广西数学中考复习综合专题:二次函数应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西数学中考复习综合专题:二次函数应用题
姓名:________ 班级:________ 成绩:________
一、综合题 (共30题;共372分)
1. (15分)(2020·河南模拟) 某地摊上的一种玩具,已知其进价为50元个,试销阶段发现将售价定为80元/个时,每天可销售20个,后来为了扩大销售量,适当降低了售价,销售量y(个)与降价x(元)的关系如图所示.
(1)
求销量y与降价x之间的关系式;
(2)该玩具每个降价多少元,可以恰好获得750元的利润?
(3)若要使得平均每天销售这种玩具的利润W最大,则每个玩具应该降价多少元?最大的利润W为多少元?
2. (15分)大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;
(2)如何确定销售价格才能使月利润最大?求最大月利润;
(3)为了使每月利润不少于6000元应如何控制销售价格?
3. (15分) (2019九上·西城期中) 某水果批发商销售每箱进价为40元的柑橘,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以45元的价格销售,平均每天销售105箱;每箱以50元的价格销售,平均每天销售90箱.假定每天销售量y(箱)与销售价x(元/箱)之间满足一次函数关系式.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
4. (6分) (2020九上·奉化期末) 某商店经销一种垃圾桶,已知这种垃圾桶的成本价为每个30元,市场调查发现,这种垃圾桶每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+60(30≤x≤60),设这种垃圾桶每天的销售利润为w元。
(1)求w与x之间的函数解析式;
(2)这种垃圾桶销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种垃圾桶的销售单价不高于42元,该商店销售这种垃圾桶每天要获得200元的销售利润,销售单价应定为多少元?
5. (15分) (2018九上·南京期中) 某商店将进价为10元的商品按每件15元售出,每天可售出460件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少20件.
(1)若售价提价1元,此时单件利润为多少元,销售量为多少件;
(2)应将每件售价定为多少元时,才能使每天利润为2720元?
6. (15分)(2019·平阳模拟) 雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,雾霾的主要危害可归纳为两种:一是对人体产生危害,二是对交通产生危害.雾霾天气是一种大气污染状态,成都市区冬天雾霾天气比较严重,很多家庭兴起了为家里添置“空气清洁器”的热潮,为此,我市某商场根据民众健康要,代理销售某种进价为600元/台的家用“空气清洁器”.经过市场销售后发现:在一个月内,当售价是700元/台时,可售出350台,且售价每提高10元,就会少售出5台.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;
(2)请计算当售价x(元台)定为多少时,该商场每月销售这种“空气清洁器”所获得的利润W(元)最大?最大利润是多少?
(3)若政府计划遴选部分商场,将销售“空气清洁器”纳入民生工程项目,规定:每销售一台“空气淸洁器”,财政补贴商家200元,但销售利润不能高于进价的25%,请问:该商场想获取最大利润,是否参与竞标此民生工程项目?并说明理由.
7. (10分) (2017九上·孝南期中) 某商品现在的售价为每件60元,每星期可卖出100件,市场调查反映;如调整价格,每降价1元,每星期可多卖出20件,已知商品的进价为每件30元,设每件降价x元(x为正整数),每星期的利润为y元.
(1)求y与x的函数关系式并指出自变量x的取值范围.
(2)求每星期的利润y的最大值.
(3)直接写出x在什么范围内,每星期的利润不低于5000元.
8. (15分)(2017·泰州) 怡然美食店的A,B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价
每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
9. (15分)某商品进价为每个10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,试解答下列问题:
(1)直接写出该商品销售量y(个)与售价x(元)(12≤x≤30)之间的函数关系式;
(2)为了让利给顾客,并同时获得840元的利润,售价应定为多少元?
(3)当售价定为多少元时,获得利润最大,最大利润是多少元?
10. (15分)(2020·丰南模拟) 唐山世园会期间,游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收31万元.而该游乐场开放后,从第1个月到第x个月的维修保养费用累计为y (万元),且y=ax2+bx.若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数.
(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y关于x的解析式;
(2)求纯收益g关于x的解析式;
(3)问设施开放几个月后,游乐场的纯收益达到最大?并求出最大收益.
11. (10分) (2020九上·北仑期末) 网络销售是一种重要的销售方式。
某农贸公司新开设了一家网店,销售当地农产品,其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中2<x≤10)
(1)若5<x≤10,求y与x之间的函数关系式;
(2)销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?
12. (10分)我市“佳禾”农场的十余种有机蔬菜在北京市场上颇具竞争力.某种有机蔬菜上市后,一经销商在市场价格为10元/千克时,从“佳禾”农场收购了某种有机蔬菜2000 千克存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.2元,但冷库存放这批蔬菜时每天需要支出各种费用合计148元,已知这种蔬莱在冷库中最多保存90天,同时,平均每天将会有6千克的蔬菜损坏不能出售.
(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式.
(2)经销商想获得利润7200元,需将这批蔬菜存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费
用)
(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?
13. (15分) (2017七下·姜堰期末) 已知,关于,的方程组的解满足0 ,
y0 .
(1)________, ________(用含的代数式表示);
(2)求的取值范围;
(3)若,用含有的代数式表示,并求的取值范围.
14. (10分) (2016九上·仙游期末) 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?
15. (10分) (2018九上·天台月考) 某商品的进价为每件60元,售价为每件80元,每天可卖出290件;如果每件商品的售价每上涨1元,则每天少卖10件,设每件商品的售价上涨x元(x为正整数),每天的销售利润为y元.
(1)求y关于x的关系式;
(2)每件商品的售价定为多少元时,每天的利润恰为5940元?
(3)每件商品的售价定为多少元时,每天可获得最大利润?最大利润是多少元?
16. (15分) (2016九上·罗庄期中) 如图,抛物线y=x2﹣3x+ 与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E
(1)求直线BC的解析式;
(2)当线段DE的长度最大时,求点D的坐标.
17. (15分)(2017·岳池模拟) 如图,二次函数y=ax2﹣ x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).
(1)求抛物线与直线AC的函数解析式;
(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;
(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.
18. (10分) (2019九上·蜀山月考) 庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元.
(2)若所有的T恤都能售完,求该店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;
(3)在(2)的条件下已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能获得的利润最大?
19. (10分)把y= x2的图象向上平移2个单位.
(1)求新图象的解析式、顶点坐标和对称轴;
(2)画出平移后的函数图象;
(3)求平移后的函数的最大值或最小值,并求对应的x的值.
20. (15分) (2019九上·句容期末) 为积极绘就我市“一福地、四名城”建设的宏伟蓝图,某镇大力发展旅游业,一店铺专门售卖地方特产“曲山老鹅”,以往销售数据表明,该“曲山老鹅”每天销售数量y(只)与销
售单价x(元)满足一次函数y=- x+110,每只“曲山老鹅”各项成本合计为20元/只.
(1)该店铺“曲山老鹅”销售单价x定为多少时,每天获利最大?最大利润是多少?
(2)该店店主关心教育,决定今后的一段时间从每天的销售利润中捐出200元给当地学校作为本学期优秀学生的奖励资金,为了保证该店捐款后每天剩余利润不低于4000元,试确定该“曲山老鹅”销售单价的范围.
21. (15分)(2019·平邑模拟) 传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:
y=
(1)李明第几天生产的粽子数量为280只?
(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)
22. (10分)某电子厂商设计了一款制造成本为18元新型电子厂品,投放市场进行试销.经过调查,得到每月销售量y(万件)与销售单价x(元)之间的部分数据如下:
销售单价x(元/件)…20253035…
每月销售量y(万件)…60504030…
(1)求出每月销售量y(万件)与销售单价x(元)之间的函数关系式.
(2)求出每月的利润z(万元)与销售单x(元)之间的函数关系式.
(3)根据相关部门规定,这种电子产品的销售利润率不能高于50%,而且该电子厂制造出这种产品每月的制造成本不能超过900万元.那么并求出当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?(利润=售价﹣制造成本)
23. (10分)已知二次函数的图象经过点(1,10),且当x=﹣1时,y有最小值y=﹣2,
(1)求这个函数的关系式;
(2) x取何值时,y随x的增大而减小;
(3)当﹣2<x<4时,求y的取值范围;
(4) x取何值时,y<0.
24. (10分) (2019九上·张家港期末) 小丽老师家有一片80棵桃树的桃园,现准备多种一些桃树提高桃园
产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该桃园每棵桃树产桃 (千克)与增种桃树 (棵)之间的函数关系如图所示.
(1)求与之间的函数关系式;
(2)在投入成本最低的情况下,增种桃树多少棵时,桃园的总产量可以达到6750千克?
(3)如果增种的桃树 (棵)满足: ,请你帮小丽老师家计算一下,桃园的总产量最少是多少千克,最多又是多少千克?
25. (10分) (2017八下·钦北期末) 化工材料经销公司购进一种化工原料若干千克,价格为每千克30元。
物价部门规定其销售单价不高于每千克60元,不低于每千克30元。
经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100。
在销售过程中,每天还要支付其他费用450元。
(1)求出y与x的函数关系式,并写出自变量x的取值范围。
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式。
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元。
26. (11分)(2014·台州) 某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.
(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;
(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).
①求w关于x的函数关系式;
②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?
(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.
27. (10分) (2018九上·大石桥期末) 为了落实国务院的指示精神,政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-x+60.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售的最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不能高于每千克35元,该农户想要每天获得300元的销售利润,销售价应定为每千克多少元?
28. (15分) (2019八上·金水月考) 周未,小丽骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小丽离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小丽离家时间x(h)的函数图象.
(1)小丽骑车的速度为________km/h,H点坐标为________;
(2)求小丽游玩一段时间后前往乙地的过程中y与x的函数关系;
(3)小丽从家出发多少小时后被妈妈追上?此时距家的路程多远.
29. (15分)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件)100110120130…
月销量(件)200180160140…
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:①销售该运动服每件的利润是(________)元;②月销量是(________)件;(直接写出结果)
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
30. (10分)(2018·江苏模拟) 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价元
销售量件________
销售玩具获得利润元________(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
参考答案一、综合题 (共30题;共372分)
答案:1-1、
答案:1-2、
答案:1-3、
考点:
解析:
答案:2-1、
答案:2-2、
答案:2-3、考点:
解析:
答案:3-1、
答案:3-2、
答案:3-3、考点:
解析:
答案:4-1、答案:4-2、
答案:4-3、考点:
解析:
答案:5-1、答案:5-2、
考点:
解析:
答案:6-1、答案:6-2、
答案:6-3、考点:
解析:
答案:7-1、答案:7-2、
答案:7-3、考点:
解析:
答案:8-1、答案:8-2、
考点:
解析:
答案:9-1、
答案:9-2、
答案:9-3、考点:
解析:
答案:10-1、答案:10-2、
答案:10-3、解析:
答案:11-1、
答案:11-2、考点:
解析:
答案:12-1、答案:12-2、
答案:12-3、考点:
解析:
答案:13-1、答案:13-2、
答案:13-3、考点:
解析:
答案:14-1、
答案:14-2、考点:
解析:
答案:15-1、
答案:15-2、
答案:15-3、考点:
解析:
答案:16-1、
答案:16-2、考点:
解析:
答案:17-1、
答案:17-2、
答案:17-3、考点:
解析:
答案:18-1、答案:18-2、
答案:18-3、考点:
解析:
答案:19-1、
答案:19-2、答案:19-3、考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、
答案:21-2、考点:
解析:
答案:22-1、答案:22-2、
答案:22-3、考点:
解析:
答案:23-1、
答案:23-2、
答案:23-3、
答案:23-4、考点:
解析:
答案:24-1、答案:24-2、
答案:24-3、考点:
解析:
答案:25-1、答案:25-2、
答案:25-3、考点:
解析:
答案:26-1、
答案:26-2、答案:26-3、
考点:解析:
答案:27-1、答案:27-2、
答案:27-3、考点:
解析:
答案:28-1、答案:28-2、
答案:28-3、考点:
解析:
答案:29-1、
答案:29-2、考点:
解析:
答案:30-1、答案:30-2、
答案:30-3、考点:
解析:。