/20 µs) 2.5A T j Junction temperature 125°C T stg Storage temperature range- 55 to + 150°C T L Maximum lead temperature for soldering during 10 s 260°C T OPOperating temperature range- 40 to + 125°CESDAVLC6V1-1BM2, ESDAVLC6V1-1BT2Characteristics3/13Figure 2.Relative variation of peak pulse power versus initial junctionFigure 3.Peak pulse power versus exponential pulse durationFigure 4.Clamping voltage versus peak pulse current (typical values)Figure 5.Junction capacitance versus reverse voltage applied (typical Figure 6.Relative variation of leakage current versus junctionFigure 7.S21 attenuation measurement resultCharacteristicsESDAVLC6V1-1BM2, ESDAVLC6V1-1BT24/13Figure 8.ESD response to IEC 61000-4-2(+2 kV air discharge)Figure 9.ESD response to IEC 61000-4-2 (-2 kV air discharge)Figure 10.ESD response to IEC 61000-4-2(+8 kV air discharge) Figure 11.ESD response to IEC 61000-4-2(-8 kV air discharge)Figure 12.ESD response to IEC 61000-4-2(+15 kV air discharge)Figure 13.ESD response to IEC 61000-4-2(-15 kV air discharge)ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT2Characteristics5/13Figure 14.ESD response to IEC 61000-4-2(+2 kV contact discharge)Figure 15.ESD response to IEC 61000-4-2(-2 kV contact discharge)Figure 16.ESD response to IEC 61000-4-2(+8 kV contact discharge) Figure 17.ESD response to IEC 61000-4-2(-8 kV contact discharge)Figure 18.ESD response to IEC 61000-4-2(+15 kV contact discharge)Figure 19.ESD response to IEC 61000-4-2(-15kV contact discharge)Ordering information scheme ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT2 2 Ordering information scheme6/13ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT2Package information7/133 Package information●Epoxy meets UL94, V0In order to meet environmental requirements, ST offers these devices in ECOP ACK ®packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the inner box label, in compliance with JEDECStandard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOP ACK is an ST trademark. ECOPACK specifications are available at .Note:Product marking may be rotated by 90° for assembly plant differentiation. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.Package information ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT2Note:Product marking may be rotated by 90° for assembly plant differentiation. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin1 mark is to be used for this purpose.8/13ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT2Package information9/13Recommendation on PCB assembly ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT210/134Recommendation on PCB assembly4.1Stencil opening design1.General recommendation on stencil opening designa) Stencil opening dimensions: L (Length), W (Width), T (Thickness).b) General design ruleStencil thickness (T) = 75 ~ 125 µm2. Reference designa) Stencil opening thickness: 100 µmb) Stencil opening for leads: Opening to footprint ratio - between 60% and 65%.4.2 Solder paste1.Halide-free flux qualification ROL0 according to ANSI/J-STD-004.2. “No clean” solder paste is recommended.3. Offers a high tack force to resist component movement during high speed4.Solder paste with fine particles: powder particle size is 20-45 µm.Aspect Ratio WT----- 1.5≥=Aspect Area L W×2T L W +()---------------------------0.66≥=ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT2Recommendation on PCB assembly11/134.3 Placement1.Manual positioning is not recommended.2.It is recommended to use the lead recognition capabilities of the placement system, not the outline centering 3.Standard tolerance of ± 0.05 mm is recommended.4. 3.5 N placement force is recommended. Too much placement force can lead tosqueezed out solder paste and cause solder joints to short. Too low placement forcecan lead to insufficient contact between package and solder paste that could causeopen solder joints or badly centered packages.5. To improve the package placement accuracy, a bottom side optical control should beperformed with a high resolution tool.6.For assembly, a perfect supporting of the PCB (all the more on flexible PCB) isrecommended during solder paste printing, pick and place and reflow soldering byusing optimized tools.4.4 PCB design preference1.To control the solder paste amount, the closed via is recommended instead of open vias.2. The position of tracks and open vias in the solder area should be well balanced. Thesymmetrical layout is recommended, in case any tilt phenomena caused byasymmetrical solder paste amount due to the solder flow away.4.5 Reflow profileNote:Minimize air convection currents in the reflow oven to avoid component movement.Ordering information ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT212/135 Ordering information6 Revision historyTable 5.Ordering informationOrder code MarkingPackage Weight Base qty Delivery mode ESDAVLC6V1-1BM2C (1)1.The marking can be rotated by 90° to diferentiate assembly locationSOD8820.92 mg 3000Tape and reel ESDAVLC6V1-1BT2T (1)SOD882Thin 0.76 mg 3000Tape and reel Table 6.Document revision history DateRevision Changes16-Apr-20081Initial release.ESDAVLC6V1-1BM2, ESDAVLC6V1-1BT2 13/13Please Read Carefully:Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.All ST products are sold pursuant to ST’s terms and conditions of sale.Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.UNLESS OTHERWI SE SET FORTH I N ST’S TERMS AND CONDI TI ONS OF SALE ST DI SCLAI MS ANY EXPRESS OR I MPLI ED WARRANTY W TH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS NCLUD NG W THOUT L M TAT ON MPL ED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.UNLESS EXPRESSLY APPROVED I N WR I T I NG BY AN AUTHOR I ZED ST REPRESENTAT IVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.ST and the ST logo are trademarks or registered trademarks of ST in various countries.Information in this document supersedes and replaces all information previously supplied.The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.© 2008 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America。
世界晶体管手册
LF PA/PD Diff AF.LN
LF A PA PA
Mix RF LF A LF A
LF HV A
LF HV A AF SW
LF LN A LF A
-60
-0.2
0.3
-0.1
-300
-0.1
0.4
-0.1
-300
-60
-0.05
0.4
-0.1
-120
-8
80
-50
-140
-12
-0.1
-50
2SA1016 2SA1016 K 2SA1017 2SA1018 2SA1019
三洋
三洋 三洋 松下 三洋
HV LN A
HV LN A AF GA AF
-120
-0.05
0.4
-150
-0.05
0.4
-120
-0.05
0.5
-250
-0.07
0.75
-150
-0.05
0.9
-1
-100
2SA1131
2SA1132
2SA1133 松下
PA
-200
-2
30
-50
2SA1133
A
松下
PA/TV
-200
-2 30*
-50
2SA1134 三肯
2SA1135 罗姆
PA
-80
-4
55 -1000
2SA1136 罗姆
RF.LN
-120
-0.1
0.3
-0.5
HV LF LN
2SA1137 罗姆
A
-80
100
ESDA6V1-4BC6中文资料
®1/6ESDA6V1-4BC6QUAD BIDIRECTIONAL TRANSIL™SUPPRESSOR FOR ESD PROTECTIONREV. 2November 2004MAIN APPLICATIONSWhere transient overvoltage protection in ESD sensitive equipment is required, such as:■Computers ■Printers■Communication systems ■Video equipmentThis device is particularly adapted to the protec-tion of symmetrical signalsFEATURES■ 4 Bidirectional Transil functions■ESD Protection for data, Signal and V CC Bus■Stand off voltage range: 5 V ■Low leakage current■Peak pulse power (8/20µs); 80W■Channel separation: 80dB typ.@20KHzDESCRIPTIONThe ESDA6V1-4BC6 is a monolithic array de-signed to protect up to 4 lines in a bidirectional way against ESD transients.The device is ideal for situations where board space is at a premium.BENEFITS■High ESD protection level ■High integration■Suitable for high density boardsCOMPLIES WITH THE FOLLOWING STANDARDS:■IEC61000-4-2 level 4:15kV (air discharge)8kV (contact discharge)■MIL STD 883E-Method 3015-7: class3B(Human Body Model)Table 1: Order CodePart Number Marking ESDA6V1-4BC6BS77ASD™Figure 1: Functional DiagramTM: ASD is a trademark of STMicroelectronics.ESDA6V1-4BC62/6Table 2: Absolute Maximum Ratings (T amb = 25°C)Table 3: Electrical Characteristics (T amb = 25°C)Symbol ParameterValue Unit V PP ESD discharge MIL STD 883C - Method 3015-6IEC61000-4-2 air dischargeIEC61000-4-2 contact discharge25158kV P PP Peak pulse power (8/20µs) 80W T j Junction temperature 150°C T stg Storage temperature range-55 to +150°C T L Maximum lead temperature for soldering during 10 s at 5mm for case260°C T opOperating temperature range (note 1)-40 to +125°CNote 1: Variation of parameters is given by curves.Symbol Parameter V RM Stand-off voltage V BR Breakdown voltage V CL Clamping voltage I RM Leakage currentI PP Peak pulse currentαT Voltage temperature coefficient V F Forward voltage drop C CapacitanceR dDynamic resistanceTypeV BR @I R I RM @ V RM R d αT C min.max.max.typ.max.typ.note 20V bias VV mA µA V Ω10-4/°C pF ESDA6V1-4BC66.181130.45345Note 2: Square pulse, I PP = 3A, t p =2.5µs.Figure 2: Relative variation of peak pulse power versus initial junction temperatureFigure 3: Peak pulse power versus exponentialpulse durationESDA6V1-4BC63/6®1. ESD protection by ESDA6V1-4BC6With the focus of lowering the operation levels, the problem of malfunction caused by the environment is critical. Electrostatic discharge (ESD) is a major cause of failure in electronic system.Transient Voltage Suppressors are an ideal choice for ESD protection and have proven capable in sup-pressing ESD events. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented.Surface mount TVS arrays offer the best choice for minimal lead inductance.They serve as parallel protection elements, connected between the signal line to ground. As the transient rises above the operating voltage of the device, the TVS array becomes a low impedance path diverting the transient current to ground.Figure 4: Clamping voltage versus peak pulse current (typical values, rectangular waveform)Figure 5: Junction capacitance versus line voltage applied (typical valuesFigure 6: Relative variation of leakage current versus junction temperature (typical values)Figure 7: Analog crosstalk test configurationESDA6V1-4BC6Figure 8: Bidirectional protection for 0V biased signalsThe ESDA6V1-4BC6 array is the ideal product for use as board level protection of ESD sensitive semi-conductor components.The tiny SOT23-6L package allows design flexibility in the design of “crowded” boards where the space saving is at a premium. This enables to shorten the routing and can contribute to improve ESD perform-ance.2. Circuit Board LayoutCircuit board layout is a critical design step in the suppression of ESD induced transients. The following guidelines are recommended :■The ESDA6V1-4BC6 should be placed as near as possible to the input terminals or connectors.■Minimise the path length between the ESD suppressor and the protected device■Minimise all conductive loops, including power and ground loops■The ESD transient return path to ground should be kept as short as possible.■Use ground planes whenever possible.4/6ESDA6V1-4BC65/6®Figure 10: SOT23-6L Package Mechanical DataFigure 11: Foot Print Dimensions (in millimeters)EHLA1ceebDA2Aθ0.601.201.100.952.303.50REF.DIMENSIONSMillimeters Inches Min.Typ.Max.Min.Typ.Max.A0.90 1.450.0350.057A100.100.004A20.90 1.300.0350.051b 0.350.500.0140.02C 0.090.200.0040.008D2.803.050.1100.120E 1.501.750.0590.069e 0.950.037H2.603.000.1020.118L 0.100.600.0040.024θ10°10°Table 4: Ordering InformationPart Number Marking Package Weight Base qty Delivery mode ESDA6V1-4BC6BS77SOT23-6L16.7 mg3000Tape & reelTable 5: Revision HistoryDate Revision Description of ChangesNov-20021A First issue.4-Nov-20042SOT23-6L package dimensions change for reference “D” from 3.0 millimeters (0.118 inches) to 3.05 millimeters (0.120 inches).ESDA6V1-4BC6Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners© 2004 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America6/6。
晶体管手册
12 Ic(mA)
11 Ic(mA)
75 Ic(A)
35 Ic(mA)
20 Ic(mA)
3 Icbo(μA) 50 hfe
0 Icbo(μA)
0 Icbo(μA) 0 Icbo(μA) 50 Icbo(μA) 50 Icbo(μA) 20 Icbo(μA) 50 Icbo(μA) 50 Icbo(μA) 3 Icbo(μA) 1 Icbo(μA) 3 Icbo(mA) 15 Icbo(mA)
2SC1791 松下
14 Ic(mA) 25 Ic(mA)
20 Ic(mA) 20 Ic(mA)
45 Ic(mA)
60 Ic(mA) 25 Ic(mA)
30 Ic(mA)
60 Pc(mW)
30 Ic(mA)
14 Ic(mA) 18 Ic(mA) 20 Ic(mA)
6 Ic(mA)
8 Ic(mA) 20 Ic(mA) 30 Ic(mA) 25 Ic(mA) 40 Ic(mA) 17 Ic(A) 12 Ic(mA) 14 Ic(mA)
-30 Icbo(μA)
0
0
-0.1
2SA1229 日电
-12 Ic(mA)
-50 hfe
20
90
200
2SA1245 东芝
-8 Ic(mA)
-30 hfe
20
0
0
2SA1254 松下 2SA1256 三洋
-20 Ic(mA) -20 Ic(mA)
-30 Iceo(μA)
0
0
100
-30 hfe
60
-30 Icbo(μA) -300 Icbo(μA)
-30 Icbo(uA) -50 Iebo(μA) -30 Icbo(μA) -30 Icbo(uA) -200 Icbo(μA) -50 hfe
晶体管启动器配件说明书
Length
Packing qty.
Screw head
SRWKITM5X10MM SRWKITM4X15MM SRWKITM5X23MM SRWKITM5X30MM
M5
10mm
M4
15mm
M5
23mm
M5
30mm
20
Pozidrive PZ2
20
Philips
20
Torx T20
20
Torx T20
- Graphite thermal pad for RG series with adhesive on one side
- Width x Height x Thickness = 14 x 35 x 0.13 mm
- Packing qty. 10 pcs.
Ordering Key
RFHT
- Phase change thermal pad for RF1 - Width x Height x Thickness = 19 x 21 x 0.13 mm - Packing qty. 10 pcs.
Suffix H8 added to SSR part no. refers to factory mounted DIN clip. Conditions apply. Please ask your Sales representative for further details.
Ordering Key
Description 250V module with LED 250V module with LED + varistor across output terminals 250V module with pins for easy removal of RP unit 250V module with pins for easy removal of RP unit + LED 600V module with LED
ESD静电控制手册(ESD手册中英文)
ESD静电控制手册TABLE OF CONTENTS1. Purpose 目的2. Scope 范围3. Definition 定义4. Responsibility 职责5. Operation Content 作业内容5.1 ESD Control Program ESD 管制方案5.2 ESD Control Program Mgr or Coordinator ESD 管制方案经理或协调员5.3 Update 文件修改与更新5.4 ESD Control Operation ESD 管制作业5.4.1 ESD Protected Area ESD 保护区5.4.2 Training Requirement 培训要求5.4.3 ESD Test requirements ESD 测试要求5.4.4 ESD Grounding System ESD 接地系统5.4.5 ESD Floor Control ESD 地板管制5.4.6 ESD Garment & ESD Cap Control 静电衣服&静电帽管制5.4.7 ESD Shoe Control 静电鞋管制5.4.8 ESD Gloves& Finger Cots Control 静电手套&指套管制5.4.9 ESD wrist strap Control 静电手环管制5.4.10 Equipment ESD Control 设备ESD 管制5.4.11 Fixture& Tools Control 工治具管制5.4.12 Work Surface control 工作台管制5.4.13 ESD Marking ESD 标示5.4.14 ESD Packaging Material ESD 包装材料管制5.4.15 ESD Seating 静电座椅5.4.16 Soldering Iron Control 铬铁静电管制5.4.17 Air Ionizer Control 离子风机管制5.5 Sub-contractor control 外包商管制6.Reference 参考文件ESD Manual 静电控制手册1. Purpose 目的To prevent ESDS objects in manufacture, assembly, install, package, test, inspection,preservation, transport or other operation activities from damage, and protect electrical or electronic parts, assemblies and equipment so as to guarantee the product quality, so ESD protection.为防止静电敏感元器件在生产、组装,安装,包装,测试,检验、保存、運送及其他活动中受到静电之损害,保护电子器件,组件和设备,从而保证产品品质,特制订此手册,以提供本公司静电防护之最高指引.2. Scope 范围Applicable to all the related activities from ESD objects in DXC适用于公司所有ESD 敏感物件之相关活动作业3. Definition 定义3.1 ESD-E lectro S tatic D ischarge, the transfer or movement of charge between objects that are at different electrical potentials by direct contact or induced by electrostatic field.ESD-静电释放,是指通过直接接触或静电场感应的方式,在不同电势差物体间的电荷转移或移动。
贴片晶体管手册
Manufacturer abbreviations:Agi Agilent (was HP).ON ON Semiconductors (was Motorola). CJe Changjiang Electronics CO., LTD Phi Philips.Dio Diodes Inc.--Fch Fairchild.Roh Rohm.HP Hewlett-Packard (Now Agilent).SGS SGS-Thompson.Inf Infineon (was Siemens).Sie Siemens (now Infineon).ITT ITT Semiconductors.Sil Siliconix (Vishay-Silliconix).MC Mini-Circuits.STM STMicroelectronicsMot Motorola (now ON Semiconductors).Tem Temic Semiconductors.Nat National Semiconductor.Tfk Telefunken (Vishay-Telefunken). Nec NEC.Tok Toko Inc.NJRC New Japan Radio Co.Zet Zetex.制作:Coolbor XieCoolbor工作室E-Mail:coolbor@163.com2003年12月10日Code Device Manufacturer Base Package Leaded Equivalent/Data0 2SC3603 Nec CX SOT173 N pn RF fT 7GHz005 SSTPAD5 Sil J -PAD-5 5pA leakage diodep01 PDTA143ET Phi N SOT23 pnp dtr 4k7+4k7t01 PDTA143ET Phi N SOT23 pnp dtr 4k7+4k701 Gali-1 MC AZ SOT89 DC-8GHz MMIC amp 12dB gain 010 SSTPAD10 Sil J - PAD-10 10pA leakage diode 011 SO2369R SGS R SOT23R 2N236902 BST82 Phi M - n-ch mosfet 80V 175mA02 MRF5711L Mot X SOT143 npn RF MRF57102 DTCC114T Roh N - 50V 100mA npn sw + 10k base res 02 Gali-2 MC AZ SOT89 DC-8GHz MMIC amp 16dB gain p02 PDTC143ET Phi N SOT23 npn 4k7+4k7 bias rest02 PDTC143ET Phi N SOT23 npn 4k7+4k7 bias res03 Gali-3 MC AZ SOT89 DC-3GHz MMIC amp 22dB gain 03 DTC143TE Roh N EMT3 npn dtr R1 4k7 50V 100mA03 DTC143TUA Roh N SC70 npn dtr R1 4k7 50V 100mA03 DTC143TKA Roh N SC59 npn dtr R1 4k7 50V 100mA04 DTC114TCA Roh N SOT23 npn dtr R1 10k 50V 100mA04 DTC114TE Roh N EMT3 npn dtr R1 10k 50V 100mA04 DTC114TUA Roh N SC70 npn dtr R1 10k 50V 100mA04 DTC114TKA Roh N SC59 npn dtr R1 10k 50V 100mA04 MRF5211L Mot X SOT143 pnp RF MRF52104 Gali-4 MC AZ SOT89 DC-4GHz MMIC amp 17.5 dBm -04 PMSS3904 Phi N SOT323 2N3904t04 PMBS3904 Phi N SOT23 2N390405 Gali-4 MC AZ SOT89 DC-4GHz MMIC amp 18 dBm o/p 05 DTC124TE Roh N EMT3 npn dtr R1 22k 50V 100mA05 DTC124TUA Roh N SC70 npn dtr R1 22k 50V 100mA05 DTC124TKA Roh N SC59 npn dtr R1 22k 50V 100mA05F TSDF1205R Tfk WQ - fT12GHz npn 4V 5mA06 Gali-6 MC AZ SOT89 DC-4GHz MMIC amp 115 dBm o/p 06 DTC144TE Roh N EMT3 npn dtr R1 47k 50V 100mA06 DTC144TUA Roh N SC70 npn dtr R1 47k 50V 100mA06 DTC144TKA Roh N SC59 npn dtr R1 47k 50V 100mA-06 PMSS3906 Phi N SOT323 2N3906t06 PMBS3906 Phi N SOT23 2N3906020 SSTPAD20 Sil J - PAD-20 20pA leakage diode 050 SSTPAD50 Sil J - PAD-50 50pA leakage diode 081 SO2369AR SGS R SOT23R 2N2369A09 DTC115TUA Roh N SC70 npn dtr R2 100k 50V 100mA09 DTC115TKA Roh N SC59 npn dtr R2 100k 50V 100mA0A MUN5111DW1 Mot DO SOT363 dual pnp dtr 10k+10k0A DTC125TUA Roh N SC70 npn dtr R2 100k 50V 100mA0A DTC125TKA Roh N SC59 npn dtr R2 100k 50V 100mA0B MUN5112DW1 Mot DO SOT363 dual pnp dtr 22k+22k0C MUN5113DW1 Mot DO SOT363 dual pnp dtr 47k+47k0D MUN5114DW1 Mot DO SOT363 dual pnp dtr 10k+47k0E MUN5115DW1 Mot DO SOT363 dual pnp dtr R1 10k0F MUN5116DW1 Mot DO SOT363 dual pnp dtr R1 4k70G MUN5130DW1 Mot DO SOT363 dual pnp dtr 1k0+1k00H MUN5131DW1 Mot DO SOT363 dual pnp dtr 2k2+2k20J MUN5132DW1 Mot DO SOT363 dual pnp dtr 4k7+4k70K MUN5133DW1 Mot DO SOT363 dual pnp dtr 4k7+47k0L MUN5134DW1 Mot DO SOT363 dual pnp dtr 22k+47k0M MUN5135DW1 Mot DO SOT363 dual pnp dtr 2k2+47kCode Device Manufacturer Base Package Leaded Equivalent/Data12SC3587Nec CX -npn RF fT10GHz1BA277Phi I SOD523VHF Tuner band switch diode1 (red)BB669Sie I SOD32356-2.7 pF varicap10MRF9411L Mot X SOT143npn Rf 8GHz MRF94110A PZM10NB2A Phi A SOT346dual ca 10V 0.3W zener10A ZXRE1004FF Zet G SOT23Micropower (4µA) 1.22V Voltage ref. 3% 10B ZXRE1004EF Zet G SOT23Micropower (4µA) 1.22V Voltage ref. 2% 10C ZXRE1004DF Zet G SOT23Micropower (4µA) 1.22V Voltage ref. 1% 10D ZXRE1004CF Zet G SOT23Micropower (4µA) 1.22V Voltage ref. 0.5% 10F ZXRE4041FF Zet G SOT23Micropower 1.222V Voltage ref. 3%10G ZXRE4041EF Zet G SOT23Micropower 1.222V Voltage ref. 2%10H ZXRE4041DF Zet G SOT23Micropower 1.222V Voltage ref. 1%10J ZXRE4041CF Zet G SOT23Micropower 1.222V Voltage ref. 0,5% 10V PZM10NB Phi C SOT34610V 0.3W zener10Y BZV49-C10Phi O SOT8910V 1W zener11MRF9511L Mot X SOT143npn RF 8GHz MRF95111MUN5311DW1Mot DP SOT363npn/pnp dtr 10k+10k11PDTA114EU Phi N SOT416pnp dtrp11PDTA114TT Phi N SOT23pnp dtrt11PDTA114TT Phi N SOT23pnp dtr11A PZM11NB2A Phi A SOT346dual ca 11V 0.3W zener11A MMBD1501A Nat C SOT23Si diode 200V 100mA11V PZM11NB Phi C SOT34611V 0.3W zener11Y BZV49-C11Phi O SOT8911V 1W zener12MUN5312DW1Mot DP SOT363npn/pnp dtr 22k+22k12DTA123EUA Rho N SC70pnp dtr 2k2+2k2 50V 100ma12DTA123EKA Rho N SC59pnp dtr 2k2+2k2 res 50V 100map12PDTC114TT Phi N SOT23npn dtrt12PDTC114TT Phi N SOT23npn dtr12A MMBD1502A Nat K SOT23Si diode 200V 100mA12A PZM12NB2A Phi A SOT346dual ca 12V 0.3W zener12E ZC2812E Zet D SOT23dual series RF schottky15V 20mA12F ZXRE125FF ZET G SOT23Micropower 1.22V Voltage ref. 3%12G ZXRE125EF ZET G SOT23Micropower 1.22V Voltage ref. 2%12H ZXRE125DF ZET G SOT23Micropower 1.22V Voltage ref. 1%12J ZXRE125CF ZET G SOT23Micropower 1.22V Voltage ref. 0,5%12V PZM12NB Phi C SOT34612V 0.3W zener12Y BZV49-C12Phi O SOT8912V 1W zener13DTA143EUA Rho N SC70pnp dtr 4k7+4k7 50V 100ma13DTA143EKA Rho N SC59pnp dtr 4k7+4k7 50V 100ma13DTA143ECA Rho N SOT23pnp dtr 4k7+4k7 50V 100ma13t BC846BPN Phi N SOT363BC546B13s BAS125Sie C SOT23Schottky sw 24V 100mA13s BAS125W Sie C SOT323Schottky sw 24V 100mA13MA4CS103A M/A C SOT23Schottky RF 20V 100mA13MUN5313DW1Mot DP SOT363npn/pnp dtr 47k+47k13A MMBD1503A Nat D SOT23dual Si diode 200V 100mA13A PZM13NB2A Phi A SOT346dual ca 13V 0.3W zener13E ZC2813E Zet A SOT23dual ca RF schottky15V 20mA13V PZM13NB Phi C SOT34613V 0.3W zener13Y BZV49-C13Phi O SOT8913V 1W zener14s BAS125-04Sie D SOT23Dual series Schottky 25V 100mA14s BAS125-04W Sie D SOT323Dual series Schottky 25V 100mA14BAT114-099R Sie DQ -Quad Schottky crossover ring14DTA114EUA Roh N SC70pnp dtr 10k + 10k14DTA114EKA Roh N SC59pnp dtr 10k + 10k14MUN5314DW1Mot DP SOT363npn/pnp dtr 10k R114DTA114ECA Roh N SOT23pnp dtr 10k + 10k14A MMBD1504A Nat B -dual cc Si diode 200V 100mA15s BAS125-05Sie B SOT23dual cc Schottky 25V 100mA15s BAS125-05W Sie B SOT323dual cc Schottky 25V 100mA15DTA124EUA Roh N SC70pnp dtr 30V 50mA 22k+22k15DTA124EKA Roh N SC59pnp dtr 30V 50mA 22k+22k15DTA124ECA Roh N SOT23pnp dtr 30V 50mA 22k+22k15MUN5315DW1Mot DP SOT363npn/pnp dtr 10k R115MMBT3960Mot N -2N396015A MMBD1505A Nat A -dual ca Si diode 200V 100mA 15A PZM15NB2A Phi A SOT346dual ca 15V 0.3W zener15V PZM15NB Phi C SOT34615V 0.3W zener15Y BZV49-C15Phi O SOT8915V 1W zenerp16PDTC114ET Phi N SOT23npn dtrt16PDTC114EU Phi N SOT323npn dtr16s BAS125-06Sie A SOT23dual ca Schottky 25V 100mA 16s BAS125-06W Sie A SOT323dual ca Schottky 25V 100mA 16MUN5316DW1Mot DP SOT363npn/pnp dtr 4k7 R116DTA144EUA Roh N SC70pnp dtr 30V 50mA 47k+47k 16DTA144EKA Roh N SC59pnp dtr 30V 50mA 47k+47k 16V PZM16NB Phi C SOT34616V 0.3W zener16Y BZV49-C16Phi O SOT8916V 1W zener17s BAS125-07Sie S SOT143dual Schottky 25V 100mA 17s BAS125-07W Sie S SOT343dual Schottky 25V 100mAp17PDTC124ET Phi N SOT23npn dtrt17PDTC124EU Phi N SOT323npn dtr18BFP181T Tfk X -npn Rf fT 7.8GHz 10V 20mA 18PDTC143ZK Phi N SOT346npn dtr 4k7+47kp18PDTC143ZT Phi N SOT23npn dtr 4k7+47kt18PDTC143ZT Phi N SOT23npn dtr 4k7+47k18V PZM18NB Phi C SOT34618V 0.3W zener18Y BZV49-C18Phi O SOT8918V 1W zener19PDTA143ZK Phi N SOT346pnp dtr 4k7+47k19DTA115EUA Rho N SC70pnp dtr 100k+100k 50V 100ma 19DTA115EKA Rho N SC59pnp dtr 100k+100k 50V 100ma p19PDTA143ZT Phi N SOT23pnp dtr 4k7+47kt19PDTA143ZT Phi N SOT23pnp dtr 4k7+47k100SSTPAD100Sil J SOT23PAD-100 100pA leakage diode 101PZM10NB1Phi C SOT34610V 0.3W zener102PZM10NB2Phi C SOT34610V 0.3W zener103PZM10NB3Phi C SOT34610V 0.3W zener111PZM11NB1Phi C SOT34611V 0.3W zener111DTA113ZUA Roh N SC70pnp dtr 1k+10k 50V 100mA 112PZM11NB2Phi C SOT34611V 0.3W zener113PZM11NB3Phi C SOT34611V 0.3W zener113DTA143ZUA Roh N SC70pnp dtr 4k7+47k 50V 100mA 121PZM12NB1Phi C SOT34612V 0.3W zener121DTC113ZUA Roh N SC70npn dtr 1k+10k 50V 100mA 122PZM12NB2Phi C SOT34612V 0.3W zener123PZM12NB3Phi C SOT34612V 0.3W zener123DTC143ZUA Roh N SC70npn dtr 4k7+47k 50V 100mA 131PZM13NB1Phi C SOT34613V 0.3W zener132PZM13NB2Phi C SOT34613V 0.3W zener132DTA123JUA Roh N SC70pnp dtr 2k2+47k 50V 100mA 133PZM13NB3Phi C SOT34613V 0.3W zener142DTA123JUA Roh N SC70npn dtr 2k2+47k 50V 100mA 151PZM15NB1Phi C SOT34615V 0.3W zener152PZM15NB2Phi C SOT34615V 0.3W zener153PZM15NB3Phi C SOT34615V 0.3W zener156DTA144VUA Roh N SC70pnp dtr 47k+10k 50V 100mA 161PZM16NB1Phi C SOT34616V 0.3W zener162PZM16NB2Phi C SOT34616V 0.3W zener163PZM16NB3Phi C SOT34616V 0.3W zener166DTC144VUA Roh N SC70npn dtr 47k+10k 50V 100mA 179FMMT5179Zet N -2N5179181PZM18NB1Phi C SOT34618V 0.3W zener182PZM18NB2Phi C SOT34618V 0.3W zener183PZM18NB3Phi C SOT34618V 0.3W zener1A BC846A Phi N SOT23BC546A1A BC846AT Phi N SOT416BC546A1Ap BC846A Phi N SOT23BC546A1At BC846A Phi N SOT23BC546A1At BC846AW Phi N SOT323BC546A1A-BC846AW Phi N SOT323BC546A1A FMMT3904Zet N SOT232N39041A MMBT3904Mot N SOT232N39041A IRLML2402IR F SOT23n-ch mosfet 20V 0.9Ap1A PMMT3904Phi N SOT232N3904p1A PXT3904Phi N SOT892N3904t1A PMMT3904Phi N SOT232N3904t1A PMST3904Phi N SOT3232N3904-1A PMST3904Phi N SOT3232N39041AM MMBT3904L Mot N SOT232N39041B BC846B Phi N SOT23BC546B1B BC846BT Phi N SOT416BC546B1Bp BC846B Phi N SOT23BC546B1Bt BC846B Phi N SOT23BC546B1Bt BC846BW Phi N SOT323BC546B1B-BC846BW Phi N SOT323BC546B1B FMMT2222Zet N SOT232N22221B MMBT2222Mot N SOT232N22221B IRLML2803IR F SOT23n-ch mosfet 30V 0.9Ap1B PMBT2222Phi N SOT232N2222t1B PMBT2222Phi N SOT232N2222t1B PMST2222Phi N SOT2332N2222-1B PMST2222Phi N SOT3232N22221Bs BC817UPN Sie N SC74-1Cp BAP50-05Phi B SOT23dual cc GP RF pin diode 1C FMMT-A20Zet N SOT23MPSA201C MMBTA20L Mot N SOT23MPS39041C IRLML6302IR F SOT23p-ch mosfet 20V 0.6A1Cs BC847S Sie-SOT363BC4571Dp BC846Phi N SOT23BC4561Dt BC846Phi N SOT23BC4561Dt BC846W Phi N SOT323BC4561D-BC846W Phi N SOT323BC4561D MMBTA42Mot N SOT23MPSA42 300V npn1D IRLML5103IR F SOT23p-ch mosfet 30V 0.6Ap1D PMBTA42Phi N SOT23MPSA42 300V npnp1D PXTA42Phi N SOT89MPSA42 300V npnt1D PMBTA42Phi N SOT23MPSA42 300V npnt1D PMSTA42Phi N SOT323MPSA42 300V npn1Ds BC846U Sie N SC74BC4561Ds BC846U Sie-SOT363BC4561DN2SC4083Roh N -npn 11V 3.2GHz TV tuners 1DR MSD1328R Mot N SOT346npn gp 25V 500mA1E BC847A Phi N SOT23BC547A1E BC847AT Phi N SOT416BC547A1Ep BC847A Phi N SOT23BC547A1Et BC847A Phi N SOT23BC547A1Et BC847A Phi N SOT323BC547A1E-BC847A Phi N SOT323BC547A1ER BC847AR Phi R SOT23R BC547A1E FMMT-A43Zet N -MPSA431E MMBTA43Mot N SOT23MPSA43 200V npnt1E PMBTA43Mot N SOT23MPSA43 200V npnt1E PMSTA43Mot N SOT323MPSA43 200V npn1Es BC847A Sie N SOT23BC4571Es BC847AW Sie N SOT323BC4571EN2SC4084Roh N -npn 20V 2.0GHz TV tuners 1F BC847B Phi N SOT23BC547B1F BC847BT Phi N SOT416BC547B1Fs BC847B Sie N SOT23BC547B1Fs BC847BT Sie N SC75BC547B1Fs BC847BW Sie N SOT323BC547B1Fp BC847B Phi N SOT23BC547B1Ft BC847B Phi N SOT23BC547B1Ft BC847BW Phi N SOT323BC547B1F-BC847BW Phi N SOT323BC547B1FR BC847BR Phi R SOT23R BC547B1F MMBT5550Mot N SOT232N5550 140V npnp1F PMBT5550Phi N SOT232N5550 140V npnt1F PMBT5550Phi N SOT232N5550 140V npnt1F PMST5550Phi N SOT3232N5550 140V npn1FZ FMBT5550Zet N SOT232N5550 140V npn1G BC847C Phi N SOT23BC547C1G BC847CT Phi N SOT416BC547C1Gp BC847C Phi N SOT23BC547C1Gt BC847CW Phi N SOT323BC547C1G-BC847CW Phi N SOT323BC547C1Gs BC847C Sie N SOT23BC547C1Gs BC847CW Sie N SOT323BC547C1GR BC847CR Phi R SOT23R BC547C1GT SOA06SGS N SOT23MPSA061G FMMT-A06Zet N SOT23MPSA061G MMBTA06Mot N SOT23MPSA06p1G PMMTA06Phi N SOT23MPSA06t1G PMMTA06Phi N SOT23MPSA06t1G PMMTA06Phi N SOT323MPSA061GM MMBTA06Mot N SOT23MPSA061Hp BC847Phi N SOT23BC5471Ht BC847Phi N SOT23BC5471Ht BC847W Phi N SOT323BC5471H-BC847W Phi N SOT323BC5471H FMMT-A05Zet N -MPSA051H MMBTA05Mot N SOT23MPSA05t1H MMBTA05Phi N SOT323MPSA051HT SOA05SGS N SOT23MPSA051J BC848A Phi N SOT23BC548A1Js BC848A Sie N SOT23BC548A1Js BC848AW Sie N SOT323BC548A1J FMMT2369Zet N SOT232N23691J MMBT2369Mot N SOT23MPS23691Js BCV61A Sie VQ SOT143npn current mirror hFe 180 1Jp BCV61A Phi VQ SOT143npn current mirror hFe 180 p1J PMBT2369Phi N SOT232N2369t1J PMBT2369Phi N SOT232N2369t1J PMBT2369Phi N SOT3232N23691JA MMBT2369A Mot N SOT23MPS2369A1JR BC848AR Phi R SOT23R BC548A1JZ BC848A Zet N SOT23BC548A1K BC848B ITT N SOT23BC548B1Kp BC848B Phi N SOT23BC548B1Ks BC848B Sie N SOT23BC548B1Ks BC848BW Sie N SOT323BC548B1K MMBT6428Mot N SOT23MPSA18 50Vp1K PMBT6428Phi N SOT23MPSA18 50Vt1K PMBT6428Phi N SOT23MPSA18 50Vt1K PMBT6428Phi N SOT323MPSA18 50V1K FMMT4400Zet N SOT232N44001Ks BCV61B Sie VQ SOT143B npn current mirror hFe 290 1Kp BCV61B Phi VQ SOT143B npn current mirror hFe 290 1KR BC848BR Phi R SOT23R BC548B1KM MMBT6428L Mot N SOT23MPSA18 50V1KZ FMMT4400Zet N SOT232N44001L BC848C ITT N SOT23BC548C1Lp BC848C Phi N SOT23BC548C1Ls BC848C Sie N SOT23BC548C1Ls BC848CW Sie N SOT323BC548C1L MMBT6429Mot N -MPSA18 45V1L FMMT4401Zet N -2N44011L BCV61C Sie VQ SOT143B npn current mirror hFe 520 1Lp BCV61C Phi VQ SOT143B npn current mirror hFe 520 p1L PMBT6429Phi N SOT23MPSA18 45Vt1L PMBT6429Phi N SOT23MPSA18 45Vt1L PMBT6429Phi N SOT323MPSA18 45V1LR BC848CR Phi R SOT23R BC548C1Mp BC848Phi N SOT23BC5481M MMBTA13Mot N SOT23MPSA13 darlington1Mp BCV61Phi VQ SOT143B npn current mirror1M FMMT-A13Zet N SOT23MPSA13p1M PXTA13Phi N SOT89MPSA13 darlingtonp1M PMBTA13Phi N SOT23MPSA13 darlingtont1M PMBTA13Phi N SOT23MPSA13 darlington1N FMMT-A14Zet N SOT23MPSA141N MMBTA14Mot N SOT23MPSA14 darlington1N5ZTX11N15DF Zet N SOT23npn 15V 3A low saturation V p1N PMBTA14Mot N SOT23MPSA14 darlingtonp1N PXTA14Mot N SOT89MPSA14 darlingtont1N PMBTA14Mot N SOT23MPSA14 darlington1P FMMT2222A Zet N -2N2222A1P MMBT2222A Mot N SOT232N2222A1P BC847PN Sie DI -pnp/npn separate pair gp AF p1P PMBT2222A Phi N SOT232N2222Ap1P PXT2222A Phi N SOT892N2222At1P PMBT2222A Phi N SOT232N2222At1P PMST2222A Phi N SOT3232N2222A1Q MMBT5088Mot N SOT23MPSA18 Vce 30Vp1Q PMBT5088Phi N SOT23MPSA18 Vce 30Vt1Q PMBT5088Phi N SOT23MPSA18 Vce 30Vt1Q PMST5088Phi N SOT323MPSA18 Vce 30V1R MMBT5089Mot N SOT23MPSA18 Vce 25Vt1R PMST5089Phi N SOT323MPSA18 Vce 25V1S MMBT2369A Nat N SOT232N2369A 500MHz sw npn 1S MSC3130Mot H SOT346npn RF fT 1.4GHz 10V1T MMBT3960A Mot N -2N3960A1U MMBT2484L Mot N SOT23MPSA181V MMBT6427Mot H SOT232N6426/7 darlington npn 1Vp BF820Phi N SOT23npn 300V 50mA BF4201Vt BF820Phi N SOT23npn 300V 50mA BF4201Vt BF820W Phi N SOT323npn 300V 50mA BF4201V-BF820W Phi N SOT323npn 300V 50mA BF4201W FMMT3903Zet N SOT232N39031Wp BF821Phi N SOT23pnp 300V 50mA BF4211Wt BF821Phi N SOT23pnp 300V 50mA BF4211W t BF822W Phi N SOT323pnp 300V 50mA BF4211W -BF822W Phi N SOT323pnp 300V 50mA BF4211X MMBT930L Mot N SOT23MPS39041Xp BF822Phi N SOT23npn 250V 50mA BF4221Xt BF822Phi N SOT23npn 250V 50mA BF4221Y MMBT3903Mot N SOT232N39031Yp BF823Phi N SOT23pnp 250V 50mA BF4231Yt BF823Phi N SOT23pnp 250V 50mA BF4231Z BAS70-06Zet A SOT23dual RF CA schottky diode 1Z MMBT6517Mot N SOT232N6517 npn Vce 350VCode Device Manufacturer Base Package Leaded Equivalent/Data2BAT62-02W Sie I SCD80BAT16 schottky diode2 (blue)BAR64-03W Sie I SOD323pin diode22SC3604Nec CX -npn RF fT8GHz 12dB@2GHz2 (white) BB439Sie I SOD32329-5 pF varicap20MRF5811Mot X SOT143npn Rf fT 5GHz 0.2A-20PDTC114WU Phi N SOT323npn dtr20F TSDF1220Tfk X SOT143fT 12GHz npn 6V 20mA20V PZM20NB Phi C SOT34620V 300mW zener20Y BZV49-C20Phi O SOT8920V 1W zener21Gali-21MC AZ SOT89DC-8GHz MMIC amp 14 dB gain 22MMBT4209Nat N SOT23pnp sw 850MHz 2N420922DTC123EUA Rho N SC70npn dtr 2k2+2k2 50V 100ma 22DTC123EKA Rho N SC59npn dtr 2k2+2k2 50V 100ma 22V PZM22NB Phi C SOT34622V 300mW zener22Y BZV49-C22Phi O SOT8922V 1W zener23MMBT3646Nat N SOT23npn sw 350MHz 2N364623DTC143EUA Roh N SC70pnp dtr 50V 100mA 4k7+ 4k7 23DTC143EKA Roh N SC59pnp dtr 50V 100mA 4k7+ 4k7 -23PDTA114TU Phi N SOT323pnp dtr R1 10kt23PDTA114TU Phi N SOT323pnp dtr R1 10k24MMBD2101Nat C SOT23Si diode 100V 200mA23U TK61023S Tok-SOT23-5Voltage detector23U TK16123Tok-SOT23L ADJ Digital Delay Line24DTC114ECA Roh N SOT23npn dtr 50V 100mA 10k + 10k 24DTC114EUA Roh N SC70npn dtr 50V 100mA 10k + 10k 24DTC114EKA Roh N SC59npn dtr 50V 100mA 10k + 10k 242SC5006Nec N -npn RF fT 4.5GHz @3V 7mA 24F ZHT2431F02Zet H SOT23High temp. Adjustable zener shunt Reg.-24PDTC114TU Phi N SOT323npn dtr R1 10kt24PDTC114TU Phi N SOT323npn dtr R1 10k24V PZM24NB Phi C SOT34624V 300mW Zener24Y BZV49-C24Phi O SOT8924V 1W zener25MMBD2102Nat K SOT23Si diode 100V 200mA25DTC124ECA Roh N SOT23npn dtr 50V 100mA 22k + 22k 25DTC124EKA Roh N SC59npn dtr 50V 100mA 22k + 22k 25DTC124EUA Roh N SC70npn dtr 50V 100mA 22k + 22k 25U TK61025S Tok-SOT23-5Voltage detector26MMBD2103Nat D SOT23dual MMBD120126DTC144EKA Roh N SC59npn dtr 50V 30mA 47k + 47k 26DTC144EUA Roh N SC70npn dtr 50V 30mA 47k + 47k 27MMBD2104Nat B SOT23dual cc MMBD120127U TK61027S Tok-SOT23-5Voltage detector27V PZM27NB Phi C SOT34627V 300mW Zener27Y BZV49-C27Phi O SOT8927V 1W zener28BFP280T Tfk W -npn RF fT 7GHz 8V 10mA 28MMBD2105Nat A SOT23dual ca MMBD1201-28PDTA114WU Phi N SOT323pnp dtr29MMBD1401Nat C SOT23Si diode 200V 100mA29DTC115EE Roh N EMT3npn dtr 100k +100k 50V 20mA 29DTC115EUA Roh N SC70npn dtr 100k +100k 50V 20mA 29DTC115EKA Roh N SC59npn dtr 100k +100k 50V 20mA 200SSTPAD200Sil J -PAD-200 200pA leakage diode 201PZM20NB1Phi C SOT34620V 300mW Zener202PZM20NB2Phi C SOT34620V 300mW Zener203PZM20NB3Phi C SOT34620V 300mW Zener221PZM22NB1Phi C SOT34622V 300mW Zener222PZM22NB2Phi C SOT34622V 300mW Zener223PZM22NB3Phi C SOT34622V 300mW Zener241PZM24NB Phi C SOT34624V 300mW Zener242PZM24NB Phi C SOT34624V 300mW Zener243PZM20NB Phi C SOT34624V 300mW Zener271PZM2.7NB1Phi C SOT346 2.7V 300mW Zener272PZM2.7NB2Phi C SOT346 2.7V 300mW Zener2A MMBT3906L Mot N SOT232N39062A MMBT3906W Mot N SOT3232N39062A FMMT3906Zet N SOT232N3906t2A PMBT3906Phi N SOT232N3906t2A PMST3906Phi N SOT3232N3906p2A PMBT3906Phi N SOT232N3906p2A PXT3906Phi O SOT892N39062A4PZM2.4NB2A Phi A SOT346dual 2.4V cc Zener2A7PZM2.7NB2A Phi A SOT346dual 2.7V cc Zener2B BC849B ITT N SOT23BC549B2Bs BC849B Sie N SOT23BC549B2Bs BC849BW Sie N SOT323BC549B2Bp BC849B Phi N SOT23BC549B2Bt BC849BW Phi N SOT323 BC549B2B-BC849BW Phi N SOT323 BC549B2B FMMT2907Zet N SOT232N29072B MMBT2907Mot N SOT23MPS2907p2B PMBT2907Phi N SOT232N2907t2B PMBT2907Phi N SOT232N29072BR BC849BR Phi R SOT23R BC549B2BZ FMMT2907Zet N SOT232N29072C BC849C ITT N SOT23BC549C2Cs BC849C Sie N SOT23BC549C2Cs BC849CW Sie N SOT323BC549C2Cp BC849C Phi N SOT23BC549C2Ct BC849C Phi N SOT23BC549C2Ct BC849CW Phi N SOT323BC549C2C-BC849CW Phi N SOT323BC549C2C MMBTA70Mot N SOT23MPSA702CR BC849CR Phi R SOT23R BC549C2CZ FMMTA70Zet N SOT23MPSA702D MMBTA92Mot N SOT23MPSA92 pnp Vce 300Vp2D PMBTA92Phi N SOT23MPSA92 pnp Vce 300Vp2D PXTA92Phi O SOT89MPSA92 pnp Vce 300Vt2D PMBTA92Phi N SOT23MPSA92 pnp Vce 300Vt2D PMSTA92Phi N SOT323MPSA92 pnp Vce 300V2E MMBTA93Mot N SOT23MPSA93 pnp Vce 200V2E FMMT-A93Zet N SOT23MPSA93t2E PMBTA93Phi N SOT23MPSA93 pnp Vce 200Vt2E PMSTA93Phi N SOT323MPSA93 pnp Vce 200V2F BC850B ITT N SOT23 BC550B2Fs BC850B Sie N SOT23 BC550B2Fs BC850BW Sie N SOT323 BC550B2Fp BC850B Phi N SOT23 BC550B2Ft BC850B Phi N SOT23 BC550B2Ft BC850BW Phi N SOT323 BC550B2F-BC850BW Phi N SOT323 BC550B2F FMMT2907A Zet N SOT232N2907A2F MMBT2907A Mot N SOT23MPS2907A2F MMBT2907AW Mot N SOT323MPS2907Ap2F PMBT2907A Phi N SOT232N2907Ap2F PXT2907A Phi O SOT892N2907At2F PMBT2907A Phi N SOT232N2907At2F PMBT2907A Phi N SOT3232N2907A2FR BC850BR Phi R SOT23R BC550B2G BC850C ITT N SOT23 BC550C2Gs BC850C Sie N SOT23 BC550C2Gp BC850C Phi N SOT23 BC550C2Gt BC850C Phi N SOT323 BC550C2Gt BC850CW Phi N SOT323 BC550C2G-BC850CW Phi N SOT323BC550C2G FMMT-A56Zet N SOT23MPSA562G MMBTA56Mot N SOT23MPSA56p2G PMBTA56Phi N SOT23MPSA56t2G PMBTA56Phi N SOT23MPSA56t2G PMSTA56Phi N SOT323MPSA562GM MMBTA56Mot N SOT23MPSA562GR BC850CR Phi R SOT23R BC550C2GT SOA56SGS N SOT23MPSA562H ABA-52563Agi DU SOT363 3.5 GHz Broadband Amplifier2H FMMT-A55Zet N SOT23MPSA552H MMBTA55Mot N SOT23MPSA552HT SOA55SGS N SOT23MPSA55t2H PMBTA55Phi N SOT23MPSA55t2H PMSTA55Phi N SOT323MPSA552J MMBT3640Mot N SOT23MPS3640 pnp sw2K BAT754Phi C SOT23Schottky barrier diode2K FMMT4402Zet N SOT232N44022K MMBT8598Mot N -2N4125 pnp 60V2L BAT754A Phi J SOT23Schottky barrier double diodes 2L MMBT5401Mot N SOT232N5401 pnp 150V2L FMMT4403Zet N SOT232N4403p2L PMBT5401Phi N SOT232N5401 pnp 150Vt2L PMBT5401Phi N SOT232N5401 pnp 150Vt2L PMST5401Phi N SOT3232N5401 pnp 150V2M BAT754C Phi B SOT23Schottky barrier double diodes 2M FMMT5087Zet N SOT232N50872M MMBT404Mot N SOT23pnp-chopper 24V 150mA2N BAT754S Phi D SOT23Schottky barrier double diodes 2N MMBT404A Mot N SOT23pnp-chopper 35V 150mA2N0ZXT11N20DF Zet N SOT23npn 20V 2.5A low sat switch2P FMMT2222R Zet R SOT23R2N22222P MMBT5086Mot N SOT232N50862Q MMBT5087Mot N SOT232N50872R HSMS-8102HP Z SOT2310-14GHz schottky mixer pair2T SO4403SGS N SOT232N44032T MMBT4403Mot N SOT232N4403p2T PMBT4403Phi N SOT232N4403p2T PXT4403Phi O SOT892N4403t2T PMBT4403Phi N SOT232N4403t2T PMST4403Phi N SOT3232N44032T HT2Zet N SOT23pnp 80V 100mA2U MMBTA63Mot N SOT23MPSA63 darlingtont2U PMBTA63Phi N SOT23MPSA63 darlington2V MMBTA64Mot N SOT23MPSA64 darlingtonp2V PXTA64Phi O SOT89MPSA64 darlingtont2V PMBTA64Phi H SOT23MPSA64 darlington2V4PZM2.4NB Phi C SOT346 2.4V 300mW Zener2V7PZM2.7NB Phi C SOT346 2.7V 300mW Zener2W FMMT3905Zet N SOT232N39052W MMBT8599Mot N -2N4125 Vce 80V pnp2X SO4401SGS N SOT232N44012X MMBT4401Mot N SOT232N4401p2X PMBT4401Phi N SOT232N4401p2X PxT4401Phi O SOT892N4401t2X PMBT4401Phi N SOT232N4401t2X PMST4401Phi N SOT3232N44012Y4BZV49-C2V4Phi O SOT89 2.4V 1W zener2Y7BZV49-C2V7Phi O SOT89 2.7V 1W zener2Z MMBT6520Mot N SOT232N6520 pnp Vce 350V2Z BAS70-04Zet D SOT23dual series RF schottky 70V 15mA 2Z5BAS70-05Zet B SOT23dual cc RF Schottky 70V 15mACode Device Manufacturer Base Package Leaded Equivalent/Data3BAT60A Sie I SOD32310V 3A sw schottky3BAT62-02W Sie I SCD80-30MUN5330DW1Mot DP SOT363npn/pnp dtr 1k0+1k030U TK61030S Tok-SOT23-5Voltage detector30V PZM30NB1Phi C SOT34630V 300mW zener30Y BZV49-C30Phi O SOT8930V 1W zener301FDV301N Fch M SOT23n-ch 'digital' fet 25V 0.22A302FDV302P Fch M SOT23p-ch 'digital' fet 25V 0.13A303FDV303N Fch M SOT23n-ch 'digital' fet 25V 0.68A304FDV304P Fch M SOT23p-ch 'digital' fet 25V 0.46A31MUN5331DW1Mot DP SOT363npn/pnp dtr 2k2+2k231MMBD1402Nat K SOT23Si diode 200V 100mAp31PDTA143XT Phi N SOT23pnp dtr 4k7+10kt31PDTA143XT Phi N SOT23pnp dtr4k7+10k32MUN5332DW1Mot DP SOT363npn/pnp dtr 4k7+4k732MMBD1403Nat D SOT23dual Si diode 200V 100mA32BAT32Sie CS -18GHz zero-bias schottkyp32PDTC143XT Phi N SOT23pnp dtr 4k7+10kt32PDTC143XT Phi N SOT23pnp dtr 4k7+10ks33MUN5333DW1Mot DP SOT363npn/pnp dtr 4k7+47k33DTA143XE Roh N EMT3pnp dtr 4k7+10k 50V 100mA33DTA143XUA Roh N SC70pnp sw 4k7+10k bias res 50V 100mA 33DTA143XKA Roh N SC59pnp sw 4k7+10k bias res 50V 100mA 33MMBD1404Nat B SOT23dual cc Si diode 200V 100mA33Gali-33MC AZ SOT89DC-4GHz MMIC amp 19dB gain 33U TK61033S Tok-SOT23-5Voltage detector33V PZM33NB1Phi C SOT34633 300mW zener33Y BZV49-C33Phi O SOT8933V 1W zener34MUN5334DW1Mot DP SOT363npn/pnp dtr 22k+47k34MMBD1405Nat A SOT23dual ca Si diode 200V 100mA 331NDS331N Fch M SOT23n-ch mosfet 1.3A 20V331PZM3.3NB1Phi C SOT346 3.3V 300mW zener332PZM3.3NB2Phi C SOT346 3.3V 300mW zener332NDS332N Fch M SOT23p-ch mosfet 0.4A, 1A pk, 20V 335NDS335N Fch M SOT23n-ch mosfet 70 mA, 1.7A pk, 20V 336NDS336N Fch M SOT23p-ch mosfet 0.27A, 1.2A pk, 20V 337NDS337N Fch M SOT23n-ch mosfet 50 mA, 2.5A pk 20V 338NDS338N Fch M SOT23p-ch mosfet 0.13A, 1.6Apk 20V 342SC5007Nec N -npn RF fT 7GHz @3V 7mA340FDV340P Fch M SOT23p-ch mosfet 20V 70 mA35MUN5335DW1Mot DP SOT363npn/pnp dtr 2k2+47k35DTA124XE Roh N EMT3pnp dtr 22k+47k 50V 50mA35DTA124XUA Roh N SC70pnp dtr 22k+47k 50V 50mA35DTA124XKA Roh N SC59pnp dtr 22k+47k 50V 50mA351NDS351N Fch M SOT23n-ch mosfet 1.1A 30V352NDS352N Fch M SOT23p-ch mosfet 0.5A 20V355NDS355N Fch M SOT23n-ch mosfet 0.1A, 1.6A pk 30V 356NDS356N Fch M SOT23p-ch mosfet 0.3A, 1.1A pk 20V 357NDS357N Fch M SOT23n-ch mosfet 2.5Apk 30V358NDS358N Fch M SOT23p-ch mosfet 0.2A, 1.6A pk 30V 358FDN358N Fch M SOT23p-ch mosfet 0.2A 1.6A pk 30V 360FDN360P Fch M SOT23p-ch mosfet 80mA, 2a PK, 30V 361PZM3.6NB1Phi C SOT346 3.6V 300mW Zener362PZM3.3NB2Phi C SOT346 3.6V 300mW Zener36U TK61036S Tok-SOT23-5Voltage detector36V PZM36NB1Phi C SOT34636V 300mW Zener36Y BZV49-C36Phi O SOT8936V 1W zener391PZM3.9NB1Phi C SOT346 3.9V 300mW Zener392PZM3.9NB2Phi C SOT346 3.9V 300mW Zener39V PZM39NB1Phi C SOT34639V 300mW Zener39Y BZV49-C39Phi O SOT8939V 1W zener3A BC856A ITT N SOT23BC556A3A BC856AT Phi N SOT416BC556A3Ap BC856A Phi N SOT23BC556A3At BC856A Phi N SOT23BC556A3As BC856A Sie N SOT23BC556A3At BC856AW Phi N SOT323BC556A3A-BC856AW Phi N SOT323BC556A3A MMBTH24Mot N SOT23VHF mixer npn fT 600MHz 3A0PZM3.0NB2A Phi C SOT346dual 3.0V Zener3A3PZM3.3NB2A Phi C SOT346dual 3.3V Zener3A6PZM3.6NB2A Phi C SOT346dual 3.6V Zener3A9PZM3.9NB2A Phi C SOT346dual 3.9V Zener3AR BC856AR Phi R SOT23R BC556A3B BC856B ITT N SOT23BC556B3B BC856BT Phi N SOT416BC556B3Bp BC856B Phi N SOT23BC556B3Bs BC856B Sie N SOT23BC556B3Bt BC856B Phi N SOT23BC556B3Bt BC856BW Phi N SOT323BC556B3B-BC856BW Phi N SOT323BC556B3B FMMT918Zet N SOT232N9183B MMBT918Mot N SOT232N9183BR BC856BR Phi R SOT23BC556B3C FMMTA20R Zet R SOT23R MPSA203C BC857Sie DO -pnp separate pair gp AF 3D BC856Phi N SOT23BC556 hfe 75 min3Dp BC856Phi N SOT23BC556 hfe 75 min3Dt BC856Phi N SOT23BC556 hfe 75 min3Dt BC856W Phi N SOT323BC556 hfe 75 min3D-BC856W Phi N SOT323BC556 hfe 75 min3D MMBTH81L Mot N SOT23UHF pnp fT 600MHz3D BC856S Sie DO -pnp separate pair gp AF 3E BC857A Phi N SOT23BC557A3E BC857AT Phi N SOT416BC557A3Ep BC857A Phi N SOT23BC557A3Et BC857A Phi N SOT23BC557A3Et BC857A Phi N SOT323BC557A3E-BC857A Phi N SOT323BC557A3E MMBTH10Mot N SOT23MPSH10 fT 650MHz3E FMMT-A42Zet N SOT23MPSA423EM MMBTH10L Mot N SOT23VHF amp 650MHz fT3ER BC857AR Phi R SOT23R BC557A3EZ FMMTH10Zet N SOT23npn fT 650MHz3F BC857B Phi N SOT23BC557B3F BC857BT Phi N SOT416BC557B3Fp BC857B Phi N SOT23BC557B3Fs BC857B Sie N SOT23BC557B3Ft BC857B Phi N SOT23BC557B3Ft BC857BW Phi N SOT323BC557B3Ft BC857BS Phi N SOT363BC557B3F-BC857BW Phi N SOT323BC557B3FR BC857BR Phi R SOT23R BC557B3G BC857C Phi N SOT23BC557C3Gp BC857C Phi N SOT23BC557C3G BC857C Phi N SOT23BC557C3Gs BC857C Sie N SOT23BC557C3Gt BC857C Phi N SOT23BC557C3Gt BC857CW Phi N SOT323BC557C3G-BC857CW Phi N SOT323BC557C3G MMBTH11NS N SOT23-3G MGSF3454X Mot DK TSOP6n-ch enh tmosfet 1.75A 3GR BC857CR Phi R SOT23R BC557CR3Hp BC857C Phi N SOT23BC5573Ht BC857C Phi N SOT23BC5573Ht BC857CW Phi N SOT323BC5573H MMBTH30NS N SOT23-3H-BC857CW Phi N SOT323BC5573J MMBTH69Mot N SOT23pnp UHF fT 2GHz3J BC858A Phi N SOT23BC558A3Js BC858A Sie N SOT23BC558A3JR BC858AR Phi R SOT23R BC558A3Js BCV62A Sie VQ SOT143pnp current mirror hFe 180。
ESDA6V1-4F1中文资料
®
ESDA6V1-4F1
A.S.D.™
QUAD TRANSIL™ ARRAY FOR ESD PROTECTION
APPLICATIONS Where transient overvoltage protection in ESD sensitive equipment is required, such as : Computers Printers Communication systems GSM handsets and accessories Other telephone sets Set top boxes
Ppp(W)
100
Tj initial(°C) 0 25 50 75 100 125 150 175
10 1
Hale Waihona Puke tp(µs) 10 100
Fig. 3: Clamping voltage versus peak pulse current (Tj initial = 25°C). Rectangular waveform tP = 2.5µs.
s s
Flip Chip (Bump side)
FUNCTIONAL DIAGRAM
A3
A2
A1
s
s
4 Unirectional transil functions Breakdown voltage: VBR = 6.1Vmin Low leakage current < 10 µA Very low PCB space consuming
I
IPP
t
2µs 2.5 µs 2.5 µs duration measurement wave
As the value of the dynamic resistance remains stable for a surge duration lower than 20µs, the 2.5µs rectangular surge is well adapted. In addition both rise and fall times are optimised to avoid any parasitic phenomenon during the measurement of Rd. ESD PROTECTION WITH ESDA6V1-4F1 With the focus of lowering the operation levels, the problem of malfunction caused by the environment is critical. Electrostatic discharge (ESD) is a major cause of failure in electronic system. Transient Voltage Suppressors are an ideal choice for ESD protection and have proven capable in suppressing ESD events. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented. Surface mount TVS arrays offer the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal line to ground. As the transient rises above the operating voltage of the device, the TVS array becomes a low impedance path diverting the transient current to ground.
LESDA6V1W6T1G SOT-363 规格书LRC 推荐
LESDA6V1W6T1G Transil array for data protectionGeneral DescriptionThe L ESDA6V1W6T1G is a monolithic suppressor designed to protect components connected to data and transmission lines against ESD. The device clamp the voltage just above the logic level supply for positive transients, and to a diode drop below ground for negative transients.Applicationsz Computers z Printersz Communication systems z Cellular phones handsets and accessories z Wireline and wireless telephone sets zSet top boxesFeaturesz 5 Unidirectional Transil functions z Breakdown voltage:z V BR = 6.1 V min. and 25 V min. z Low leakage current: < 1 mAz Very small PCB area < 4.2 mm 2 typically z High ESD protection level: up to 25 kV z High integration Complies with the following standardsIEC61000-4-2Level 4 15 kV (air discharge)9 kV(contact discharge)MIL STD 883E - Method 3015-7 Class 325 kV HBM (Human Body Model)Functional diagramLE SD 6V1W 6T1G Absolute Ratings (T amb =25°C )SymbolParameterValueUnitsP PP Peak Pulse Power (t p = 8/20μs)L ESDA6V1W6T1G 100 W T L Maximum lead temperature for soldering during 10s260 °C T stg Storage Temperature Range -40 to +125 °C T opOperating Temperature Range-40 to +125°CLESHAN RADIO COMPANY, LTD.z Device marking:WFS-LESDA6V1W6T1Gz S- Prefix for Automotive and Other ApplicationsRequiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.10090807060504030201000 1.0 3.0 5.0BIAS VOLTAGE (VOLTS)T Y P I C A L C A P A C I T A N C E (p F ) 4.02.01 M H z F R E Q U E N C Y1009080706050403020100T A , AMBIENT TEMPERATURE (°C)P E A K P U L S E D E R A T I N G I N % O F P E A K P O W E R O R C U R R E N T @ T A = 25C°Figure 5. Forward VoltageFigure 6. Clamping Voltage versus Peak Pulse Current (Reverse Direction)0.0010.011.0V F , FORWARD VOLTAGE (VOLTS)100101.0V C , CLAMPING VOLTAGE (VOLTS)I , P E A K P U L S E C U R R E N T (A M P S )p p 0.1I , F O R W A R D C U R R E N T (A )F Figure 3. Pulse Derating CurveFigure 4. Capacitance。
晶体管手册
9013 贴片 NPN 低频放大 50V 0.5A 0.625W 9012
3DK2B 7 NPN 开关 30V 0.03A 0.2W
3DD15D 12 NPN 电源开关 300V 5A 50W
3DD102C 12 NPN 电源开关 300V 5A 50W
8550 21 PNP 高频放大 40V 1.5A 1W 100MHZ 8050
2N2222 21 NPN 通用 60V 0.8A 0.5W 25/200NS
2N2369 4A NPN 开关 40V 0.5A 0.3W 800MHZ
2N2907 4A NPN 通用 60V 0.6A 0.4W 26/70NS
B205 锗管 PNP 音频功放开关 80V 20A 80W
B1215 BCE PNP 功放开关贴片 120V 3A 20W 130MHZ
C294 6 NPN 栾生对管 25V 0.05A 200MHZ
C1044 6 NPN 视放 45V 0.3A 2.2GHZ
C1216 6 NPN 高速开关 40V 0.2A T,20nS
C1344 ECB NPN 通用低噪 30V 0.1 230MHZ
C1733 6 NPN 栾生对管 30V 0.05A 2GHZ
C1317 21ECB NPN 通用 30V 0.5A 0.625W 200MHZ
C546 21ECB NPN 高放 30V 0.03A 0.15W 600MHZ
3DG6C 6 NPN 通用 25V 0.02A 0.1W 250MHZ
3DG6D 6 NPN 通用 30V 0.02A 0.1W 150MHZ
ESDA6V1-5W6中文资料
1/9ESDA6V1-5W6TRANSIL ™ARRAY FOR ESD PROTECTION®DESCRIPTIONThe ESDA6V1-5W6is a 5-bit wide monolithic suppressor which is designed to protect components connected to data and transmission lines against ESD.March 2000-Ed:1A Where transient overvoltage protection in ESD sensitive equipment is required,such as :n Computers n Printersn Communication systemsn Cellular phone handsets and accessories n Other telephone sets nSet top boxesAPPLICATIONSSOT323-6LI/O1I/O2Gnd I/O5I/O3I/O4FUNCTIONAL DIAGRAMApplication Specific Di scretesA.S.D.äBENEFITSn High integrationnSuitable for high density boards-IEC 61000-4-2:level 415kV (air discharge)8kV (contact discharge)-MIL STD 883C-Method 3015-6:class3(human body model)COMPLIES WITH THE FOLLOWING STANDARDS:n 5UNIDIRECTIONAL TRANSIL ™FUNCTIONS n BREAKDOWN VOLTAGE:VBR =6.1V min n LOW LEAKAGE CURRENT:I R max <1µAnVERY SMALL SIZE FOR PCB SPACE SAVING:4.2mm 2TYPICALLYFEATURESESD response to IEC61000-4-2(air discharge 16kV, positive surge)APPLICATION EXAMPLETECHNICAL INFORMATIONESD PROTECTIONThe ESDA6V1-5W6is particularly optimized to perform ESD protection.ESD protection is achieved by clamping the unwanted overvoltage.The clamping voltage is given by the following formula:V V R I=+⋅cl br d ppAs shown in figure A1,the ESD strikes are clamped by the transient voltage suppressor.Fig. A1: ESD clamping behavior4/9a:Vi/o during positive surge b:Vi/o during negative surgeOne can note that the ESDA6V1-5W6is not only acting for positive ESD surges but also for negative ones. For these kind of disturbances it clamps close to ground voltage as shown in Fig.A3b.CROSSTALK BEHAVIORFigure A7shows the measurement circuit used application.Figure A8shows that in such a condition,i.e signal from disturbed line is less than50mV peak to peak.No data measurements performed with falling edges give anESDA 6V1 - 5ESD ARRA Y V min BRORDER CODE。
LESDA6V1LT1G中文资料
Dual transil array for ESD protectionGeneral DescriptionThe LESDAxxxLT1G is a dual monolithic voltage suppressor designed to protect components which are connected to data and transmission lines against ESD. It clamps the voltage just above the logic level supply for positive transients, and to a diode drop below ground for negative transients. It can also work as bidirectionnal suppressor by connecting only pin1 and 2.Applicationsz Computers z Printersz Communication systemsIt is particulary recommended for the RS232 I/O port protection where the line interface withstands only with 2kV ESD surges.Absolute Ratings (T amb =25°C ) SymbolParameter Value UnitsP PP Peak Pulse Power (t p = 8/20μs)300 W T L Maximum lead temperature for soldering during 10s 260 °C T stg Storage Temperature Range -55 to +15 °CTop Operating Temperature Range -40 to +125°CT jMaximum junction temperature 150 °CElectrostatic discharge25 MIL STD 883C -Method 3015-6 IEC61000-4-2 air discharge V PP16 IEC61000-4-2 contact discharge9kv Featuresz 2 Unidirectional Transil functionsz Low leakage current: I R max< 20 μA at VBR z 3 00W peak pulse power(8/20μs)z High ESD protection level: up to 25 kVBenefitsz High ESD protection level z up to 25 kV . High integration. z Suitable for high density boards.Complies with the following standardsIEC61000-4-2 Level 4MIL STD 883c - Method 3015-6 Class 3(Human Body Model)132LESDAXXXLT1GSOT– 23LESHAN RADIO COMPANY, LTD.Electrical ParameterSymbol ParameterV RM Stand-off voltage V BR Breakdown voltage V CL Clamping voltageI RM Leakage current I PP Peak pulse current αT Voltage temperature coefficient V F Forward voltage drop C CapacitanceR dDynamic resistanceElectrical CharacteristicsV BRV F R d αT C Min. Max.I RV RMI RMMax.I FTyp.(1)Max.(2)Typ. 0v biasPart Numbersv v mA v µAv mA mΩ 10-4/°C pF 5.3 5.9 1 3 21.252002805 220 6.1 7.2 1 5.2520 1.25 200 3506 140 14.2 15.8 1125 1.25 200 6501090 25 30 1 24 1 1.2 10 1000 10501.Square pulse I PP =15A,t p =2.5µs 2.△V BR =aT *(T amb -25°C)*V BR (25°C)Fig1.Peak power dissipation versus Fig2. Peak pulse power versus exponential Initial junction temperature pulse duration(T j initial=25°C)LESDA5V3LT1G LESDA6V1LT1G LESDA14V2LT1G LESDA25LT1GTypical Characteristics LESDAXXXLT1GFig3. Clamping voltage versus peak Fig4. Capacitance versus reversepulse current(T j initial=25°C, Applied voltage rectangular Waveform,t p =2.5μs)Fig5.Relative variation of leakage current Fig6. Peak forward voltage drop versusVersus junction temperature peak forwardcurrent Application NoteElectrostatic discharge (ESD) is a major cause of failure in electronic systems. Transient V oltage Suppressors (TVS) are an ideal choice for ESD protection. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented.Surface mount TVS arrays offer the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal line to ground. As the transient rises above the operating voltage of the device, the TVS array becomes a low impedance path diverting the transient current to ground. The ESDAxxL array is the ideal board evel protection of ESD sensitive semiconductor components.The tiny SOT23 package allows design flexibility in the design of high density boards where the space saving is at a premium. This enables to shorten the routing and contributes to hardening againt ESD.LESDAXXXLT1GLESDAXXXLT1GNOTES:1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M,19822. CONTROLLING DIMENSION: INCH.INCHES MILLIMETERS DIM MIN MAX MIN MAX A 0.11020.1197 2.803.04B 0.04720.0551 1.20 1.40C 0.03500.04400.89 1.11D 0.01500.02000.370.50G 0.07010.0807 1.78 2.04H 0.00050.00400.0130.100J0.00340.00700.0850.177K 0.01400.02850.350.69L 0.03500.04010.89 1.02S 0.08300.1039 2.10 2.64V0.01770.02360.450.60SOT -23LESHAN RADIO COMPANY, LTD.LESDAXXXLT1GReel DimensionsMetric Dimensions Govern –– English are in parentheses for reference onlyEMBOSSED TAPE AND REEL DATAFOR DISCRETESAT MaxOutside Dimension Measured at EdgeGInside Dimension Measured Near Hub20.2mm Min (.795’’)1.5mm Min(.06’’)13.0mm ± 0.5mm(.512 ±.002’’)50mm Min (1.969’’)Full RadiusSize A Max GT Max 8 mm330mm (12.992’’)8.4mm+1.5mm, -0.0(.33’’+.059’’, -0.00)14.4mm (.56’’)LESHAN RADIO COMPANY, LTD.Storage ConditionsTemperature: 5 to 40 Deg.C (20 to 30 Deg. C is preferred) Humidity: 30 to 80 RH (40 to 60 is preferred )Recommended Period: One year after manufacturing(This recommended period is for the soldering condition only. The characteristics and reliabilities of the products are not restricted to this limitation)元器件交易网Shi p ment S p ecification10 Reel12 Inner Box/Carton 360KPCS/CartonDim(Unit:mm)Dim(Unit:mm)10Reel/Inner Box30KPCS/Inner Box460mm*400mm*420mm8000PCS/Reel (SOT-723,SOD-723)3000PCS/Reel80KPCS/Inner Box (SOT-723,SOD-723)960KPCS/Carton (SOT-723,SOD-723)LESHAN RADIO COMPANY, LTD.元器件交易网。
晶体管说明书.pdf_1705816060.0783954
DESCRIPTIONSThe Orange source color devices are made with AlGaInP Light Emitting DiodeElectrostatic discharge and power surge coulddamage the LEDsIt is recommended to use a wrist band oranti-electrostatic glove when handling the LEDs All devices, equipments and machineries must be electrically groundedFEATURES2.0 mm x 1.25 mm SMD LED, 0.75 mm thickness Low power consumptionWide viewing angleIdeal for backlight and indicatorPackage: 2000 pcs / reelMoisture sensitivity level: 3RoHS compliantAPPLICATIONSBacklightStatus indicatorHome and smart appliancesWearable and portable devicesHealthcare applicationsATTENTIONObserve precautions for handling electrostatic discharge sensitive devicesPACKAGE DIMENSIONSKPT-2012LVSECK-J4-PRV2.0 x 1.25 mm SMD Chip LED LampRECOMMENDED SOLDERING PATTERN(units : mm; tolerance : ± 0.1)Notes:1. All dimensions are in millimeters (inches).2. Tolerance is ±0.1(0.004") unless otherwise noted.3. The specifications, characteristics and technical data described in the datasheet are subject tochange without prior notice.4. The device has a single mounting surface. The device must be mounted according to the specifications.Part Number Emitting Color(Material)Lens TypeIv (mcd) @ 2mA [2]Viewing Angle [1]Min. Typ. 2θ1/2KPT-2012LVSECK-J4-PRV ■Super Bright Orange(AlGaInP)Water Clear80 150*30 *50140°SELECTION GUIDENotes:1. θ1/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.2. Luminous intensity / luminous flux: +/-15%.* Luminous intensity value is traceable to CIE127-2007 standards.ABSOLUTE MAXIMUM RATINGS at T A =25°CELECTRICAL / OPTICAL CHARACTERISTICS at T A =25°CParameterSymbolEmitting ColorValueUnitTyp. Max. Wavelength at Peak Emission I F = 2mA λpeak Super Bright Orange 611 - nm Dominant Wavelength I F = 2mA λdom [1] Super Bright Orange 605-nmSpectral Bandwidth at 50% Φ REL MAX I F = 2mA ΔλSuper Bright Orange17 - nmCapacitanceC Super Bright Orange 27 - pFForward Voltage I F = 2mA V F [2]Super Bright Orange 1.8 2.1 VReverse Current (V R = 5V) I R Super Bright Orange - 10 uAParameterSymbolValue Unit Power Dissipation P D 84 mW Reverse Voltage V R 5 V Junction Temperature T J 115 °C Operating Temperature T op -40 to +85 °C Storage Temperature T stg -40 to +85°C DC Forward Current I F 30 mA Peak Forward CurrentI FM [1] 150 mA Electrostatic Discharge Threshold (HBM)-3000VNotes:1. The dominant wavelength (λd) above is the setup value of the sorting machine. (Tolerance λd : ±1nm. )2. Forward voltage: ±0.1V.3. Wavelength value is traceable to CIE127-2007 standards.4. Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.Notes:1. 1/10 Duty Cycle, 0.1ms Pulse Width.2. Relative humidity levels maintained between 40% and 60% in production area are recommended to avoid the build-up of static electricity – Ref JEDEC/JESD625-A and JEDEC/J-STD-033.TECHNICAL DATASUPER BRIGHT ORANGETAPE SPECIFICATIONS (units : mm)REEL DIMENSION (units : mm) REFLOW SOLDERING PROFILE for LEAD-FREE SMD PROCESSNotes:1. Don't cause stress to the LEDs while it is exposed to high temperature.2. The maximum number of reflow soldering passes is 2 times.3. Reflow soldering is recommended. Other soldering methods are not recommended as they mightcause damage to the product.PACKING & LABEL SPECIFICATIONSPRECAUTIONARY NOTES1. The information included in this document reflects representative usage scenarios and is intended for technical reference only.2. The part number, type, and specifications mentioned in this document are subject to future change and improvement without notice. Before production usage customer should refer tothe latest datasheet for the updated specifications.3. When using the products referenced in this document, please make sure the product is being operated within the environmental and electrical limits specified in the datasheet. Ifcustomer usage exceeds the specified limits, Kingbright will not be responsible for any subsequent issues.4. The information in this document applies to typical usage in consumer electronics applications. If customer's application has special reliability requirements or have life-threateningliabilities, such as automotive or medical usage, please consult with Kingbright representative for further assistance.5. The contents and information of this document may not be reproduced or re-transmitted without permission by Kingbright.6. All design applications should refer to Kingbright application notes available at /application_notes。
ESD 防静电手册20.20标准
深圳電子有限公司SHEN ZHEN POWER E LECTRONIC C O. , LtdESD防靜電手冊手冊編號: ESD-001手冊版本:發行日期: 2014年10月06日持有人:總頁數: 28頁(含此頁)擬定: 日期:審核: 日期:批准: 日期:目錄目的規定ESD 防靜電控制技術規範,為產品在元器件進料、製造、貯存、包裝等各個環節提供明確可靠的ESD 技術支援,從整體上提高公司靜電防護和控制水準,提高客戶的滿意度。
範圍本規範適用於公司內部靜電防護工程的設計、使用、管理、維護和檢測。
同時,此標準也適用於公司的電子設備的最終用戶的靜電放電控制。
公司ESD組織結構和職責任命書本公司依據ESD :2007防靜電管理體系要求建立的,為確保公司防靜電管理體系有效地建立、健全、運行和保持,特任命先生為ESD總負責人,全面負責ESD體系的建立、實施、保持、改進,並負責與ESD體系有關的內外部各方的聯繫協調工作。
執行董事:先生2014年09月12日文件編號:ESD-001手冊版本﹕章節:文件名稱:ESD防靜電手冊章節版本﹕頁數:4 OF 28ESD總負責人確保職責和許可權被明確定義並得到充分溝通,以保證公司ESD體系有效運行。
ESD 小組成員:制定ESD程式檔、檢測標準、和檢測專案和檢測頻率。
建立ESD培訓制度,包括每年的週期性培訓。
制定ESD稽核專案、稽核頻率並指定稽核人員。
抽樣檢查公司ESD日常執行情況。
ESD相關的計量儀器定期校驗。
ESD基礎設施的建立。
各靜電防護區域靜電防護線網的維護和檢測。
採購部:按要求購置防靜電物品。
需要時取得防靜電物品的防靜電證書。
生產部:執行防靜電措施。
部門防靜電知識的宣導與培訓。
部門防靜電專案的檢查。
PE部:負責對SMT車間的靜電裝置、接地裝置防靜電專案的檢查。
負責對各種感元件識別要求標準並通知相關部門;負責對防靜電區域儀器監管部門培訓靜電知識;ESD概要本文主要從靜電控制的五個方面(即人員、設備、物料、方法和環境)來論述ESD 規範,貫穿了公司產品設計、製造、貯存、包裝等各個環節防靜電控制,詳細介紹了防靜電設施的技術要求、檢測方法和作業指導等內容。
防静电手册A版
辉烨通讯技术有限公司防静电手册A版受控状态:__________A版_______发放编号:__________ESD-M_____深圳市辉烨通讯技术有限公司2012.10.16 作成,2012-11-1生效作 成会 签 栏 审 核年 月 日 年 月 日李小昀2012年10月16日年 月 日 年 月 日 年 月 日年 月 日 审 核年 月 日 年 月 日 年 月 日 年 月 日 年 月 日 年 月 日 批 准年 月 日 年 月 日 年 月 日年 月 日修 改 履 历修改 日期修改 页次 修改 章节 修改 状态 修改内容摘要 修改申请号填写人 2012-10-16全文 全文 A 、0初次作成李小昀编号 D/ESD-M最短保存期限:至文件作废为止文件批准、修改登记表文件文件名称防静电手册发放----------防静电手册目录----------录-●1防静电方针:辉烨通讯技术有限公司防静电手册防静电方针防静电方针是本公司的防静电管理的纲领性文件,是公司在防静电方面追求的目标,是公司对工作人员和顾客作出的承诺。
保障人员安全,做好静电防护,减少静电伤害,消除品质隐患!2 措施2.1 按照ANSI/ESD-S20.20 (2007)建立文件化的ESD管理体系,加以实施和保持,并持续改进。
2.2对各级人员进行防静电知识培训。
2.3合理配置必要的静电防护装备,保护人员和产品安全。
2.4对全过程进行防护,防止静电敏感产品受到静电损害。
2.5制定可行的防静电管理方案并遵照执行。
2.6定期对静电管理体系进行审核。
总经理:日期:辉烨通讯技术有限公司防静电手册总要求1 2 3 方针按照ANSI/ESD-S20.20 (2007)建立文件化的ESD管理体系,加以实施和保持,并持续改进。
确保作业人员安全、确保ESD敏感产品全过程受到防护,降低非正常损耗,减少不良质量成本,减少潜在不良,提升顾客满意度。
适用范围适用于公司所有的ESD敏感产品的采购、进货、贮存、生产、检验、包装、交付的全过程。
世界晶体管手册
2SC2206松下501002202SC2643东芝0032SC2952日电30802002SC3268东芝25002SC3704松下501503002SC4044S罗姆000.52SC4264日立20002SC4571日电μA)000.12SC4866三洋μA)0012SC5050日立μA)00102SC941TM东芝μA)000.1Cob(pF) Veb=4V, Ic=0Vebo(V)00Vce=10V, Ic=ft(MHz) Veb=4V, Ic=0Vebo(V)00Vce=10V, Ic=ft(MHz) Vcb=25V, Ie=Vebo(V)00.5Veb=3V, Ic=0hfeVeb=10V, Ie=Vebo(V)0300Vce=5V, Ic=1hfe比* Veb=2V, Ic=0Vebo(V)80200Vce=10V, Ic=hfe比*ft(MHz) Vcb=-10V, Ie=Vebo(V)0500Vce=-10V, Ic=Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vce=10V, Ic=Vebo(V)5500Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)5500Vce=10V, Ic=Cre(pF) Vcb=-12V Vebo(V)250560Vce=-2V, Ic=-ft(MHz) Vce=10V, Ic=Vebo(V)10Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 1.10Vce=10V, Ic=Cob(pF) Vce=6V, Ic=1Vebo(V)5500Vce=6V, Ic=1Cre(pF) Veb=2V, Ic=0Vebo(V)0300Vce=5V, Ic=1hfe比* Veb=2V, Ic=0Vebo(V)0300Vce=5V, Ic=1hfe比* Veb=2V, Ic=0Vebo(V)80200Vce=10V, Ic=hfe比* Veb=2V, Ic=0Vebo(V)80200Vce=10V, Ic=hfe比* Vcb=30V, Ie=Vebo(V)0100Veb=4V, Ic=0hfeVcb=25V, Ie=Vebo(V)01Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)01Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)0100Veb=2.5V, Ic=hfeVcb=15V, Ie=Vebo(V)0200Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)0400Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)0400Veb=2V, Ic=0hfeVcb=30V, Ie=Vebo(V)0100Veb=4V, Ic=0hfeVcb=25V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVce=10V, Ic=Vebo(V) 2.20Vce=10V, Ic=Cob(pF) Vcb=15V, Ie=Vebo(V)020Veb=3V, Ic=0hfeVcb=10V, Ie=Vebo(V)030Veb=3V, Ic=0hfeVcb=10V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=40V, Ie=Vebo(V)0200Vce=5V, Ic=0ft(MHz) Vcb=35V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)50180Vce=10V, Ic=IMD(dB) Vcb=25V, Ie=Vebo(V)04Veb=2V, Ic=0hfeVce=5V, Ic=5Vebo(V)1000Vce=5V, Ic=0Cob(pF) Vcb=25V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVcb=35V, Ie=Vebo(V)01Veb=3V, Ic=0hfeVcb=35V, Ie=Vebo(V)02Veb=3V, Ic=0hfeVce=10V, Ic=Vebo(V)30Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cob(pF) Vce=8V, Ic=1Vebo(V)60Vce=8V, Ic=1Cob(pF) Vcb=30V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVce=20V, Ib=Vebo(V)50100Vcb=10V, Ie=Vce(sat) Vcb=10V, Ie=Vebo(V)3000Ie=-1mA, f=20Vce(sat)ft(MHz) Vcb=20V, Ie=Ic(A)60200Vce=7V, Ic=0Cob(pF) Vcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=5V, Ic=1Vebo(V)0500Vcb=12V, Ie=PG(dB) Vcb=10V, Ie=Vebo(V)0220Vcb=10V, Ie=ft(MHz) Vcb=40V, Ie=Vebo(V)0320Vce=5V, Ic=5ft(MHz) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=10V, Ie=Vebo(V)100200Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)00Vce=3V, Ic=8ft(MHz) Vcb=10V, Ic=Vebo(V)6500Vce=10V, Ic=Cre(pF) Vcb=15V, Ie=Vebo(V)00Vce=3V, Ic=2ft(MHz) Vce=10V, Ic=Vebo(V) 4.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)8500Vce=10V, Ie=Cre(pF)Cob(pF) Vcb=10V, Ie=Vebo(V) 1.1 1.4Ie=-3mA, f=20Vce=8V, Ic=2Vebo(V)80Vce=8V, Ic=2Cob(pF) Vce=20V, Ib=Vebo(V)0260Vcb=6V, Ie=-1ft(MHz) Vce=5V, Ic=1Vebo(V)2000Vce=5V, Ic=1Cob(pF) Vcb=6V, Ie=-1Cre(pF) Vebo(V)6500Ie=-1mA, f=10Vcb=20V, Ie=Vebo(V)00.5Veb=2V, Ic=0hfeVcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz) Vcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vce=10V, Ic=Vebo(V)9000Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)5500Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 2.20Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)9000Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)00Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)00Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)20Vce=10V, Ic=Cob(pF) Vcb=10V, Ie=Vebo(V) 1.2 1.6Ie=-15mA, f=2Cre(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)40Vce=10V, Ic=Cob(pF) Vce=5V, Ic=1Vebo(V)450600Vcb=28V, Ie=PG(dB) Vce=10V, Ic=Vebo(V)9000Vce=10V, Ic=Cc.rbb' Vcb=15V, Ie=Vebo(V)0200Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)01000Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)02Veb=3V, Ic=0hfeVcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=10V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Veb=1V, Ic=0Vebo(V)150300Vce=8V, Ic=7ft(GHz) Veb=2V, Ie=0Vebo(V)60200Vce=10V, Ic=Cob(pF) Vcb=35V, Ie=Vebo(V)04Veb=3V, Ic=0hfeVce=12V, Ic=Vebo(V)2300Vce=12V, Ic=Cob(pF) Vce=6V, Ic=1Vebo(V)9400Vce=6V, Ic=5Cob(pF) Vcb=25V, Ie=Vebo(V)01Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)02Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)03Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0hfeCre(pF) Vcb=10V, Ie=Vebo(V) 1.2 1.6Ie=-15mA, f=2Vcb=15V, Ie=Vebo(V)00Vcb=5V, Ic=1Cob(pF) Vcb=15V, Ie=Vebo(V)00Vcb=5V, Ic=1Cob(pF) Vcb=15V, Ie=Vebo(V)00Vcb=5V, Ic=5Cob(pF) Vcb=15V, Ie=Vebo(V)800Vce=5V, Ic=1Cob(pF) Vcb=15V, Ie=Vebo(V)00Vce=5V, Ic=1Cob(pF)Vcb=15V, Ie=Vebo(V)00Vce=5V, Ic=3Cob(pF)Vce=5V, Ic=5Vebo(V)40Vce=10V, Ic=Cob(pF)Cre(pF) Vcb=10V, Ie=Vebo(V)2300Ie=-1mA, f=20Vce=5V, Ic=1Vebo(V)3000Vcb=50V, Ie=PG(dB) Vce=6V, Ic=1Vebo(V)5500Vce=6V, Ic=1Cre(pF) Vcb=35V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz) Vcb=35V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz) Vce=8V, Ic=4Vebo(V) 5.50Ic=40mA, f=8Cob(pF) Vce=10V, Ic=Vebo(V) 4.50Ie=-20mA, f=8Cob(pF) Vcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)03Veb=3V, Ic=0hfeVce=6V, Ic=1Vebo(V)5500Vce=6V, Ic=1Cre(pF) Vcb=35V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz) Vcb=35V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz)ft(MHz) Vcb=30V, Ie=Vebo(V)0240Vce=12.5V, IcVcb=30V, Ie=Vebo(V)0300Vce=6V, Ic=1ft(MHz) Vce=4V, Ic=2Vebo(V)00Vce=4V, Ic=2Cre(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)10Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)10Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 1.20Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 2.20Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)8500Ic=10V, Ie=-5Cre(pF) Vce=10V, Ic=Vebo(V) 1.10Vce=10V, Ie=Cob(pF) Vce=10V, Ic=Vebo(V)10Vce=10V,Ie=-Cob(pF) Vce=10V, Ic=Vebo(V)20Vce=10V, Ie=Cob(pF) Vcb=20V, Ie=Ic(A)00.1Veb=2V, Ic=0hfeVce=6V, Ic=1Vebo(V)3200Vce=6V, Ic=1Cob(pF)Cre(pF) Vcb=10V, Ie=Vebo(V)2300Ie=-1mA, f=20Vce=5V, Ic=1Vebo(V)0320Vcb=12V, Ie=Vce=5V, Ic=5Vebo(V)110150Vcb=12V, Ie=Cob(pF) Vce=6V, Ic=1Vebo(V)6000Vce=6V, Ie=-1Cob(pF) Vce=6V, Ic=1Vebo(V)2500Vce=6V, Ie=-1Vcb=25V, Ie=Vebo(V)0200Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0400Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)01Veb=3V, Ic=0hfeVeb=2V, Ic=0Vebo(V)150300Vce=8V, Ic=2ft(GHz) Veb=2V, Ic=0Ic(A)60250Vce=10V, Ic=ft(GHz) Vce=6V, Ic=1Vebo(V)3200Vce=6V, Ic=1Cre(pF) Vce=6V, Ic=1Vebo(V)3200Vce=6V, Ic=1Cre(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF)ft(GHz) Vcb=20V, Ie=Vebo(V)50Vce=13.5V, IcVcb=5V, Ic=1Vebo(V)7000Vcb=12V, Ie=PG(dB) Vcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)03Veb=3V, Ic=0hfeVcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)02Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)03Veb=2V, Ic=0hfeVcb=15V, Ie=Ic(mA)0200Vce=8V, Ic=1ft(GHz) Vcb=15V, Ie=Ic(mA)0200Vce=8V, Ic=5ft(GHz) Vcb=15V, Ie=Ic(mA)0200Vce=8V, Ic=1ft(GHz) Vcb=15V, le=Ic(mA)0200Vce=8V, Ic=2ft(GHz) Vce=10V, Ic=Vebo(V)|S21e|100Ic=60mA, f=5Cob(pF)ft(GHz) Vcb=30V,Ie=0Ic(A)60200Vce=10V, Ic=Cob(pF) Vce=6V, Ic=1Vebo(V)3500Vce=6V, Ic=1Cre(pF) Vce=6V, Ic=1Vebo(V)3500Vce=6V, Ic=1Cre(pF) Vce=6V, Ic=1Vebo(V)7500Vce=6V, Ic=1Cre(pF) Vce=6V, Ic=1Vebo(V)3200Vce=6V, Ic=1Cre(pF) Vcb=10V, Ie=Vebo(V)0500Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)00Vce=5V, Ic=0Cob(pF) Vce=5V, Ic=1Vebo(V) 6.50Vce=5V, Ic=1Cob(pF) Vce=4V, Ic=5Vebo(V) 1.450Vce=4V, Ic=5Cob(pF) Vcb=10V, Ie=Vebo(V)0200Veb=2V, Ic=0hfeVcb=10V, Ie=Vebo(V)0300Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)0300Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)03Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=10V, Ie=Vebo(V) 1.1 1.4Ie=-3mA,f=20Cob(pF) Vcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Ic(mA)0200Vce=8V, Ic=5ft(GHz) Vcb=15V, Ie=Ic(mA)0200Vce=8V, Ic=1ft(GHz) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)40Vce=10V, Ic=Cob(pF) Vcb=15V, Ie=Vebo(V)0300Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0hfeVcb=10V, Ie=Vebo(V)0300Veb=2V, Ic=0hfeVcb=10V, Ie=Vebo(V)0500Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)05Veb=2V, Ic=0hfeVce=10V, Ic=Vebo(V) 4.50Ic=10mA, f=8Cob(pF) Vce=10V,Ic=5Vebo(V) 2.40Vce=10V, Ic=Cre(pF) Vcb=15V, Ie=Vebo(V)150320Vce=3V, Ic=8ft(GHz) Vce=10V, Ic=Vebo(V)6500Vce=10V, Ic=Cre(pF) Vcb=25V, Ie=Vebo(V)150300Vce=10V,Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)100200Vce=3V,Ic=8mft(GHz) Vcb=30V, Ie=Vebo(V)70200Vce=10V, Ic=ft(MHz) Vce=5V, Ic=2Vebo(V) 4.50Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V) 4.50Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V) 4.50Vce=2V, Ic=2Cob(pF)Cob(pF) Vce=4V, Ic=5Vebo(V) 1.9 2.5Ie=-5mA, f=20Vcb=30V, Ie=Vebo(V)50150Vce=12V, Ic=PG(dB) Vcb=25V, Ie=Vebo(V)150300Vce=10V, Ic=ft(GHz) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vce=6V, Ic=1Vebo(V)7500Vce=6V, Ic=4Cre(pF) Vce=5V, Ic=5Vebo(V)0330Vcb=12V, Ie=Vcb=30V, Ie=Ic(A)60120Vce=10V, Ic=Cre(pF) Vcb=30V, Ie=Ic(A)60120Vce=10V, Ic=Cre(pF) Vcb=15V, Ie=Vebo(V)05Veb=2V, Ic=0hfeVcb=25V, Ie=Vebo(V)04Veb=2V, Ic=0hfeVce=10V, Ic=Ic(mA)50Vce=10V, Ic=Cob(pF)Cre(pF) Vce=10V, Ie=Vebo(V)2500Ie=-1mA, f=20Cre(pF) Vce=10V, Ic=Vebo(V)3000Ie=-1mA, f=20Cre(pF) Vebo(V)6500Ie=-1mA, f=20Vcb=6V, Ie=-1Vebo(V) 4.40Vce=5V, Ic=5Cob(pF) Vce=5V,Ic=50Vebo(V) 4.50Vce=5V, Ic=2Cob(pF) Vce=5V,Ic=20Cre(pF) Vcb=10V, Ie=Vebo(V) 1.2 1.6Ie=-15mA, f=2Vce=10V, Ic=Vebo(V) 6.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 6.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)5500Vce=10V, Ic=Cre(pF) Vcb=10V, Ie=Vebo(V)0300Veb=2V, Ic=0hfeVcb=18V, Ie=Vebo(V)0320Vce=12V,Ic=2ft(MHz) Vce=6V, Ic=1Vebo(V)9400Vce=6V, Ic=5Cob(pF) Vcb=10V, Ie=Vebo(V)0200Veb=2V, Ic=0hfeVcb=20V, Ie=Ic(A)0200Vce=10V, Ic=Cob(pF) Vcb=18V, Ie=Vebo(V)0500Vce=12V, Ic=ft(MHz) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cob(pF) Vce=4V, Ic=2Vebo(V)00Vce=4V, Ic=2Cre(pF) Vce=12V, Ic=Vebo(V)2300Vce=12V, Ic=Cob(pF) Veb=2V, Ic=0Vebo(V)60200Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF) Vce=5V, Ic=2Vebo(V) 4.50Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V)60Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V)60Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V)60Vce=5V, Ic=2Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)20Vce=10V, Ie=Cre(pF) Vce=10V, Ic=Vebo(V)20Ic=10V, Ie=-5Cre(pF) Vcb=10V, Ie=Vebo(V)0130Vce=10V, Ic=ft(GHz) Vcb=10V, Ie=Vebo(V)0300Vce=10V, Ic=ft(GHz) Vcb=10V, Ie=Vebo(V)100250Vce=8V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0250Vce=8V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)100250Vce=6V, Ic=1ft(GHz) Vce=6V, Ic=1Vebo(V)100Vce=6V, Ic=1Cre(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cre(pF) Vce=8V, Ic=2Vebo(V)80Vce=8V, Ic=2Cre(pF) Vce=10V, Ic=Vebo(V) 6.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Ic(mA) 6.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF) Vcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=10V, Ie=Vebo(V)0200Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)0300Veb=2V, Ic=0hfeVce=5V, Ic=5Vebo(V) 1.20Vce=5V, Ic=1Cob(pF) Vcb=30V, Ie=Ic(A)60100Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60100Vce=10V, Ic=Cob(pF) Vce=1V, Ic=2μAVebo(V)40Vce=1V, Ic=1|S21e|*Vce=8V, Ic=2Vebo(V)60Ic=20mA, f=8Cob(pF)Cre(pF) Vce=10V, Ic=Vebo(V) 2.20Vce=10V,Ic=5Vce=10V, Ic=Vebo(V)30Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)30Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)0.8 1.1Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 2.90Vce=10V, Ic=Cob(pF) Vcb=25V Vebo(V)0270Vce=10V,Ic=4ft(GHz) Vcb=25V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)05Veb=2V, Ic=0hfeVeb=1V, Ic=0Vebo(V)0250Vce=10V, Ic=hfe比* Vcb=35V,Ie=0Vebo(V)0240Vce=12V, Ic=ft(MHz) Veb=1V, Ic=0Vebo(V)100250Vce=8V, Ic=2hfe比* Vcb=30V, Ie=Ic(A)60100Vce=10V, Ic=Cob(pF) Vcb=15V, Ie=Ic(A)60200Vce=7V, Ic=0Cob(pF) Vcb=15V, Ie=Ic(A)60200Vce=7V, Ic=0Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 1.10Vce=10V, Ic=Crb(pF) Vce=8V, Ic=2Vebo(V)60Ic=20mA, f=8Cob(pF) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V Vebo(V)0270Vce=10V, Ic=ft(GHz)Cob(pF) Vce=12.5V,Ic Vebo(V)00Vce=12.5V, IcVce=10V, Ic=Vebo(V)40Vce=10V, Ie=Cob(pF) Vcb=30V, Ie=Vebo(V)100200Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 3.80Vce=10V, Ic=Cob(pF) Vce=12.5V, IcVebo(V)00Vce=12.5V,Ic Cob(pF) Vce=8V, Ic=2Vebo(V)8.50Ic=20mA, f=1Cob(pF) Vcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0hfeVce=10V, Ic=Vebo(V)01Vce=10V,Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0220Vcb=10V, Ie=ft(MHz)Cre(pF) Vebo(V)6500Ie=-1mA, f=20Vcb=6V, Ie=-1Vcb=10V, Ie=Vebo(V)0 1.6Ie=-15mA, f=2Cre(pF)Cob(pF) Vcb=10V, Idd Vebo(V) 1.1 1.4Ie=-3mA, f=20Vce=10V, Ic=Vebo(V) 4.50Ie=-10mA,f=8Cob(pF)Cob(pF) Vce=4V, Ic=5Vebo(V) 1.9 2.5Ie=-5mA, f=20Vce=10V, Ic=Vebo(V)2300Ie=1mA, f=20Cre(pF) Vce=8V, Ic=2Vebo(V)60Ic=20mA, f=8Cob(pF) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=24V Vebo(V)0180Vce=6V,Ic=2mft(MHz) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0180Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz)Vcb=15V Vebo(V)0270Vce=10V, Ic=ft(GHz)ft(GHz)Cob(pF) Vce=3.4V, Ic=Vebo(V) 1.50Ic=1.8mA, f=8Vce=10V, Ic=Vebo(V)01Vce=10V, Ic=ft(GHz) Vce=10V, Ic=Vebo(V)01Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vce=10V, Ic=Vebo(V)60Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 6.50Vce=10V, Ic=Cre(pF) Vce=8V, Ic=2Vebo(V)90Vce=8V, Ic=2Cre(pF) Vce=6V, Ic=1Vebo(V)100Vce=6V, Ic=1Cre(pF) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=25V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vce=5V, Ic=2Vebo(V)60Vce=5V, Ic=2Cob(pF) Vcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz) Vcb=15V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=30V, Ie=Vebo(V)90180Vce=6V, Ic=1ft(MHz) Vcb=50V, Ie=Vebo(V)90180Vce=6V, Ic=1ft(MHz) Vcb=20V, Ie=Vebo(V)0220Vce=3V, Ic=5ft(GHz) Vcb=25V, Ie=Vebo(V)100240Vce=5V, Ic=2ft(GHz) Vcb=25V,Ie=0Vebo(V)100200Vce=3V, Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)100180Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Veb=1V, Ic=0Vebo(V)100250Vce=1V, Ic=2μAft(GHz) Vce=5V, Ic=5Vebo(V) 2.40Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=5Vebo(V) 3.80Vce=5V, Ic=2Cob(pF) Vce=3V, Ic=1Vebo(V)8500Vce=3V, Ic=1Crb(pF) Vce=6V, Ic=1Vebo(V)5500Vce=6V, Ic=1Cre(pF) Veb=2V, Ic=0Vebo(V)0200Vce=3V,Ic=20ft(GHz) Veb=1V, Ic=0Vebo(V)110250Vce=3V, Ic=7ft(GHz) Veb=1V, Ic=0Vebo(V)0240Vce=3V, Ic=7ft(GHz) Veb=1V, Ic=0Vebo(V)100250Vce=3V, Ic=5ft(GHz) Vce=5V, Ic=2Vebo(V)10Vce=5V, Ic=2Cob(pF) Vce=10V, Ic=Vebo(V) 1.3 1.9Ie=-15mA, f=2Cob(pF) Vce=4V, Ic=5Vebo(V)20Ie=-5mA, f=20Cob(pF) Vcb=10V, Ie=Vebo(V)0500Veb=2V, Ic=0hfeVce=3V, Ic=1Vebo(V)8500Vce=3V, Ic=1Crb(pF) Vce=10V, Ic=Vebo(V) 2.40Vce=10V, Ic=Cre(pF) Vcb=10V, Ie=Vebo(V)150320Vce=3V, Ic=8ft(GHz) Vcb=10V, Ie=Vebo(V)0130Vce=10V, Ic=ft(GHz) Vcb=10V, Ie=Vebo(V)0300Vce=10V, Ic=ft(GHz) Vce=10V, Ic=Vebo(V)6500Vce=10V, Ic=Cre(pF) Vcb=25V, Ie=Vebo(V)150300Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)100200Vce=3V, Ic=8ft(GHz) Vcb=20V, Ie=Vebo(V)100250Vce=10V, Ic=ft(GHz) Vcb=30V, Ie=Vebo(V)70200Vce=10V, Ic=ft(MHz) Vcb=20V, Ie=Vebo(V)100250Vce=10V, Ic=ft(GHz) Vcb=25V, Ie=Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vce=5V, Ic=2Vebo(V)10Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=5Vebo(V) 3.80Vce=5V, Ic=5Cob(pF) Vce=5V, Ic=5Vebo(V) 2.40Vce=5V, Ic=2Cob(pF) Vce=10V, Ic=Vebo(V) 1.80Vce=10V, Ic=Cob(pF) Vce=4V, Ic=2Vebo(V)10Vce=4V, Ic=2Cre(pF)Vce=10V, Ic=Vebo(V)00Vce=10V, Ic=Cob(pF)Cre(pF) Vcb=6V, Ie=-1Vebo(V)6500Vcb=6V, Ie=-1Vcb=20V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Vcb=20V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Vcb=40V, Ie=Vebo(V)0320Vce=5V, Ic=5ft(MHz) Vce=5V, Ic=5Vebo(V) 2.50Vce=5V, Ic=5Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF) Vce=8V, Ic=2Vebo(V)90Vce=8V, Ic=2Cob(pF) Vce=8V, Ic=2Vebo(V)100Vce=8V, Ic=2Cob(pF) Vce=8V, Ic=2Vebo(V)90Vce=8V, Ic=2Cob(pF) Vce=8V, Ic=2Vebo(V)100Vce=8V, Ic=2Cob(pF) Vce=8V, Ic=2Vebo(V)100Vce=8V, Ic=2Cob(pF) Vce=8V, Ic=2Vebo(V)100Vce=8V, Ic=2Cob(pF) Vce=6V, Ic=7Vebo(V)100Vce=6V, Ic=7Cob(pF) Vce=6V, Ic=7Vebo(V)100Vce=6V, Ic=7Cob(pF) Vce=6V, Ic=7Vebo(V)100Vce=6V, Ic=7Cob(pF) Vce=6V, Ic=7Vebo(V)100Vce=6V, Ic=7Cob(pF) Vcb=15V, Ie=Vebo(V)0200Vce=3V, Ic=3ft(GHz) Vcb=15V, Ie=Vebo(V)0200Vce=3V, Ic=1ft(GHz) Vce=10V, Ic=Vebo(V)10Vce=10V, Ic=Cob(pF) Vce=5V, Ic=1Vebo(V) 6.50Vce=5V, Ic=1Cob(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF) Vcb=10V, Ie=Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=18V, Ie=Vebo(V)0270Vce=10V, Ic=ft(MHz) Vcb=15V, Ie=Vebo(V)0200Vce=3V, Ic=3ft(GHz) Vcb=15V, Ie=Vebo(V)0200Vce=3V, Ic=1ft(GHz) Vcb=16V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Vcb=12V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Vcb=12V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Vce=1V, Ic=1Vebo(V)40Ic=1mA, f=80Cob(pF)Cre(pF) Vcb=10V, Ie=Vebo(V)5000Ie=-10mA, f=2Vce=5V, Ic=2Vebo(V)60Vce=5V, Ic=2Cob(pF) Vcb=18V, Ie=Vebo(V)0270Vce=10V, Ic=ft(MHz) Vcb=18V, Ie=Vebo(V)0320Vce=10V, Ic=ft(MHz) Vcb=10V, Ie=Vebo(V)5000Ie=-10mA, f=2Cre(pF) Vcb=10V, Ie=Vebo(V)00Vce=10V, Ic=ft(GHz) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF)Cre(pF) Vcb=10V, Ie=Vebo(V)5000Ie=-10mA, f=2Vcb=20V, Ie=Vebo(V)0200Vce=5V, Ic=5hfe2Vce=8V, Ic=1Vebo(V)70Ic=10mA, f=1Cob(pF) Vce=8V, Ic=2Vebo(V)80Ic=20mA, f=8Cob(pF) Vcb=25V, Ie=Vebo(V)50180Vce=5V, Ic=1PG(dB) Vcb=25V, Ie=Vebo(V)50180Vce=5V, Ic=5PG(dB) Vcb=25V, Ie=Vebo(V)50180Vce=5V, Ic=6PG(dB) Vcb=15V, Ie=Vebo(V)150320Vce=3V, Ic=8ft(GHz) Vcb=20V, Ie=Vebo(V)0200Vce=10V, Ic=|S21e|dB Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz)Cob(pF) Vce=12V, Ic=Vebo(V)2300Vce=12V,Ic=2Vce=5V, Ic=1Vebo(V)3000Ie=-10mA, f=2ft2(MHz) Vcb=15V, Ie=Vebo(V)100200Vce=5V, Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)100200Vce=5V, Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)100200Vce=5V, Ic=5ft(GHz)Vcb=15V, Ie=Vebo(V)100200Vce=5V, Ic=5ft(GHz)Cob(pF) Vce=12V, Ic=Vebo(V)2300Vce=12V,Ic=2Vce=12V, Ic=Vebo(V)2300Vce=12V, Ic=Cob(pF) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)05000Veb=2V, Ic=0hfeVcb=10V, Ie=Vebo(V)0220Vce=10V, Ie=ft(MHz) Ie=10μA, Ic=0Vebo(V)0260Vcb=6V, Ie=-1ft(MHz) Vcb=15V, Ie=Vebo(V)0320Vce=10V, Ic=ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vce=10V, Ic=Vebo(V)2300Vcb=10V, Ie=Cre(pF) Vcb=10V, Ie=Vebo(V)120250Vce=8V, Ic=1ft(GHz) Vbe=2V, Ic=0Vebo(V)0350Vce=10V, Ic=ft(GHz) Vbe=2V, Ic=0Vebo(V)0200Vce=10V, Ic=ft(GHz) Vcb=12V, Ie=Vebo(V)2500Vce=5V, Ic=5Vce(sat) Vcb=25V, Ie=Vebo(V)0200Vce=5V, Ic=5ft(GHz) Vcb=20V, Ie=Vebo(V)0250Vce=5V, Ic=5ft(GHz) Vcb=10V Vebo(V)0180Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Veb=4V, Ic=0Vebo(V)0320Vce=5V, Ic=5Cob(pF) Vcb=60V, Ie=Vebo(V)0700Vce=6V, Ib=2ft(MHz) Vcb=30V Vebo(V)80180Vce=10V, Ic=ft(MHz) Vcb=30V Vebo(V)82180Vce=10V, Ic=ft(MHz) Vcb=10V Vebo(V)0560Vce=5V, Ic=5ft(MHz) Veb=2V, Ic=0Vebo(V)0200Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Veb=1V, Ic=0Vebo(V)120300Vce=8V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=10V, Ie=Vebo(V)150300Vce=8V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0400Vce=4V, Ic=5ft(GHz) Vcb=80V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Veb=2V, Ic=0Vebo(V)150300Vce=8V, Ic=2ft(GHz) Vcb=25V, Ie=Vebo(V)50180Vce=5V, Ic=1Vbe=1V, Ic=0Vebo(V)0250Vce=10V, Ic=ft(GHz) Vbe=1V, Ic=0Vebo(V)0250Vce=8V, Ic=2ft(GHz) Vbe=1V, Ic=0Vebo(V)0250Vce=6V, Ic=7ft(GHz) Vbe=1V, Ic=0Vebo(V)0250Vce=10V, Ic=ft(GHz) Vbe=1V, Ic=0Vebo(V)0250Vce=8V, Ic=2ft(GHz) Vbe=1V, Ic=0Vebo(V)0250Vce=6V, Ic=7ft(GHz) Vce=1V, Ic=1Vebo(V)50Vce=1V, Ic=1Cob(pF) Vce=1V, Ic=1Vebo(V)50Vce=1V, Ic=1Cob(pF) Vce=1V, Ic=1Vebo(V)50Vce=1V, Ic=1Cob(pF) Vcb=10V, Ie=Vebo(V)0270Vce=5V,Ic=20ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=5ft(GHz)ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V,Ic=5mVcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=5ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz)Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz)ft(GHz) Veb=2V, Ic=0Vebo(V)0150Vce=5V,Ic=5mft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=20V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=20V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Veb=2V, Ic=0Vebo(V)0200Vce=10V, Ic=Cob(pF) Vcb=40V, Ie=Vebo(V)0200Vce=6V, Ic=1ft(MHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=1ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=1ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=1ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=1ft(GHz) Vcb=8V, Rbe∞Vebo(V)250600Vce=5V, Ic=5Cob(pF) Vcb=10V, Ie=Vebo(V)250600Vce=5V, Ic=5Cob(pF) Vcb=10V, Ie=Vebo(V)250600Vce=5V, Ic=5Cob(pF) Vcb=10V, Ie=Vebo(V)250600Vce=5V, Ic=5Cob(pF) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V Vebo(V)160270Vce=2V, Ic=5ft(MHz) Vcb=12V Vebo(V)160270Vce=2V, Ic=5ft(MHz) Vcb=15V, Ie=Vebo(V)0120Vce=5V, Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)0120Vce=5V, Ic=5ft(GHz) Vcb=10V, Ie=Vebo(V)0160Vce=3V, Ic=7ft(GHz) Vcb=10V, Ie=Vebo(V)0160Vce=3V, Ic=7ft(GHz) Vcb=10V, Ie=Vebo(V)0160Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=1Cob(pF) Vcb=10V, Ie=Vebo(V)120250Vce=3V, Ic=7ft(GHz) Vcb=10V, Ie=Vebo(V)100250Vce=8V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)100250Vce=6V, Ic=1ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=1Cob(pF) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz)Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz)Vcb=25V, Ie=Vebo(V)0300Vce=6V, Ic=1ft(MHz)hfeVcb=15V, Ie=Vebo(V)0100Veb=2.5V, Ic=ft(MHz) Vcb=12V, Ie=Vebo(V)0180Vce=6V,Ic=1mVcb=15V, Ie=Vebo(V)01Veb=3V, Ic=0hfeCob(pF) Vce=6V, Ic=1Vebo(V)4700Ie=-1mA, f=10Vce=10V, Ic=Vebo(V)2300Ic=1mA, f=20Cre(pF) Vcb=15V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)50180Vce=10V, Ic=Vcb=20V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz)1503000Ie=1mA, f=20Pc(mW)200Cre(pF)0 1.201 1.5Ie=0, f=1MHz Pt(mW)300|S21e|*810Pc(mW)200Cre(pF)00.7500.950Vcb=-5V, Ie=0Pc(mW)150Cc.rbb'0110 1.1 1.7Vcb=-6V, f=1M01 1.5Ie=0, f=1MHz Pt(mW)250|s21e|*8100 2.14Ie=0, f=1MHz Pt(mW)800td(ns)0 3.5Pt(mW)200Cob(pF)0 1.1 2504000Vce=-10V, Ie=01 1.5Ie=0, f=1MHz Pt(mW)30000Pc(mW)150Cre(pF)00.600.750Vcb=-5V, Ie=01503000Ie=1mA, f=20Pc(mW)400Vce(sat)0-0.1Pc(mW)150Cc.rbb'0110 1.1 1.7Vcb=-6V, f=1M1503000Ie=2mA, f=20Pc(mW)300Cre(pF)0 1.2Pc(mW)300Cob(pF)00 02000Vce=-12V, Ic=Pc(mW)300Cob(pF)00 02000Vce=-12V, Ic=340Vce=-10V, Ic=Pt(mW)250Cob(pF)0 1.5 05000Ie=10mA, f=2Pc(W)1Cob(pF)0 2.7 1503000Ie=1mA, f=20Pc(mW)150NF(dB)0 2.80 1.53Vce=-10V, Ic=Pc(mW)250|S21e|*50 1502300Vce=-6V, Ic=-Pc(mW)150Cre(pF)0 1.1 500Vce=-5V, Ic=-Pc(W)*1ft(GHz)0 1.5Pc(mW)200Cob(pF)00.85 2004000Vce=-10V, Ie=Pc(mW)250Cre(pF)00.75 0.6 1.20Vce=-10V, Ic=1503000Vcb=-10V,Ie=Pc(mW)125NF(dB)0 2.8Pc(mW)150Cob(pF)00.85 2004000Vce=-10V, Ie=Pc(W)1Cob(pF)05 2003000Vce=-20V, Ic=Pc(mW)250Cre(pF)00.90 1.2 1.6Vcb=-10V, f=1Pc(mW)*150Cob(pF)00.85 2004000Vce=-10V, Ie=0 1.2 1.6Vcb=-10V, f=1Pc(mW)150Cre(pF)00.9Pc(mW)150Cob(pF)0 1.2 3006500Vce=-5V, Ie=105500Vce=-1V, Ic=-Pc(mW)2000000.9 1.1Ie=0, f=1MHz Pc(mW)250|S21e|*50 1503000Ie=1mA, f=20Pc(mW)400Cre(pF)0 1.2Pt(mW)200Cob(pF)0 1.9 1502500Vce=6V, Ie=-1Pc(mW)250Cob(pF)00.6 0.810Vce=6V, Ie=-6Pc(mW)400PG(dB)200 4506500Ie=-1mA, f=20Pc(mW)400PG(dB)020 0.6 1.2 1.6Ie=-15mA, f=1Pt(mW)250Cob(pF)00.6 0.810Vce=6V, Ie=-6Pc(mW)250Cob(pF)00.5 1.520Vce=6V, Ie=-60 1.1 1.5Vcb=10V, Ie=Pc(mW)250|S21e|*56 2070180Vce=15V, Ic=Pc(W)0PG(dB)9100 1.1 1.5Vcb=10V, Ie=Pc(mW)100Cre(pF)00.9Pc(mW)400NF(dB)0 2.8 1502500Ie=-1mA, f=20Pc(W)1PG(dB)220 30000Ie=-10mA, f=130000Ie=-10mA, f=1Pc(W)1PG(dB)220 1.200Vce=15V, Ie=Pt(W)*5ft2(GHz) 1.4 1.7Pc(mW)800Re(hie)*040 048Ie=-1mA, f=1M91216Ie=-30mA, f=1Pt(W)*3Cob(pF)04 2504000Vce=10V,Ie=-Pt(mW)800Cob(pF)040 1.1 1.5Vcb=10V, Ie=Pc(mW)250PG(dB)13152 2.70Vce=10V, Ic=Pt(W)3Cob(pF)01 150200Vce=10V, Ic=Pt(W)*4ft(GHz) 1.62 0.601Vce=3V, Ic=1Pt(mW)300△Vbe(V)000.601Vce=5V, Ic=3Pt(mW)400△Vbe(V)0001 1.3Ie=0, f=1MHz Pt(mW)250Cc.rbb'*0120 1.9 2.2Ie=0, f=1MHz Pt(mW)250Cc.rbb' *010Pc(W)400PG(dB)2125 360550820Ie=-5mA, f=10Pc(W)400PG(dB)2125 360550820Ie=-5mA, f=101050180Vce=10V, Ic=Pc(W)2PG(dB)100 0.801Vce=5V, Ic=1Pt(mW)300△Vbe(V)00 0.801Vce=10V, Ic=Pt(mW)300△Vbe(V)00Pc(mW)125Cob(pF)0 1.5 02500Vcb=-10V, Ie=Pc(mW)150Cob(pF)0 1.4 3005000Vce=6V, Ie=-1Pc(mW)150Cob(pF)0 1.4 3005000Vce=6V, Ie=-100.350.45Vcb=12V, Ie=Pc(mW)250PG(dB)252800.350.45Vcb=12V, Ie=Pc(mW)250PG(dB)1822Pc(mW)200Cob(pF)0 1.2 3006500Vce=-5V, Ie=1012Vcb=10V, Ie=Pc(mW)300Cc.rbb'010 012Vcb=10V, Ie=Pc(mW)300Cc.rbb'010Pc(mW)100Cc.rbb'0000.70Vce=6V, f=1M0.801Vce=5V, Ic=1Pt(mW)300△Vbe(V)00 0.801Vce=5V, Ic=1Pt(mW)300△Vbe(V)00 0.801Vce=10V, Ic=Pt(mW)300△Vbe(V)00 0.801Vce=10V, Ic=Pt(mW)300△Vbe(V)00 1050180Vce=10V, Ic=Pc(W)1PG(dB)14.50 1050180Vce=10V, Ic=Pc(W)3PG(dB) 6.70 1050180Vce=10V, Ic=Pc(W)3PG(dB)100 1050180Vce=10V, Ic=Pc(W)1PG(dB)10.70 1050180Vce=10V, Ic=Pc(W)1PG(dB)100 1050180Vce=10V, Ic=Pc(W)*15PG(dB)100 1050180Vce=10V, Ic=Pc(W)*10PG(dB)7.80 1050180Vce=10V, Ic=Pc(W)*20PG(dB) 6.70 1050180Vce=10V, Ic=Pc(W)3PG(dB) 3.70 1050180Vce=10V, Ic=Pc(W)3PG(dB) 5.40Pc(W)1PG(dB)120 1050180Vce=12V,Ic=11050180Vce=10V, Ic=Pc(W)1PG(dB)9.20 1050180Vce=10V, Ic=Pc(W)1PG(dB)100 1050180Vce=10V, Ic=Pc(W)1PG(dB)7.5000.75 1.1Ie=0, f=1MHz Pt(mW)250PG(dB)1315 1050180Vce=10V, Ic=Pc(W)0PG(dB)15.70 1050180Vce=7V, Ic=5Pc(W)0PG(dB)130 1050180Vce=7V, Ic=0Pc(W)0PG(dB)90Pc(mW)250Cob(pF)0 1.6 1503000Vce=6V, Ie=-1Pc(mW)250Cob(pF)0 1.6 1503000Vce=6V, Ie=-13005000Vce=6V, Ie=-1Pc(mW)150Cob(pF)0 1.2Pc(mW)250Cob(pF)0 1.6 1503000Vce=6V, Ie=-11503000Vce=6V, Ie=1Pc(mW)250Cob(pF)0 1.6 1001500Vce=10V, Ic=Pc(W)1Cob(pF)045 3570300Vce=10V, Ic=Pc(W)0PG(dB)130Pc(W)2PG(dB)8.80 0-300Po=15W(PEP1050180Vce=10V, Ic=Pc(W)7PG(dB)12.30 00250Vcb=12V, Ie=Pc(W)*60PG(dB)120 1050180Vce=10V, Ic=Pc(W)0PG(dB) 6.70 2050110Vce=25V, Ic=Pc(W)3PG(dB)8.20 2050110Vce=25V, Ic=Pc(W)4PG(dB)7000.550Vcb=10V, Ie=Pt(mW)*250|S21e|*7.59.300.60Vcb=10V, Ie=Pt(mW)290|S21e|*5 6.700.350Vcb=8V, Ie=0Pt(mW)*250|S21e|* 1.5 2.7 3570180Vce=10V, Ic=Pc(W)1PG(dB)13.80 000.5(V), Ic=20mA Pc(mW)600ft(MHz)30050000.10(V), Ic=10mA Pc(mW)400NF(dB)0 2.8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100
Tj initial(°C) 0 25 50 75 100 125 150 175
10 1
tp(µs) 10 100
Fig. 3: Clamping voltage versus peak pulse current (Tj initial = 25°C). Rectangular waveform tP = 2.5µs.
4/6
ESDA6V1-4F1
Connector
ESDA6V1-4F1
The ESDA6V1-4F1 array is the ideal product for use as board level protection of ESD sensitive semiconductor components. The Flip Chip package makes the ESDA6V1-4F1 device some of the smallest ESD protection devices available. It also allows design flexibility in the design of “crowded” boards where the space saving is at a premium. This enables to shorten the routing and can contribute to improved ESD performance. LAYOUT RECOMMENDATIONS
July 2002 - Ed: 2A
1/6
ESDA6V1-4F1
ABSOLUTE MAXIMUM RATINGS (Tamb = 25°C) Symbol VPP Test conditions ESD discharge - MIL STD 883E - Method 3015-6 IEC61000-4-2 air discharge IEC61000-4-2 contact discharge Peak pulse power (8/20µs) Junction temperature Storage temperature range Lead solder temperature (10 seconds duration) Operating temperature range Value ±25 ±15 ±8 150 150 -55 to +150 260 -40 to +85 Unit kV
Ppp[Tj initial]/Ppp[Tj initial=25°C] 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
1000
Fig. 2: Peak pulse power versus exponential pulse duration (Tj initial = 25°C)
COMPLIES WITH THE FOLLOWING STANDARDS: - IEC61000-4-2: Level 4 15 kV (air discharge) 8 kV (contact discharge) - MIL STD 883E-Method 3015-6: class3 (Human body model)
®
ESDA6V1-4F1
A.S.D.™
QUAD TRANSIL™ ARRAY FOR ESD PROTECTION
APPLICATIONS Where transient overvoltage protection in ESD sensitive equipment is required, such as : Computers Printers Communication systems GSM handsets and accessories Other telephone sets Set top boxes
Ipp(A) 50.0 10.0
Fig. 4: Capacitance versus reverse applied voltage (typical values).
C(pF) 250 225 200 175
F=1MHz Vosc=30mV
tp = 2.5µs
1.0
150 125
Vcl(V)
100
Slope = 1/Rd
I
VCLVBR VRM IRM IR
V
IPP
VBR Type min.
@ max.
IR
IRM @ VRM max.
Rd typ. note 1
T max note 2 10-4/°C 6
C max 0V bias pF 250
V 6V1- 4F1 6.1
V 7.2
mA 1
s s s s s s
3 A B
Z1 Z2
2
GND
1
Z3 Z4
GND
DESCRIPTION The ESDA6V1-4F1 is a 4-bit wide monolithic suppressor designed to protect against ESD components which are connected to data and transmission lines. It clamps the voltage just above the logic level supply for positive transients, and to a diode forward voltage drop below ground for negative transients. FEATURES
s s
Flip Chip (Bump side)
FUNCTIONAL DIAGRAM
A3
A2
A1
s
s
4 Unirectional transil functions Breakdown voltage: VBR = 6.1Vmin Low leakage current < 10 µA Very low PCB space consuming
20 25 30
VR(V) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.1
0
5
10
15
75 0.0
Fig. 5: Relative variation of leakage current versus junction temperature (typical values).
I
IPP
t
2µs 2.5 µs 2.5 µs duration measurement wave
As the value of the dynamic resistance remains stable for a surge duration lower than 20µs, the 2.5µs rectangular surge is well adapted. In addition both rise and fall times are optimised to avoid any parasitic phenomenon during the measurement of Rd. ESD PROTECTION WITH ESDA6V1-4F1 With the focus of lowering the operation levels, the problem of malfunction caused by the environment is critical. Electrostatic discharge (ESD) is a major cause of failure in electronic system. Transient Voltage Suppressors are an ideal choice for ESD protection and have proven capable in suppressing ESD events. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented. Surface mount TVS arrays offer the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal line to ground. As the transient rises above the operating voltage of the device, the TVS array becomes a low impedance path diverting the transient current to ground.
V CL = V BR + Rd ⋅ I PP
Where IPP is the peak current through the ESDA cell. DYNAMIC RESISTANCE MEASUREMENT The short duration of the ESD has led us to prefer a more adapted test wave, as below defined, to the classical 8/20 µs and 10/1000 µs surges
µA 10
V 5
mΩ 350
Note 1: Square pulse IPP = 15A, tp = 2.5µs Note 2: ∆VBR = αT * (Tamb - 25) * VBR(25°C)