1.3函数的基本性质(题目)

合集下载

高中数学1.3函数的基本性质 PPT课件 图文

高中数学1.3函数的基本性质 PPT课件 图文

f (x)
1、单调函数的图象特征; 2、函数单调性的定义; 3、证明函数单调性的步骤;
作业 1:证明函数 f(x)=x+4x在(0,1)上是减函数. 2、 证明函数f(x)=x 3 在(-∞,+∞)上是增函数.
思考:讨论函数 f(x )x22ax 3
在(-2,2)内的单调性.
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

必修3 选修2-1 数学全集
必修4 选修2-2
必修5 选修2-3
点击题目,即可下载对应的资料
高中数学 高中物理 高考专题
更多精彩资料,请下载点击下方文字/图案 更多资料
更多精彩内容,weixingongzhonghao:学霸兔
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
2. f(x)为奇函数 f(-x)=-f(x)
f(x)为偶函数 f(-x)=f(x)
定义域
x≠0
3. f(x)为奇函数,且f(x)在 x=0 处有定义 f(0)=0
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
5. 根据函数奇偶性的特征,可以简化函数图象的画法.
偶函数图象关于 y轴 对称. 奇函数图象关于 原点 对称.
例3、已知函数 y=f(x) 是偶函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
y
相等
0
x
例3、已知函数 y=f(x) 是奇函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
即f ( x 1 ) < f ( x 2 ) 所以,函数 f ( x ) = 3x+2 在 R上是单调增函数。
练习1 证明:函数 f ( x ) = x2+3 在 (0,+∞)上是单调增函数.
练习2 证明函数 y 1 在 (0,+∞)上是单调性. x
证明:设x1, x2是(0,+∞)上任意两个实数,且x1<x2,则
若函数在此区间上是增函数,则区间为单调递增区间

函数的基本性质——最大值

函数的基本性质——最大值

复习引入
问题2 函数f (x)=-x2. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.
讲授新课
函数最大值概念:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M.
例3 已知函数f(x)= x 2 2 x a ,x∈[1,+∞). x
(Ⅰ)当a= 1时,求函f(x数)的最小. 值 2
(Ⅱ)若对任意x∈[1,+∞),f (x)>0恒成立,
试求实数a的取值范围.
课堂小结
1. 最值的概念;
课堂小结
1. 最值的概念; 2. 应用图象和单调性求最值的一般步骤.
在区间[-2, 11]上递增,画出f (x)的一
个大致的图象,从图象上可以发现f(-2)
是函数f (x)的一个
.
例2 已经知函数y= 2 (x∈[2,6]), x1
求函数的最大值和最小值.
例2 已经知函数y= 2 (x∈[2,6]), x1
求函数的最大值和最小值. x
2 1
O 1 2 3 4 5 6y
3
(1)求证f (x)是R上的减函数; (2)求f (x)在[-3, 3]上的最大值和最小值.
1.3 函数的基本性质 ——最大(小)值
复习引入
问题1 函数f (x)=x2. 在(-∞, 0]上是减函数, 在[0, +∞)上是增函数. 当x≤0时,f (x)≥f (0),
x≥0时, f (x)≥f (0). 从而x∈R,都有f (x) ≥f (0). 因此x=0时,f (0)是函数值中的最小值.

1.3函数的基本性质——单调性

1.3函数的基本性质——单调性

y
y=x+1
1
y y
2 2 =-2x+2 y x 1 1 x O
-1 O
x
y y
O
1
y
y=-x2+2x
2
x
1 y x x O
观察下列函数值的变化情况
y
y x
2
x
O
y
y x
f ( x1 )
2
x1
x
O
y
y x
f ( x1 )
2
x1
x
O
y
y x
2
f ( x1 )
x1 O 0
x
y
பைடு நூலகம்
y x
1.两个定义:增函数、减函数. 2.两种方法: 判断函数单调性的方法 有图象法、定义法.
小结
利用定义确定或证明函数f(x)在给定的 区间D上的单调性的一般步骤:
1. 设:任取x1,x2∈D,且x1<x2; 2.作差:f(x1)-f(x2); 3.变形:通常是因式分解和配方; 4.定号:判断差f(x1)-f(x2)的正负; 5.结论:指出函数f(x)在给定的区间D上的 单调性.
4. 下结论 (若差<0,则为增函数; 若差>0,则为减函数).
3 例3 证明:函数f(x)= 在(0, +∞)上是 x 减函数.
3 例3 证明:函数f(x)= 在(0, +∞)上是 x 减函数. 3 变式1:f(x)= 在(-∞, 0)上是增函数 x 还是减函数?
3 例3 证明:函数f(x)= 在(0, +∞)上是 x 减函数. 3 变式1:f(x)= 在(-∞, 0)上是增函数 x 还是减函数? 3 变式2:讨论函数f(x)= 在定义域上的 x 单调性.

高一数学《函数的基本性质》知识点及对应练习(详细答案)

高一数学《函数的基本性质》知识点及对应练习(详细答案)

函数的基本性质一、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.概念重点疑点:对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。

即在直角坐标系中的图像,对于任意一条x=a(a是函数的定义域)的直线与函数y=f(x)只有一个交点;例1、下列对应关系中,x为定义域,y为值域,不是函数的是()A.y=x²+x³B.y=C.|y|=xD.y=8x解:对于|y|=x,对于任意非零x,都有两个y与x对应,所以|y|=x不是函数。

图像如下图,x=2的直线与|y|=x的图像有两个交点。

故答案选C例2、下列图象中表示函数图象的是()解析:对于任意x=a的直线,只有C选项的图形与x=a的直线只有一个交点,即对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。

故选C。

注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。

高一数学 函数的单调性

高一数学 函数的单调性

1.3 函数的基本性质 1.3.1 单调性与最大(小)值 第一课时 函数的单调性Q 情景引入ing jing yin ru德国心理学家艾宾浩斯研究发现,遗忘在学习之后立即开始,而且遗忘的进程并不是均匀的,最初遗忘速度较快,以后逐渐缓慢.他认为“保持和遗忘是时间的函数”,并根据实验结果绘成描述遗忘进程的曲线,即著名的艾宾浩斯记忆遗忘曲线.如下图:这条曲线告诉我们,学习中的遗忘是有规律的,遗忘的进程是不均衡的,记忆的最初阶段遗忘的速度很快,后来就逐渐变慢了.这条曲线表明了遗忘规律是“先快后慢”.通过这条曲线能说明什么数学问题呢?X 新知导学in zhi dao xue1.增函数和减函数知识点拨] (1)函数f (x )在区间D 上是增函数,x 1,x 2∈D ,则x 1<x 2⇔f (x 1)<f (x 2).(2)函数f (x )在区间D 上是减函数,x 1,x 2∈D ,则x 1<x 2⇔f (x 1)>f (x 2). 2.单调性(1)定义:如果函数y =f (x )在区间D 上是__增函数__或__减函数__,那么就说函数y =f (x )在区间D 上具有(严格的)单调性,区间D 叫做函数y =f (x )的__单调区间__.(2)图象特征:函数y =f (x )在区间D 上具有单调性,则函数y =f (x )在区间D 上的图象是上升的或下降的.[归纳总结] 基本初等函数的单调区间如下表所示:Y 预习自测u xi zi ce1.函数y =f (x )在区间(a ,b )上是减函数,x 1,x 2∈(a ,b ),且x 1<x 2,则有( B ) A .f (x 1)<f (x 2) B .f (x 1)>f (x 2) C .f (x 1)=f (x 2)D .以上都有可能[解析] 因为函数y =f (x )在(a ,b )上是减函数,且x 1<x 2,所以f (x 1)>f (x 2),故选B . 2.下列函数中,在区间(0,2)上为增函数的是( B ) A .y =3-x B .y =x 2+1 C .y =1xD .y =-x 2[解析] 分别画出各个函数的图象,在区间(0,2)上上升的图象只有B .3.若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有 f (a )-f (b )a -b>0成立,则必有( A )A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )是先增后减D .函数f (x )是先减后增[解析] 由单调性的定义可知,对任意两个不相等的实数a 、b ,总有f (a )-f (b )a -b >0成立,则f (x )在R 上是增函数,故选A .4.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为__f (a 2-a +1)≤f (34)__.[解析] ∵a 2-a +1=(a -12)2+34≥34,又∵f (x )在区间(0,+∞)上为减函数, ∴f (a 2-a +1)≤f (34).5.判断并证明函数f (x )=-1x +1在(0,+∞)上的单调性.[解析] 函数f (x )=-1x +1在(0,+∞)上是增函数.证明:设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2,则 f (x 1)-f (x 2)=(-1x 1+1)-(-1x 2+1)=-1x 1+1x 2=x 1-x 2x 1x 2.由x 1,x 2∈(0,+∞),得x 1x 2>0. 又由x 1<x 2,得x 1-x 2<0. 于是f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )=-1x+1在(0,+∞)上是增函数.H 互动探究解疑 u dong tan jiu jie yi命题方向1 ⇨利用图象求函数的单调区间典例1 如图为函数y =f (x ),x ∈[-4,7]的图象,指出它的单调区间.[思路分析] (1)函数f (x )在D 上单调递增(或单调递减)表现在其图象上有怎样的特征? (2)单调增、减区间与函数在该区间上为增、减函数一样吗?[解析] 函数的单调增区间为[-1.5,3),[5,6),单调减区间为[-4,-1.5),[3,5),[6,7]. 『规律方法』 函数单调区间的求法及表示方法(1)由函数图象确定函数的单调区间是一种直观简单的方法,对于较复杂的函数的单调区间,可利用一些基本函数的单调性或根据函数单调性的定义来求.(2)单调区间必须是一个区间,不能是两个区间的并,如不能写成函数y =1x 在(-∞,0)∪(0,+∞)上是减函数,而只能写成在(-∞,0)和(0,+∞)上是减函数.(3)区间端点的写法;对于单独的一点,由于它的函数值是唯一确定的常数,没有增减变化,所以不存在单调问题,因此写单调区间时,可以包括端点,也可以不包括端点,但对于某些点无意义时,单调区间就不包括这些点.〔跟踪练习1〕据下列函数图象,指出函数的单调增区间和单调减区间.[解析] 由图象(1)知此函数的增区间为(-∞,2],[4,+∞),减区间为[2,4]. 由图象(2)知,此函数的增区间为(-∞,-1],[1,+∞),减区间为[-1,0),(0,1]. 命题方向2 ⇨用定义证明函数的单调性典例2 利用函数单调性的定义证明f (x )=1-x 在(-1,1)上单调递减.[思路分析] 利用减函数的定义来证明,其关键是对f (x 1)-f (x 2)进行变形,尽量化成几个最简单因式的乘积的形式.[解析] 设-1<x 1<x 2<1,∴f (x 1)-f (x 2)=1-x 1-1-x 2 =(1-x 1-1-x 2)(1-x 1+1-x 2)1-x 1+1-x 2=x 2-x 11-x 1+1-x 2.∵x 1<x 2,所以x 2-x 1>0.又1-x 1+1-x 2>0,∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故函数f (x )=1-x 在(-1,1)上单调递减. 『规律方法』 1.函数单调性的证明方法——定义法 利用定义法证明或判断函数单调性的步骤是:2.用定义证明函数单调性时,作差f (x 1)-f (x 2)后,若f (x )为多项式函数,则“合并同类项”,再因式分解;若f (x )是分式函数,则“先通分”,再因式分解;若f (x )解析式是根式,则先“分子有理化”再分解因式.〔跟踪练习2〕(1)用函数单调性定义证明函数f (x )=2x 2+4x 在(-∞,-1]上是单调减函数; (2)用函数单调性定义证明,函数y =2xx +1在(-1,+∞)上为增函数.[证明] (1)设x 1<x 2≤-1,则f (x 1)-f (x 2)=(2x 21+4x 1)-(2x 22+4x 2)=2(x 21-x 22)+4(x 1-x 2)=2(x 1-x 2)(x 1+x 2+2).∵x 1<x 2≤-1, ∴x 1-x 2<0,x 1+x 2+2<0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2), ∴f (x )在(-∞,-1]上是减函数.(2)设x 1>x 2>-1, 则x 1-x 2>0,x 1+1>0,x 2+1>0, y 1-y 2=2x 1x 1+1-2x 2x 2+1=2(x 1-x 2)(x 1+1)(x 2+1)>0,∴y 1>y 2,∴函数y =2xx +1在(-1,+∞)上为增函数.命题方向3 ⇨单调性的应用典例3 已知函数f (x )是定义在R 上的增函数,且f (3a -7)>f (11+8a ),求实数a 的取值范围.[思路分析] 根据函数的单调性定义可知,由两个自变量的大小可以得到相应的函数值的大小,反之,由两个函数值的大小也可以得到相应自变量的大小.[解析] ∵函数f (x )是定义在R 上的增函数,且f (3a -7)>f (11+8a ), ∴3a -7>11+8a , ∴a <-185, ∴实数a 的取值范围是(-∞,-185).『规律方法』 利用函数的单调性解函数值的不等式就是利用函数在某个区间内的单调性,去掉对应关系“f ”,转化为自变量的不等式,此时一定要注意自变量的限制条件,以防出错.〔跟踪练习3〕已知函数g (x )是定义在R 上为增函数,且g (t )>g (1-2t ),求实数t 的取值范围. [解析] ∵g (x )在R 上为增函数,且g (t )>g (1-2t ), ∴t >1-2t ,∴t >13,即所求t 的取值范围为(13,+∞).Y 易混易错警示i hun yi cuo jing shi对单调区间和在区间上单调两个概念理解错误典例4 若函数f (x )=x 2+2ax +4的单调递减区间是(-∞,2],则实数a 的取值范围是__-2__.[错解] 函数f (x )的图象的对称轴为直线x =-a ,由于函数在区间(-∞,2]上单调递减,因此-a ≥2,即a ≤-2.[错因分析] 错解中把单调区间误认为是在区间上单调.[正解] 因为函数f (x )的单调递减区间为(-∞,2],且函数f (x )的图象的对称轴为直线x =-a ,所以有-a =2,即a =-2.[警示] 若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子区间上也是单调的,因此f (x )在区间A 上单调增(或减)和f (x )的单调增(或减)区间为A 不等价.X 学科核心素养ue ke he xin su yang抽象函数单调性的判断与证明所谓抽象函数,一般是指没有给出具体解析式的函数,研究抽象函数的单调性,主要是考查对函数单调性的理解,是一类重要的题型,而证明抽象函数的单调性常采用定义法.典例5 设f (x )是定义在R 上的函数,对m ,n ∈R ,恒有f (m +n )=f (m )·f (n )(f (m )≠0,f (n )≠0),且当x >0时,0<f (x )<1.求证:(1)f (0)=1; (2)x ∈R 时,恒有f (x )>0; (3)f (x )在R 上是减函数.[思路分析] (1)可通过赋值求f (0);(2)可通过f (0)=f [x +(-x )]=f (x )·f (-x )证明f (x )>0;(3)利用定义可证明函数的单调性.[解析] (1)根据题意,令m =0,可得f (0+n )=f (0)·f (n ), ∵f (n )≠0,∴f (0)=1.(2)由题意知x >0时,0<f (x )<1; 当x =0时,f (0)=1>0; 当x <0时,-x >0,∴0<f (-x )<1.∵f [x +(-x )]=f (x )·f (-x ), ∴f (x )·f (-x )=1, ∴f (x )=1f (-x )>0. 故x ∈R 时,恒有f (x )>0.(3)设x 1,x 2∈R ,且x 1<x 2, 则f (x 2)=f [x 1+(x 2-x 1)],∴f (x 2)-f (x 1)=f [x 1+(x 2-x 1)]-f (x 1)=f (x 1)·f (x 2-x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]. 由(2)知f (x 1)>0,又x 2-x 1>0,∴0<f (x 2-x 1)<1, 故f (x 2)-f (x 1)<0,∴f (x )在R 上是减函数.『规律方法』 一般地,在高中数学中,主要有两种类型的抽象函数,一是“f (x +y )”型[即给出f (x +y )所具有的性质,如本例],二是“f (xy )”型.对于f (x +y )型的函数,只需构造f (x 2)=f [x 1+(x 2-x 1)],再利用题设条件将它用f (x 1)与f (x 2-x 1)表示出来,然后利用题设条件确定f (x 2-x 1)的范围(如符号、与“1”的大小关系),从而确定f (x 2)与f (x 1)的大小关系;对f (xy )型的函数,则只需构造f (x 2)=f (x 1·x 2x 1)即可.K 课堂达标验收e tang da biao yan shou1.函数y =f (x )的图象如图所示,其增区间是( C )A .[0,1]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4][解析] 结合图象分析可知,函数图象在区间[-3,1]是上升的,故其增区间是[-3,1]. 2.已知f (x )=(3a -1)x +b 在(-∞,+∞)上是增函数,则a 的取值范围是( B ) A .(-∞,13)B .(13,+∞)C .(-∞,13]D .[13,+∞)[解析] f (x )=(3a -1)x +b 为增函数,应满足3a -1>0,即a >13,故选B .3.(2019·山东潍坊市高一期中测试)已知函数f (x )在(-∞,+∞)上是减函数,若a ∈R ,则( D )A .f (a )>f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )[解析] ∵a 2+1-a =(a -12)2+34>0,∴a 2+1>a ,又∵f (x )在(-∞,+∞)上是减函数, ∴f (a 2+1)<f (a ).4.若函数y =f (x )的图象如图所示,则函数f (x )的单调递增区间是__(-∞,1)和(1,+∞)__.[解析]由图象可知,f(x)的单调递增区间为(-∞,1)和(1,+∞).5.求证:函数f(x)=1x2在区间(0,+∞)上是减函数,在区间(-∞,0)上是增函数.[证明]对于任意的x1,x2∈(-∞,0),且x1<x2,有f(x1)-f(x2)=1x21-1x22=x22-x21x21x22=(x2-x1)(x2+x1)x21x22.因为x1<x2<0,所以x2-x1>0,x1+x2<0,x21x22>0.所以f(x1)-f(x2)<0,即f(x1)<f(x2).所以函数f(x)=1x2在(-∞,0)上是增函数.对于任意的x1,x2∈(0,+∞),且x1<x2,有f(x1)-f(x2)=(x2-x1)(x2+x1)x21x22.因为0<x1<x2,所以x2-x1>0,x2+x1>0,x21x22>0.所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以函数f(x)=1x2在(0,+∞)上是减函数.A级基础巩固一、选择题1.下列命题正确的是(D)A.定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),使得x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数B.定义在(a,b)上的函数f(x),若有无穷多对x1,x2∈(a,b),使得x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数C.若f(x)在区间I1上为减函数,在区间I2上也为减函数,那么f(x)在I1∪I2上也一定为减函数D.若f(x)在区间I上为增函数且f(x1)<f(x2)(x1,x2∈I),那么x1<x2[解析]A错误,x1,x2只是区间(a,b)上的两个值,不具有任意性;B错误,无穷并不代表所有、任意;C错误,例如函数y=1x-1在(-∞,1)和(1,+∞)上分别递减,但不能说y=1x-1在(-∞,1)∪(1,+∞)上递减;D正确,符合单调性定义.2.如图中是定义在区间[-5,5]上的函数y=f(x),则下列关于函数f(x)的说法错误的是( C )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上不单调[解析] 若一个函数出现两个或两个以上的单调区间时,不能用“∪”连接. 3.函数y =-x 2的单调减区间为( C ) A .(-∞,0] B .(-∞,0) C .(0,+∞)D .(-∞,+∞)[解析] 根据二次函数y =-x 2的图象可知函数y =-x 2的单调递减区间为(0,+∞). 4.(2019·河北沧州市高一期中测试)在区间(-∞,0)上为增函数的是( C ) A .y =-2x +2 B .y =1xC .y =-|x |+1D .y =-x 2-2x[解析] 函数y =-2x +2是减函数,y =1x 在(-∞,0)上是减函数,y =-x 2-2x =-(x+1)2+1在(-∞,-1]上是增函数,在(-1,0)上是减函数,只有函数y =-|x |+1在(-∞,0)上是增函数,故选C .5.定义在R 上的函数,对任意的x 1,x 2∈R (x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( A )A .f (3)<f (2)<f (1)B .f (1)<f (2)<f (3)C .f (2)<f (1)<f (3)D .f (3)<f (1)<f (2)[解析] 对任意x 1,x 2∈R (x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则x 2-x 1与f (x 2)-f (x 1)异号,则f (x )在R 上是减函数.又3>2>1,则f (3)<f (2)<f (1).故选A .6.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( C ) A .(-∞,-3) B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)[解析] 因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3,故选C .二、填空题7.函数f (x )=1x +1在(a ,+∞)上单调递减,则a 的取值范围是__[-1,+∞)__.[解析] ∵函数f (x )=1x +1的单调递减区间为(-1,+∞),(-∞,-1),又∵函数f (x )=1x +1在(a ,+∞)上单调递减,∴(a ,+∞)⊆(-1,+∞),∴a ≥-1. 8.函数f (x )=-2x 2+4x -3的单调递增区间为__(-∞,1]__.[解析] f (x )=-2x 2+4x -3的图象是开口向下,对称轴为x =1的抛物线,∴其单调递增区间为(-∞,1].三、解答题9.求证函数f (x )=x +4x 在(2,+∞)上是增函数.[证明] 任取x 1,x 2∈(2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)x 1x 2-4x 1x 2.因为2<x 1<x 2,所以x 1-x 2<0,x 1x 2>4,x 1x 2-4>0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2). 所以函数f (x )=x +4x在(2,+∞)上是增函数.B 级 素养提升一、选择题1.已知f (x )为R 上的减函数,则满足f (2x )>f (1)的实数x 的取值范围是( D ) A .(-∞,1) B .(1,+∞) C .(12,+∞)D .(-∞,12)[解析] ∵f (x )在R 上为减函数且f (2x )>f (1). ∴2x <1,∴x <12.2.设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是( D )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定[解析] ∵x 1,x 2不在同一单调区间内,∴大小关系无法确定.3.已知函数y =ax 和y =-bx 在(0,+∞)上都是减函数,则函数f (x )=bx +a 在R 上是( A )A .减函数且f (0)<0B .增函数且f (0)<0C .减函数且f (0)>0D .增函数且f (0)>0[解析] ∵y =ax 和y =-b x在(0,+∞)都是减函数,∴a <0,b <0,f (x )=bx +a 为减函数且f (0)=a <0,故选A .4.下列有关函数单调性的说法,不正确的是( C )A .若f (x )为增函数,g (x )为增函数,则f (x )+g (x )为增函数B .若f (x )为减函数,g (x )为减函数,则f (x )+g (x )为减函数C .若f (x )为增函数,g (x )为减函数,则f (x )+g (x )为增函数D .若f (x )为减函数,g (x )为增函数,则f (x )-g (x )为减函数[解析] 若f (x )为增函数,g (x )为减函数,则f (x )+g (x )的增减性不确定.例如f (x )=x +2为R 上的增函数,当g (x )=-12x 时, 则f (x )+g (x )=12x +2为增函数;当g (x )=-3x ,则f (x )+g (x )=-2x +2在R 上为减函数,∴选C .二、填空题5.函数y =-(x -3)|x |的递增区间为__[0,32]__. [解析] y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x (x >0)x 2-3x (x ≤0).作出其图象如图,观察图象知递增区间为[0,32].6.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是__(-∞,40]∪[64,+∞)__.[解析] 对称轴为x =k 8,则k 8≤5或k 8≥8,得k ≤40或k ≥64. 三、解答题7.用函数单调性的定义判断函数f (x )=ax +1x +2(a <12)在(-2,+∞)上的单调性. [解析] 证明: f (x )在(-2,+∞)上是减函数.∵函数f (x )=ax +1x +2=a (x +2)-2a +1x +2=a +1-2a x +2, 任取x 1,x 2∈(-2,+∞),且x 1<x 2.则f (x 1)-f (x 2)=(a +1-2a x 1+2)-(a +1-2a x 2+2)=1-2a x 1+2-1-2a x 2+2=(1-2a )(x 2-x 1)(x 1+2)(x 2+2). ∵-2<x 1<x 2,∴x 2-x 1>0,(x 1+2)(x 2+2)>0,∵a <12,∴1-2a >0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(-2,+∞)上是减函数.8.已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.[解析] 由题意可知⎩⎪⎨⎪⎧-1<1-a <1-1<2a -1<1,解得0<a <1.① 又f (x )在(-1,1)上是减函数,且f (1-a )<f (2a -1),∴1-a >2a -1,即a <23.② 由①②可知,0<a <23. 即所求a 的取值范围是(0,23). 9.函数f (x )是定义在(0,+∞)上的减函数,对任意的x ,y ∈(0,+∞),都有f (x +y )=f (x )+f (y )-1,且f (4)=5.(1)求f (2)的值;(2)解不等式f (m -2)≥3.[解析] (1)f (4)=f (2+2)=f (2)+f (2)-1,又f (4)=5,∴f (2)=3.(2)由(1)知f (2)=3,∴原不等式可化为f (m -2)≥f (2),∴⎩⎪⎨⎪⎧m -2≤2m -2>0,∴2<m ≤4. ∴不等式的解集为{m |2<m ≤4}.。

高中数学人教A版必修1课件:1.3函数的基本性质

高中数学人教A版必修1课件:1.3函数的基本性质
②“对于…”,“任意…”,“都有…”,“ 对于”即两个自变量x1,x2,必须取自给定的 区间;“任意”即不能用特殊值代替;“都有 ”即只要x1<x2,就必须有f(x1)<f(x2)或f(x1)> f(x2).
(2)函数单调性的刻画: ①图形刻画,对于给定区间上的函数y=f(x), 它的图象若从左向右连续上升(下降),则称函 数在该区间上是单调递增(减)的; ②定性刻画,对于给定区间上的函数y=f(x), 若函数值随自变量的增大而增大(减小),则称 函数在该区间上是单调递增(减)的.
间应是定义域的子集.
2.画出函数 f(x)=-x2+2|x|+3 的 图象,并指出函数的单调区间.
解析: y=-x2+2|x|+3 -x2+2x+3=-x-12+4
=-x2-2x+3=-x+12+4 函数图象如图所示:
x≥0 x<0 .
函数在(-∞,-1],[0,1]上是增函数, 函数在[-1,0],[1,+∞)上是减函数. ∴函数的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).
[0,1]
4.求证:函数 y=x-1 1在区间(1,+∞)上为单 调减函数.
证明: 设 1<x1<x2,
y1-y2=x1-1 1-x2-1 1 =x1-x21-xx21-1 ∵1<x1<x2 ∴x1-1>0,x2-1>0,x2-x1>0 ∴x1-x21-xx21-1>0. 即 y1>y2,
∴函数 y=x-1 1在区间(1,+∞)上为单调减函数.
解析: ∵f(x)在R上递减,且3<5,
∴f(3)>f(5).故选C.
答案: C
3.如图所示,函数y= f(x)的单调递增区间有 ________,递减区间有 ________.

高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析1.(本小题12分)已知函数,(1)判断函数在区间上的单调性;(2)求函数在区间是区间[2,6]上的最大值和最小值.【答案】(1)函数是区间上的减函数;(2),【解析】(1)设是区间上的任意两个实数,且,则-==.由得,,于是,即.所以函数是区间上的减函数. ……6分(2)由(1)知函数函数在区间的两个端点上分别取得最大值与最小值,即当时,;当时,. ……12分【考点】本小题主要考查利用定义判断函数的单调性和利用函数的单调性求函数的最值,考查学生对定义的掌握和利用能力以及数形结合思想的应用.点评:利用单调性的定义判断或证明函数的单调性时,要把结果划到最简,尽量不要用已知函数的单调性判断未知函数的单调性.2.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.3.函数,则的取值范围是()A.B.C.D.【答案】A【解析】因为f(x)的对称轴为,所以,所以.4.若奇函数在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上( )A.是减函数,有最小值-7B.是增函数,有最小值-7C.是减函数,有最大值-7D.是增函数,有最大值-7【答案】D【解析】解:由奇函数的性质,∵奇函数f(x)在[1,3]上为增函数∴奇函数f(x)在[-3,-1]上为增函数,又奇函数f(x)在[1,3]上有最小值7,∴奇函数f(x)在[-3,-1]上有最大值-7,故选D5.(12分)求证:函数在R上为奇函数且为增函数.【答案】见解析【解析】解:显然,奇函数;令,则,其中,显然,=,由于,,且不能同时为0,否则,故.从而. 所以该函数为增函数.6.下列f(x)=(1+a x)2是()A.奇函数B.偶函数C.非奇非偶函数D.既奇且偶函数【答案】B【解析】函数定义域为R.故选B7.设a是实数,试证明对于任意a,为增函数【答案】见解析【解析】证明:设∈R,且则由于指数函数 y=在R上是增函数,且,所以即<0,又由>0得+1>0, +1>0所以<0即因为此结论与a取值无关,所以对于a取任意实数,为增函数8.函数y=x+ ()A.有最小值,无最大值B.有最大值,无最小值C.有最小值,最大值2D.无最大值,也无最小值【答案】A【解析】∵y=x+在定义域[,+∞)上是增函数,∴y≥f()=,即函数最小值为,无最大值,选A.9.(05福建卷)是定义在R上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2【答案】B【解析】因为是定义在R上以3为周期的偶函数,且,所以故选B10.定义在上的函数是减函数,且是奇函数,若,求实数的范围。

人教A版高中数学必修一《函数的基本性质》试题

人教A版高中数学必修一《函数的基本性质》试题

人教A版高中数学必修一《函数的基本性质》试题【夯实基础】一、单选题1.(2022·全国·高一课时练习)函数的单调递增区间是()A. B.C. D.【答案】B【分析】直接由二次函数的单调性求解即可.【详解】由知,函数为开口向上,对称轴为的二次函数,则单调递增区间是.故选:B.2.(2022·全国·高一课时练习)定义在区间上的函数的图象如图所示,则的单调递减区间为()A. B. C. D.【答案】B【分析】根据函数图象直接确定单调递减区间即可.【详解】由题图知:在上的单调递减,在上的单调递增,所以的单调递减区间为.故选:B3.(2022·全国·高一课时练习)已知函数在上是增函数,则实数的取值范围为()A. B. C. D.【答案】D【分析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4.(2022·全国·高一)已知在为单调函数,则a的取值范围为()A. B. C. D.【答案】D【分析】求出的单调性,从而得到.【详解】在上单调递减,在上单调递增,故要想在为单调函数,需满足,故选:D5.(2022·湖北武汉·高一期末)已知二次函数在区间内是单调函数,则实数a的取值范围是()A. B.C. D.【答案】A【分析】结合图像讨论对称轴位置可得.【详解】由题知,当或,即或时,满足题意.故选:A6.(2022·甘肃庆阳·高一期末)若函数在上单调递增,且,则实数的取值范围是()A. B. C. D.【答案】C【分析】由单调性可直接得到,解不等式即可求得结果.【详解】在上单调递增,,,解得:,实数的取值范围为.故选:C.7.(2022·全国·高一课时练习)下列四个函数在是增函数的为()A. B.C. D.【答案】D【分析】根据各个函数的性质逐个判断即可【详解】对A,二次函数开口向上,对称轴为轴,在是减函数,故A不对.对B,为一次函数,,在是减函数,故B不对.对C,,二次函数,开口向下,对称轴为,在是增函数,故C不对.对D,为反比例类型,,在是增函数,故D对.故选:D8.(2021·河南南阳·高一阶段练习)已知函数,对于任意的恒成立,则实数的最小值是()A.0B.1C.2D.3【答案】D【分析】利用换元法将函数的最值转化为二次函数的最值,即可求得实数的最小值.【详解】对于任意的使恒成立,令(),则,即,设,则,故,即实数m的最小值是.故选:.二、多选题9.(2022·全国·高一课时练习)下列函数中,在上单调递增的是()A. B. C. D.【答案】AD【分析】画出各选项的函数图像,利用函数的图象来研究函数的单调性判断即可.【详解】画出函数图象如图所示,由图可得A,D中的函数在上单调递增,B,C中的函数在上不单调.故选:AD.10.(2021·江西·高一期中)如图是函数的图象,则函数在下列区间单调递增的是( )A. B. C. D.【答案】BC【分析】根据单调性的定义即可由图知道f(x)的增区间﹒【详解】图像从左往右上升的区间有:(-6,-4),(-1,2),(5,8),∴f(x)在(-6,-4),(-1,2),(5,8)上单调递增﹒故选:BC﹒三、填空题11.(2022·全国·高一课时练习)写出一个同时具有性质①对任意,都有;②的函数___________.【答案】(答案不唯一)【分析】根据题意可得函数在为减函数,且再写出即可.【详解】因为对任意,都有,所以函数在上减函数.又,故函数可以为.(注:满足题目条件的函数表达式均可.)故答案为:(答案不唯一)12.(2022·浙江丽水·高一开学考试)设函数,其中,.若在上不单调,则实数的一个可能的值为______.【答案】内的任意一个数.【分析】由对勾函数的性质判断出函数的单调区间,假设在上单调,即可求出的取值范围,其补集即为在上不单调时实数的取值范围.【详解】函数的定义域为,由对勾函数的性质可得函数在和上是单调递增,在和上是单调递减,若在上单调,则或,解得或,则在上不单调,实数的范围是,故答案为:内的任意一个数.13.(2022·全国·高一课时练习)函数的单调减区间为__________.【答案】##【分析】优先考虑定义域,在研究复合函数的单调性时,要弄清楚它由什么函数复合而成的,再根据“同增异减”可求解.【详解】函数是由函数和组成的复合函数,,解得或,函数的定义域是或,因为函数在单调递减,在单调递增,而在上单调递增,由复合函数单调性的“同增异减”,可得函数的单调减区间.故答案为:.四、解答题14.(2022·全国·高一)已知,函数.(1)指出在上的单调性(不需说明理由);(2)若在上的值域是,求的值.【答案】(1)在上是增函数(2)2【分析】(1)由于,利用反比例函数的性质,即可得到结果;(2)根据(1)的函数单调性,可知,,解方程即可求出结果.(1)解:因为,所以在上是增函数.(2)解:易知,由(1)可知在上为增函数.,解得,由得,解得.15.(2022·湖南·高一课时练习)设函数的定义域为,如果在上是减函数,在上也是减函数,能不能断定它在上是减函数?如果在上是增函数,在上也是增函数,能不能断定它在上是增函数?【分析】根据反例可判断两个结论的正误.【详解】取,则在上是减函数,在上也是减函数,但,,因此不能断定在上是减函数.若取,则在上是增函数,在上也是增函数,但,,因此不能断定在上是增函数.16.(2022·全国·高一专题练习)已知函数的定义域为.(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围.【答案】(1)(2)【分析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.(1)∵的定义域为,∴.∴,则.(2)令,,使得成立,即大于在上的最小值.∵,∴在上的最小值为,∴实数的取值范围是.【能力提升】一、单选题1.(2022·全国·高一课时练习)已知函数的定义域为R,满足,且当时,恒成立,设,,(其中),则a,b,c的大小关系为()A. B.C. D.【答案】B【分析】根据函数单调性的定义判断出在上单调递减,再利用把转化为,最后利用的单调性判断即可.【详解】因为,所以,因此,即,所以在上单调递减,又因为,所以,又因为,所以,所以.故选:B.2.(2021·江苏·盐城市大丰区新丰中学高一期中)函数的大致图象是()A. B.C. D.【答案】A【分析】探讨函数的定义域、单调性,再逐一分析各选项判断作答.【详解】函数的定义域为,选项C,D不满足,因,则函数在,上都单调递增,B不满足,则A满足.故选:A【点睛】方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.3.(2022·全国·高一课时练习)设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B. C. D.【答案】B【分析】根据函数关系式可知,由此可确定在上的解析式,并确定每段区间上的最小值;由时,可确定在此区间内的两根,结合函数图象可确定的范围.【详解】由知:,;当时,,则;当时,,,则;当时,,,则;令,解得:或;作出函数的大致图象如图所示.对任意恒成立,,则,即实数的取值范围为.故选:B.二、多选题4.(2021·安徽·高一期中)下列命题正确的是()A.的定义城为,则的定义域为B.函数的值域为C.函数的值域为D.函数的单调增区间为【答案】AB【分析】根据抽象函数的定义域求法,可判断A;利用换元法求得函数值域,可判断B;利用基本不等式可判断C;单调区间之间不能用并集符号,可判断D.【详解】对于A选项,由于函数的定义域为,对于函数,,解得,所以函数的定义域为,A选项正确;对于B选项,令,则,,且时,取得等号,所以函数的值域为,B选项正确;对于C选项,,当且仅当时,即等号取得,但等号取不到,所以C选项错误;对于D选项,,所以函数的单调增区间为和,单调区间之间不能用并集符号,D选项错误,故选:AB.5.(2021·辽宁实验中学高一期中)下列命题,其中正确的命题是()A.函数在上是增函数B.函数在上是减函数C.函数的单调区间是D.已知在上是增函数,若,则有【答案】AD【分析】根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.【详解】对于A选项,函数的对称轴为,开口向上,所以函数在上单调递增,故A正确;对于B选项,因为当时,,当时,,所以函数在上不是减函数,故B错误;对于C选项,解不等式得,函数的定义域为,故C错误;对于D选项,由得,由于在上是增函数,故,所以,故D正确.故选:AD6.(2022·全国·高一课时练习)已知函数的定义域是,且,当时,,,则下列说法正确的是()A.B.函数在上是减函数C.D.不等式的解集为【答案】ABD【分析】利用赋值法求得,判断A;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用,可求得C中式子的值,判断C;求出,将转化为,即可解不等式组求出其解集,判断D.【详解】对于A,令,得,所以,故A正确;对于B,令,得,所以,任取,且,则,因为,所以,所以,所以在上是减函数,故B正确;对于C,,故C错误;对于D,因为,且,所以,所以,所以等价于,又在上是减函数,且,所以,解得,故D正确,故选:ABD.7.(2022·广东深圳·高一期末)(多选)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数,表示不超过x的最大整数,例如.已知,,则函数的值可能为()A.0B.1C.2D.3【答案】BCD【分析】利用常数分离法知,根据x的取值范围结合不等式的性质求出的取值范围,进而得到函数的值.【详解】,当时,,,,此时的取值为1;当时,,,,此时的取值为2,3.综上,函数的值可能为.故选:BCD.三、填空题8.(2022·全国·高一专题练习)点、均在抛物线(,a、b为常数)上,若,则t的取值范围为________.【答案】【分析】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,当P、Q 两点关于抛物线对称轴对称时,可求出,根据根据,,即可求出t的取值范围.【详解】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,则有时,y随x的增大而增大;当P、Q两点关于抛物线对称轴对称时,则有,解得,∵,,又∵时,y随x的增大而增大;∴可知当P、Q在对称轴的左侧是肯定满足要求,P、Q均在对称轴的右侧时肯定不满足要求,当P、Q分别在对称轴x=1的两侧时,随着P、Q向x轴正向移动,P的纵坐标在逐渐增大,Q的纵坐标逐渐减小,当P、Q两点关于抛物线对称轴对称时有,继续正方向移动,则有,∴满足的t的取值范围:,故答案为:.四、解答题9.(2022·全国·高一课时练习)已知函数,判断并证明在区间上的单调性.【答案】单调递增,证明见解析【分析】利用单调性的定义证明,先任取,,且,然后作差,变形,判断符号,即可得结论. 【详解】在区间上单调递增,理由如下:任取,,且,.因为,所以,,,所以所以,所以,即,所以函数在区间上单调递增.10.(2022·全国·高一课时练习)已知函数的定义域为,对任意正实数、都有,且当时,.求证:函数是上的增函数.【分析】任取、,且,可得出,结合已知条件可出、的大小关系,即可证得结论成立.【详解】证明:任取、,且,则.因为,所以,所以,即,所以函数是上的增函数.11.(2022·全国·高一课时练习)画出下列函数的图象,并写出单调区间:(1);(2).【答案】(1)图象见解析;单调递增区间为和,无单调递减区间(2)图象见解析;单调递增区间为,单调递减区间为和【分析】(1)根据函数的解析式可作出其图象,即可得单调区间;(2)化简函数的解析式为,结合二次函数性质可作出其图象,即可得单调区间.(1)画出的图象如图所示,可得其单调递增区间为和,无单调递减区间.(2),作出该函数的图象如图所示,观察图象,知该函数的单调递增区间为,单调递减区间为和.12.(2020·陕西·榆林市第十中学高一阶段练习)已知函数.(1)求证:在上是增函数;(2)当时,求不等式的解集.【答案】(1)证明见解析;(2)【分析】(1)利用函数单调性的定义与作差法即可证明;(2)将代入,然后求解不等式即可(1)任取,且,则,所以,所以,所以在区间上单调递增;(2)当时,,由可得,解得,故不等式的解集为13.(2021·广东广雅中学花都校区高一期中)设函数.(1)当时,求函数的单调递减区间;(2)若函数在R上单调递增,求a的取值范围;(3)若对,不等式恒成立,求a的取值范围.【答案】(1);(2);(3).【解析】(1)去掉绝对值符号后根据一次函数、二次函数的单调性可得所求的单调减区间. (2)去掉绝对值符号可得,根据函数在R上单调递增可得关于的不等式组,从而可得其取值范围.(3)等价于且恒成立,前者可分类讨论,后者可结合一次函数的图象和性质,两者结合可得a的取值范围.【详解】(1)时,,故在上为增函数,在上为减函数,在为增函数,故函数的单调递减区间为.(2)因为函数在R上单调递增,故,解得.(3)等价于且恒成立,先考虑恒成立,则,故.再考虑恒成立,又,故,故,解得,综上,的取值范围为.【点睛】方法点睛:对于含绝对值符号的函数,可先去掉绝对值符号,从而把问题题转化为常见的一次函数、二次函数在给定范围上的恒成立问题,注意先讨论简单的一次函数的性质,从而参数的初步范围后再讨论二次函数的性质.14.(2021·重庆市清华中学校高一阶段练习)对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是.则称是函数的一个“黄金区间”.(1)请证明:函数不存在“黄金区间”.(2)已知函数在上存在“黄金区间”,请求出它的“黄金区间”.(3)如果是函数的一个“黄金区间”,请求出的最大值.【答案】(1)证明见解析;(2);(3).【分析】(1)由为上的增函数和方程的解的情况可得证;(2)由可得出,再由二次函数的对称轴和方程,可求出函数的“黄金区间”;(3)化简得函数的单调性,由已知是方程的两个同号的实数根,再由根的判别式和根与系数的关系可表示,由或,可得的最大值.【详解】解:(1)证明:由为上的增函数,则有,∴,无解,∴不存在“黄金区间”;(2)记是函数的一个“黄金区间”,由及此时函数值域为,可知而其对称轴为,∴在上必为增函数,令,∴,∴故该函数有唯一一个“黄金区间”;(3)由在和上均为增函数,已知在“黄金区间”上单调,所以或,且在上为单调递增,则同理可得,,即是方程的两个同号的实数根,等价于方程有两个同号的实数根,又,则只要,∴或,而由韦达定理知,,所以,其中或,所以当时,取得最大值.【点睛】关键点点睛:本题考查函数的新定义,对于解决此类问题的关键在于紧扣函数的新定义,注意将值域问题转化为方程的根的情况得以解决.15.(2022·广东·普宁市第二中学高一期中)已知函数,,. 若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论.(3)已知且,若.试证:.【答案】(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大(1),即,因为不等式解集为,所以,解得:,所以(2)函数在区间上的单调递增,证明如下:假设,则因为,所以,所以,即当时,,所以函数在区间上的单调递增(3)由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数16.(2021·江苏·高一单元测试)已知函数,(1)对任意的,函数在区间上的最大值为,试求实数的取值范围;(2)对任意的,若不等式任意()恒成立,求实数的取值范围.【答案】(1)(2)【分析】(1)由已知可得,结合对勾函数的单调性与最值情况求参数范围;(2)由题意不等式可转化为函数在上单调递增,结合分段函数的单调性,分情况讨论. (1)由,由对勾函数的性质得函数在上单调递减,在上单调递增,所以,又,所以,又函数在区间上的最大值为,所以,即,解得,所以;(2)不等式任意()恒成立,即,设,在上单调递增,即在上单调递增,当时,,①当时,单调递增,成立;②当时,单调递增,成立,③当时,只需,即,当时,,①当时,在上递减,所以不成立;②当时,在上递减,所以不成立;③当时,只需,即,综上所述,.17.(2021·全国·高一专题练习)已知函数对一切实数都有成立,且(1)求的解析式;(2),若存在,使得,有成立,求的取值范围.【答案】(1)(2)【分析】(1)赋值法,令y=1,求出,进而求出;(2)根据题干中的条件,只需,先求出函数的最大值,然后利用二次函数的性质求最值,进而求出a的取值范围.(1)∵函数对一切实数都有成立,且,令y=1,则,(2)由题意,有,则,对于g(x),当x=0时,g(0)=0,当时,,设,则在(0,1)单调递减,在单调递增,在x=1处取到最小值,所以,所以,综上,,当且仅当x=1时取到,所以;设,则h(x)为开口向上的二次函数,其对称轴为x=a,下面通过对称轴的位置对h(x)的最值情况进行分类讨论:当时,对称轴距离区间右侧x=2更远,故,∴,即;2)当时,对称轴距离区间左侧x=-1更远,故,∴,即;综上,.。

1.3函数的基本性质——奇偶性

1.3函数的基本性质——奇偶性
如何利用规律实现更好记忆呢?
函数的基本性质 ——奇偶性
讲授新课
1. 奇函数、偶函数的定义 奇函数:设函数y=f (x)的定义域为D,如 果对D内的任意一个x,都有f(-x)=-f(x), 则这个函数叫奇函数.
偶函数:设函数y=g (x)的定义域为D,如 果对D内的任意一个x,都有g(-x)=g(x), 则这个函数叫做偶函数.
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
(8) k( x)
1 x2 1.
练习
1. 判断下列函数的是否具有奇偶性 (1) f (x)=x+x3;(奇) (2) f (x)=-x2;
(3) h (x)=x3+1;
(4) k( x)
1 x2 1
x [1, 2];
(5) f (x)=(x+1) (x-1);
(6) g (x)=x (x+1);
(7) h( x) x 3 x ;
(8) k( x)
1 x2 1.
练习
1. 判断下列函数的是否具有奇偶性 (1) f (x)=x+x3;(奇) (2) f (x)=-x2;(偶)
(3) h (x)=x3+1;
(4) k( x)
1 x2 1
x [1, 2];
(5) f (x)=(x+1) (x-1);
(3) h (x)=x3+1;
(非奇非偶)

1.3函数的基本性质——奇偶性2 (2)

1.3函数的基本性质——奇偶性2 (2)
更多精彩内容,微信扫描二维码获取 扫描二维码获取更多资源
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
附赠 中高考状元学习方法
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
前言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
湖南省长沙市一中卫星远程学校
曹杨二中高三(14)班学生
班级职务:学习委员
高考志愿:北京 大学中文系
高考成绩:语文121分数学146分
英语146分历史134分
综合28分总分
575分
(另有附加分10
分)
上海高考文科状元--常方舟
湖南省长沙市一中卫星远程学校
“我对竞赛题一样发怵”
总结自己的成功经验,常方舟认为学习的高 效率是最重要因素,“高中三年,我每天晚 上都是10:30休息,这个生活习惯雷打不动。 早晨总是6:15起床,以保证八小时左右的睡 眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会 花太多时间做功课,常常是做完老师布置的 作业就算完。
(不能为奇函数但可以是偶函数)
2. 如果函数f (x)、g (x)为定义域相同的 偶函数,试问F (x)=f (x)+g (x)是不是 偶函数?是不是奇函数?为什么?

高一数学函数的基本性质4

高一数学函数的基本性质4

讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最小值.
讲授新课
例1 设f (x)是定义在区间[-6, 11]上的
函数. 如果f (x)在区间[-6, -2]上递减,
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M.
在区间[-2, 11]上递增,画出f (x)的一
复习引入
问题2 函数f (x)=-x2. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.


讲授新课
函数最大值概念:
;/naotanyf 脑瘫如何进行预防 脑瘫预防最主要阶段 脑瘫要怎么预防

上帝便把他派到人世,上帝很想听一下人们对他的评价。 结果出人意料,十全十美的人同样遭受到一些人莫明其妙地攻击和诋毁。这是怎么回事?上帝便打发天使去调查原因。 天使很快就回来了,向上帝并报说:“他的确一点过错、一点瑕疵也没有。某些家伙嫉妒得发狂,他 们造谣、诬陷、谩骂、攻击,使用了各种卑鄙的手段。并借此提高自己的知名度。还有……” “别说了。”上帝生气地一挥手,制止天使再讲下去。 “上帝,”天使忽然又嗫嚅着说,“就连您也莫明其妙地遭到一些人的诅咒呢。” “是吗?”

高中数学必修一:1.3函数的基本性质“三四五”高效课堂教学设计

高中数学必修一:1.3函数的基本性质“三四五”高效课堂教学设计

“三四五”高效课堂教学设计:(授课日期:年月日星期班级)测试,得到了一些数据.时间间隔t0分钟20分钟60分钟8~9小时1天2天6天一个月记忆量y(百分比)100%58.2%44.2%35.8%33.7%27.8%25.4%21.1%观察这些数据,可以看出:记忆量y是时间间隔t的函数.当自变量(时间间隔t)逐渐增大时,你能看出对应的函数值(记忆量y)有什么变化趋势吗?描出这个函数图象的草图(这就是著名的艾宾浩斯曲线).从左向右看,图象是上升的还是下降的?你能用数学符号来刻画吗?通过这个实验,你打算以后如何对待刚学过的知识?(二)经典例题二、知识要点1.增函数和减函数: 一般地,设函数()f x的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x f x<,那么就说函数()f x在区间D上是增函数.如果对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x f x>,那么就说函数()f x在区间D上是减函数.2.单调性与单调区间如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.依据函数单调性的定义证明函数单调性的步骤:☆变式练习2根据函数()y f x =的图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 【解析】2. 函数单调性的证明例2 证明函数()21f x x =-在区间(,)-∞+∞上是增函数.【思路分析】根据函数单调性的定义进行证明,要注意证明的方法和步骤. 【证明】☆变式练习2证明函数1()f x x=在区间(0,)+∞上是减函数. 【证明】三、总结提升1、本节课你主要学习了2、依据函数单调性的定义证明函数单调性的步骤: 四、问题过关1、函数()y f x =的图象如图1所示,则函数()f x 的单调递增区间为 单调递减区间为2、函数()y f x =的图象如图2所示,则函数()f x 的单调递增区间为 单调递减区间为3、函数()y f x =的图象如图3所示,则函数()f x 的单调递增区间为 单调递减区间为图1 图2 图3 4、如图所示的是定义在闭区间[-4,7]上的函数()y f x =的图象,根据图象说出函数的单调区间,并回答:在每一个单调区间上,f (x )是增函数还是减函数?5、证明函数()3f x x =-+在区间(,)-∞+∞上是减函数.6、证明函数2()1f x x =+在区间(,0)-∞上是减函数.因材施教:教学后记:。

高中数学1.3函数的基本性质1.3.1第2课时函数的最大值、最小值优化练习新人教A版必修1

高中数学1.3函数的基本性质1.3.1第2课时函数的最大值、最小值优化练习新人教A版必修1

1.3.1 第2课时 函数的最大值、最小值[课时作业] [A 组 基础巩固]1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-a D .9-a 2解析:∵a >0,∴f (x )=9-ax 2(a >0)开口向下以y 轴为对称轴, ∴f (x )=9-ax 2(a >0)在[0,3]上单调递减, ∴x =0时,f (x )最大值为9. 答案:A 2.函数y =1x -1在[2,3]上的最小值为( ) A .2 B.12 C.13D .-12解析:函数y =1x -1在[2,3]上为减函数,∴y min =13-1=12. 答案:B3.函数y =|x +1|-|2-x |的最大值是( ) A .3 B .-3 C .5D .-2解析:由题意可知y =|x +1|-|2-x |=⎩⎪⎨⎪⎧-3, x <-1;2x -1, -1≤x ≤2;3, x >2.画出函数图象即可得到最大值3.故选A.答案:A4.函数y =x +2x -1( )A .有最小值12,无最大值B .有最大值12,无最小值C .有最小值12,有最大值2D .无最大值,也无最小值解析:f (x )=x +2x -1的定义域为⎣⎢⎡12,+,在定义域内单调递增,∴f (x )有最小值f ⎝ ⎛⎭⎪⎫12=12,无最大值.答案:A5.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0] C .(-∞,0)D .(0,+∞)解析:a <-x 2+2x 恒成立,即a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值, 而f (x )=-x 2+2x ,x ∈ [0,2]的最小值为0,∴a <0. 答案:C6.函数y =-x 2+6x +9在区间[a ,b ](a <b <3)有最大值9,最小值-7.则a =________,b =________.解析:∵y =-x 2+6x +9的对称轴为x =3,而a <b <3. ∴函数在[a ,b ]单调递增.∴⎩⎪⎨⎪⎧f a =-a 2+6a +9=-7,fb =-b 2+6b +9=9,解得⎩⎪⎨⎪⎧a =-2,b =0或⎩⎪⎨⎪⎧a =8,b =6,又∵a <b <3,∴⎩⎪⎨⎪⎧a =-2,b =0.答案:-2 07.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为________.解析:设f (x )=kx +b (k ≠0)当k >0时,⎩⎪⎨⎪⎧-k +b =1,2k +b =3即⎩⎪⎨⎪⎧k =23,b =53.∴f (x )=23x +53.当k <0时,⎩⎪⎨⎪⎧-k +b =3,2k +b =1,即⎩⎪⎨⎪⎧k =-23,b =73∴f (x )=-23x +73.∴f (x )的解析式为f (x )=23x +53或f (x )=-23x +73.答案:f (x )=23x +53或f (x )=-23x +738.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________. 解析:f (x )=4x +a x(x >0,a >0)在(0,a2]上单调递减,在(a2,+∞)上单调递增,故f (x )在x =a2时取得最小值,由题意知a2=3,∴a =36.答案:369.已知函数f (x )=x -1x +2,x ∈[3,5]. (1)判断函数f (x )的单调性; (2)求函数f (x )的最大值和最小值.解析:(1)任取x 1,x 2∈[3,5]且x 1<x 2,则f (x 1)-f (x 2)=x 1-1x 1+2-x 2-1x 2+2=x 1-x 2+-x 2-x 1+x 1+x 2+=x 1x 2+2x 1-x 2-2-x 1x 2-2x 2+x 1+2x 1+x 2+=x 1-x 2x 1+x 2+.∵x 1,x 2∈[3,5]且x 1<x 2, ∴x 1-x 2<0,x 1+2>0,x 2+2>0. ∴f (x 1)-f (x 2)<0.∴f (x 1)<f (x 2). ∴函数f (x )=x -1x +2在[3,5]上为增函数.(2)由(1)知,当x =3时,函数f (x )取得最小值,为f (3)=25;当x =5时,函数f (x )取得最大值,为f (5)=47.10.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)求实数a 的范围,使y =f (x )在区间[-5,5]上是单调函数; (2)求f (x )的最小值.解析:(1)f (x )=(x +a )2+2-a 2,可知f (x )的图象开口向上,对称轴方程为x =-a ,要使f (x )在[-5,5]上单调,则-a ≤-5或-a ≥5, 即a ≥5或a ≤-5.(2)当-a ≤-5,即a ≥5时,f (x )在[-5,5]上是增函数,所以f (x )min =f (-5)=27-10a . 当-5<-a ≤5,即-5≤a <5时,f (x )min =f (-a )=2-a 2,当-a >5,即a <-5时,f (x )在[-5,5]上是减函数, 所以f (x )min =f (5)=27+10a ,综上可得,f (x )min =⎩⎪⎨⎪⎧27-10a a ,2-a 2-5≤a <,27+10a a <-[B 组 能力提升]1.函数y =2x +1-2x ,则( ) A .有最大值54,无最小值B .有最小值54,无最大值C .有最小值12,最大值54D .既无最大值,也无最小值解析:设1-2x =t (t ≥0),则x =1-t 22,所以y =1-t 2+t =-⎝ ⎛⎭⎪⎫t -122+54(t ≥0),对称轴t =12∈[0,+∞),所以y 在⎣⎢⎡⎦⎥⎤0,12上递增,在⎣⎢⎡⎭⎪⎫12,+∞上递减,所以y 在t =12处取得最大值54,无最小值.选A. 答案:A2.y =3x +2(x ≠-2)在区间[-5,5]上的最大值、最小值分别是 ( ) A.37,0 B.32,0 C.32,37D .无最大值,无最小值解析:由图象可知答案为D.答案:D3.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 解析:设f (x )=x 2+mx +4,则f (x )图象开口向上,对称轴为x =-m2.(1)当-m2≤1时,即m ≥-2时,满足f (2)=4+2m +4≤0,∴m ≤-4,又m ≥-2,∴此时无解.(2)当-m2≥2,即m ≤-4时,需满足f (1)=1+m +4≤0∴m ≤-5,又m ≤-4,∴m ≤-5.(3)当1<-m2<2,即-4<m <-2时,需满足⎩⎪⎨⎪⎧-4<m <-2,f=1+m +4≤0,f=4+2m +4≤0.此时无解.综上所述,m ≤-5. 答案:m ≤-54.已知函数f (x )是R 上的增函数,且f (x 2+x )>f (a -x )对一切x ∈R 都成立,则实数a 的取值范围是________.解析:解法一:因为函数f (x )是R 上的增函数,且f (x 2+x )>f (a -x )对一切x ∈R 都成立,所以不等式x 2+x >a -x 对一切x ∈R 都成立,即a <x 2+2x 对一切x ∈R 都成立.因为x 2+2x =(x +1)2-1,所以a <-1.解法二:因为函数f (x )是R 上的增函数,且f (x 2+x )>f (a -x )对一切x ∈R 都成立,所以不等式x 2+x >a -x 对一切x ∈R 都成立,即x 2+2x -a >0对一切x ∈R 都成立,所以Δ=4+4a <0即可,解得a <-1.答案:(-∞,-1)5.设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 解析:f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1),函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2),最小值为f (1)=1;当t >1时,函数图象如图(3),函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2.6.已知(x +2)2+y 24=1,求x 2+y 2的取值范围.解析:由(x +2)2+y 24=1,得(x +2)2=1-y 24≤1,∴-3≤x ≤-1,∴x 2+y 2=x 2-4x 2-16x -12=-3x 2-16x -12=-3⎝ ⎛⎭⎪⎫x +832+283,因此,当x =-1时,x 2+y 2有最小值1;当x =-83时,x 2+y 2有最大值283.故x 2+y 2的取值范围为⎣⎢⎡⎦⎥⎤1,283.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、在区间(0,+∞)上不是增函数的函数是( C ).
A.y=2x+1 B.y=3^2+1 C.y= x/2 D.y=2x^2+x+1
2、已知偶函数f(x)=ax^2-2bx+1在(-∞,0)上递增,比较f(a-2)与
f(b+1)大小关系( A ).
A .f(a-2)<f(b+1) B. f(a-2)=f(b+1)
C. f(a-2)>f(b+1)
D. 无法比较
3、(10广东)若函数f(x)=3^x+3^-x与g(x)=3^x-3^-x的定义
域均为R,则( B ).
A.f(x)与g(x)均为偶函数
B. f(x)为偶函数,g(x)为奇函数
C.f(x)与g(x)均为奇函数
D. f(x)为奇函数,g(x)为偶函数
二、填空题
1、若y=f(x)在(0,+∞)上是增函数,则f(π)与f(3)的大小关系是__ f(π)>f(3)___.
2、对任意x1,x2∈[a,b],当a≤x1<x2≤b时,都有f(x1)<f(x2)。

则函数y=f(x)在区间[a,b]上为__增函数__.
3、己知函数f(x)是定义在区间[-1,1]上的增函数,且f(x-2)<f(1-x),则x的取值范围为__{x|1≤x<3/2}__.
1、已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x^2+x-2,求f(x),g(x)的解析式。

2、将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?
[].4,1)( (2).
)[1,)( (1). 1)(.3上的最大值和最小值在求上是增函数在求证已知函数x f x f x
x x f +∞+=。

相关文档
最新文档