Grain refinement of AZ91D magnesium alloy by SiC
美孚格兰德研磨油24 安全数据表说明书
修订日期: 28 五月 2021SDS 编号:7102817XCN 最初编制日期: 9 August 2016版本:2.05______________________________________________________________________________________________________________________化学品安全技术说明书产品产品名称: 美孚格兰德研磨油 24产品简介:烃类及添加剂产品代码: 20157020A070, 662130推荐用途: 金属加工液公司资料供应商:埃克森美孚( 中国 )投资有限公司美罗大厦17楼天钥桥路30号上海市 200030 中国二十四小时应急电话供应商联系电话电子邮件传真供应商: 埃克森美孚化工商务(上海)有限公司紫星路1099号闵行区上海市, 中国中国二十四小时应急电话供应商联系电话电子邮件传真紧急情况概述:物理状态: 液体颜色: 褐色气味: 特有的H304:吞咽及进入呼吸道可能致命。
H411:对水生生物有毒并具有长期持续影响。
高压射向皮肤可能会造成严重的损伤本产品在某些应用场合可能会产生油雾。
过度暴露于液体和油雾时可能会引起皮肤修订日期: 28 五月 2021SDS 编号:7102817XCN 最初编制日期: 9 August 2016版本:2.05______________________________________________________________________________________________________________________及眼睛刺激。
此外,暴露于过多的油雾可能导致呼吸刺激与损伤,并加重原有的肺气肿或哮喘。
反复接触可能使皮肤干燥或龟裂。
该物料的危险性分类与化学品分类和危险性公示通则(GB 13690-2009)一致。
GHS危险性类别:吸入毒物:类别1.急性水生生物毒物:类别2 慢性水生生物毒物:类别2标签要素:象形图:警示词:危险危险性说明健康: H304:吞咽及进入呼吸道可能致命。
固态相变
Mg-Al 系镁合金离异共晶β相的研究摘要::Mg-Al 系镁合金中的第二相主要是离异共晶β相, 其含量、形状、分布和大小对合金的力学性能和成形有很大的影响。
综述了Mg-Al 系镁合金国内外从晶粒细化方面来改善离异共晶β相的方法, 并分析了不同方法的特点和机理。
结果表明,采用适当的措施可以改善和抑制离异共晶β相。
关键词:镁合金,离异共晶,晶粒细化Research of Divorced Eutectic β-Phase in Mg-Al BasedAlloysAbstract:The second-phase is mainly divorced eutectic β-phase in the Mg-Al based alloys. The mechanical property and forming of magnesium alloys are apparently decided by the volume fraction, shape, distribution, and size of β-phase. The methods of improving the divorced eutectic β-phase by refining grain in Mg-Al based alloys are reviewed. The Characteristic and mechanism of these different grain refinement methods are analyzed. The result:Adopt appropriate measures to improve an d inhibit divorced eutectic β-phase.Key words: magnesium alloy; divorced eutectic; grain refinement1.引言纯镁的力学性能很低,不适合做结构材料。
镁合金的一些知识(一)
镁合金的一些知识(一)特点其加工过程及腐蚀和力学性能有许多特点:散热快、质量轻、刚性好、具有一定的耐蚀性和尺寸稳定性、抗冲击、耐磨、衰减性能好及易于回收;另外还有高的导热和导电性能、无磁性、屏蔽性好和无毒的特点。
应用范围:镁合金广泛用于携带式的器械和汽车行业中,达到轻量化的目的镁合金(英文:Magnesium alloy)的比重虽然比塑料重,但是,单位重量的强度和弹性率比塑料高,所以,在同样的强度零部件的情况下,镁合金的零部件能做得比塑料的薄而且轻。
另外,由于镁合金的比强度也比铝合金和铁高,因此,在不减少零部件的强度下,可减轻铝或铁的零部件的重量。
镁合金相对比强度(强度与质量之比)最高。
比刚度(刚度与质量之比)接近铝合金和钢,远高于工程塑料。
可作为阴极保护材料。
在弹性范围内,镁合金受到冲击载荷时,吸收的能量比铝合金件大一半,所以镁合金具有良好的抗震减噪音影响。
镁合金熔点比铝合金熔点低,压铸成型性能好。
镁合金铸件抗拉强度与铝合金铸件相当,一般可达250MPA,最高可达600多Mpa。
屈服强度,延伸率与铝合金也相差不大。
镁合金还个有良好的耐腐蚀性能,电磁屏蔽性能,防辐射性能,可做到100% 回收再利用。
镁合金件稳定性较高压铸件的铸造行加工尺寸精度高,可进行高精度机械加工。
镁合金具有良好的压铸成型性能,压铸件壁厚最小可达0.5mm。
适应制造汽车各类压铸件。
但镁合金线膨胀系数很大,达到25~26 μm/m℃,而铝合金则为23 μm/m℃,黄铜约20 μm/m℃,结构钢12 μm/m℃,铸铁约10μm/m℃,岩石(花岗岩、大理石等)仅为5~9 μm/m℃,玻璃5~11 μm/m℃。
镁合金牺牲阳极是以镁为基础加入其他元素组成的合金。
其特点是:密度小,比强度高,弹性模量大,消震性好,承受冲击载荷能力比铝合金大,耐腐蚀性能好。
主要合金元素有铝、锌、锰、铈、钍以及少量锆或镉等。
目前使用最广的是镁铝合金,其次是镁锰合金和镁锌锆合金。
美国Pickering柱后衍生仪-酒糟中霉菌毒素
Multi-Residue Mycotoxin Analysisof Dry Distillers Grains 干酒糟的多种残留霉菌毒素分析酒糟(Distillers grains, DG)是抽取乙醇后剩下的谷物残渣。
大约90%的酒糟用作动物饲料。
存在于新鲜谷物中的霉菌毒素可通过三个方面浓缩。
在储存过程中也容易发生污染。
由于使用霉菌毒素污染的酒糟而危害动物和人类健康的问题,正越来越引起人们的重视。
我们应该遵守FDA所指定的操作规程,常规检测用于乙醇加工生产的谷物以及酒糟的霉菌毒素污染。
我们提出了一种同时检测干酒糟中四种霉菌毒素的实验方法。
样品萃取和提纯25g研磨成粉末的样品采用150mL水/甲醇溶液(30/70)提取。
提取液过滤后,取20 mL滤液用70mL磷酸盐缓冲液(PBS)稀释。
采用AOZ免疫亲和柱(Vicam,USA)分离黄曲霉毒素、玉米赤霉烯酮和赭曲霉素A。
霉菌毒素通过2×2mL甲醇洗脱下来。
采用FumoniTest免疫亲和柱(Vicam,USA)分离伏马菌素。
霉菌毒素通过2×1.5 mL甲醇洗脱下来。
合并两次洗脱液。
洗脱液旋蒸至0.5mL,采用甲醇定容至终体积1 mL。
分析条件色谱柱: MYCOTOX™反相柱C18,4.6x250 mm 货号1612124温度: 40°C流速: 1 mL/min流动相: 磷酸钠缓冲液, pH3.3货号1700-1108/甲醇/乙腈柱后衍生条件柱后衍生系统: Pinnacle PCX反应体积: 1.4 mL温度: 60°C试剂: OPA, Thiofluor, Brij 35® in GA104光化学反应器: UVE™检测器: 荧光检测器黄曲霉毒素Aflatoxins (光化学衍生)λex = 365 nm; λem = 455 nm伏马菌素Fumonisins (柱后衍生OPA法)λex = 330 nm; λem = 465 nm赭曲霉素A Ochratoxin Aλex = 335 nm; λem = 455 nm玉米赤霉烯酮Zearalenoneλex = 275 nm; λem = 455 nm采用HPLC和柱后衍生法一次测定黄曲霉毒素(Aflatoxins)、赭曲霉素A(Ochratoxin A)、玉米赤霉烯酮(Zearalenone)和伏马菌素(Fumonisins)霉菌毒素标准品加标霉菌毒素的DDG样品5点式标准曲线色谱柱和试剂黄曲霉毒素B1 0.23–113.1 ppb 0.99926 黄曲霉毒素B2 0.2–39.7 ppb 0.99966 黄曲霉毒素G1 0.5–58.2 ppb 0.99933 黄曲霉毒素G2 0.2–24.7 ppb 0.99941 赭曲霉素A 9.2–1155 ppb 0.99926 玉米赤霉烯酮 0.024–12.01 ppm 0.99908 伏马菌素B1 0.024–11.84 ppm 0.99987 伏马菌素B2 0.031–7.84 ppm0.999931612124 MYCOTOX™反相柱, C 18, 4.6×250 mm 1700-1108 磷酸钠洗脱液 pH 3.30, 4x950 mL/瓶 O120 o-PHTHALALDEHYDE (OPA), 1x5 g/瓶 3700-2000 THIOFLUOR™, 1x10 g/瓶 GA104OPA 稀释剂, 4x950 mL/瓶霉菌毒素货号描述货号浓度范围相关性黄曲霉毒素B1 10.0 65 7.6 黄曲霉毒素B2 3.4 79 6.3 黄曲霉毒素G1 10.2 75 9.4 黄曲霉毒素G2 4.4 82 9.1 赭曲霉素A 203 89 7.1 玉米赤霉烯酮 1057 231 75 8.8 伏马菌素B1 1042 801 109 5.8 伏马菌素B2 1379 223 104 6.8霉菌毒素加标样浓度,ppb 天然污染水平,ppb 回收率,%RSD N=4,%。
镁合金疲劳性能的研究现状_高洪涛
镁合金疲劳性能的研究现状高洪涛,吴国华,丁文江(上海交通大学材料科学与工程学院,上海200030)摘要:针对近几年镁合金疲劳性能的研究进行总结,从冶金因素、形状因素、加载制度、介质和温度等方面考察对镁合金疲劳性能的影响。
归纳提高镁合金抗疲劳性能的途径:热处理、滚压强化和喷丸处理等。
提出对镁合金疲劳性能研究的展望。
关键词:镁合金;疲劳性能;影响因素;强化途径中图分类号:TG146.2 文献标识码:A 文章编号:1000-8365(2003)04-0266-03Review on the Fatigue Behavior of Magnesiu m AlloysGAO Hong-tao,W U Guo-hua,DI NG W en-jiang(Schoo l of M aterials Science and Engineering,Shang hai Jiaotong U niversity,Shang hai200030,China)A bstract:This report provides some of the results of magnesium alloy s studying,especially about its fatigue behavior, in recent years.The facto rs that influence the fatigue behavior of magnesium alloy s can be given from several aspects of metallurgy,form factor,loading system,medium and tem perature.The strengthening methods can be concluded in three aspects.One is heat treatment;the o ther tw o are roller burnishing and shot blasting.In addition,the prospect of fatigue behavio r observation on mag nesium alloy s is discussed.Key words:M ag nesium alloy;Fatigue behavior;Influencing factors;Strengthening approach 综合性能优良的镁合金已大量应用于航空航天、汽车、电子等领域[1]。
AZ91D镁合金在几种典型介质中的腐蚀性能研究
AZ91D镁合金在几种典型介质中的腐蚀性能研究王建;周婉秋;武士威;赵强【摘要】采用电化学方法,在0.1M NaCl和0.1M Na2SO4及0.1M Na2CO3等几种典型介质中研究了AZ91D镁合金的腐蚀行为.极化曲线结果表明:在NaCl和Na2SO4中,阳极极化曲线为活性溶解,在Na2CO3中阳极极化曲线呈现钝化特征.在3种介质中的耐腐蚀性顺序为:NaCl<Na2SO4<Na2CO3.EIS结果显示:AZ91D 镁合金在几种介质中的电化学阻抗谱均由一个高频容抗弧和一个低频容抗弧组成.形貌观察表明:AZ91D镁合金的腐蚀均只发生在α相,β相不发生腐蚀.在NaCl中腐蚀最为严重,腐蚀的面积较大;在Na2SO4中腐蚀面积较小,在Na2CO3中腐蚀程度最轻,且腐蚀得比较均匀.%Corrosion behavior of AZ91D magnesium alloy in several typical media including 0.1 M NaCl, 0.1M Na2SO4 and 0.1 MNa2CO3 were investigated by electrochemical methods.Polarization curve tests showed that anodic polarization curves presented in active dissolution characteristic in 0.1 M NaCl and 0.1 M Na2SO4, while, the anodic branch of polarization curve in 0.1 M Na2CO3 presented in passivation characteristic.The order of anti-corrosion performance in the three media was as follows: NaCl< Na2SO4 < Na2CO3.EIS measurements illustrated that the Nyquist plots included a high frequency capacitive impedance arc and a low frequency capacitive impedancearc.Morphologies observation indicated that the corrosion on AZ91D magnesium alloy surface only occurred in α phase interior, andβ phase did not be corroded.For AZ91D magnesium alloy, the worst corrosion occurred in the NaCl medium, and the area of attack was largest, the district ofcorrosion was less in Na2SO4 media, and the region of corrosion inNa2CO3 was the mildest and showed in uniform feature.【期刊名称】《沈阳师范大学学报(自然科学版)》【年(卷),期】2011(029)001【总页数】5页(P95-99)【关键词】镁合金;腐蚀行为;极化曲线;电化学阻抗谱【作者】王建;周婉秋;武士威;赵强【作者单位】沈阳师范大学,化学与生命科学学院,沈阳,110034;沈阳师范大学,化学与生命科学学院,沈阳,110034;沈阳师范大学,化学与生命科学学院,沈阳,110034;沈阳师范大学,化学与生命科学学院,沈阳,110034【正文语种】中文【中图分类】TQ0509+1镁合金的密度小,质量轻、比强度高,是最轻的金属结构材料[1],并以其广泛的分布和优异的物理及力学性能而成为一种非常理想的现代工业结构材料,在汽车工业[2]、航空航天、电子产品等领域有广阔的应用前景[3]。
气相色谱法测定盐酸美金刚原料药中有机溶剂残留量
精 密 量 取 2 项 下 的 对 照 储 备 液 . 2
1 ,.,., .,.,. ,分 别 置 于 lml 瓶 中 , . 20 40 50 6080 0 ml O 量 另 分 别精 密量 取 内标储 备 液 1 m 置 上 述 量 瓶 中 , . l 0
分别精密量取对照储备液 5 m 和内标储备液 . l 0 1 m 置 1ml 瓶 中 , 溶 剂 稀 释 至 刻 度 , 匀 即 . l 0 0 量 加 摇
色谱柱 :B 5毛细管色谱柱(0 5m D一 3m X . m× 03
1u 5 . m)%苯基 一 5 5 9 %Z. 聚硅 氧烷 ; 甲基 检测 器 : 火 氢
焰离 子 化检 测 器 (I , 测 温度 :8 T ; 样 口温 FD)检 2 0 ;进 度 :3 ℃ ; 温 :0 20 柱 5 %保 持 1mi, 后 以 3 ℃/i 2 n然 0 mn 升 温 至 20C, 3  ̄ 至少 保 持 l 钟 ; 气 : 纯 氮 , 2分 载 高 流 速 1 ml n 分流 比 :01直 接进 样 , 样量 : l . / ; 0 mi 1:; 进 1 。 在 上 述 色谱 条 件 下 , 剂 乙醇 、 溶 乙腈 、 乙醚 、 二 氯 甲 烷 的 保 留 时 间 分 别 为 :. 7 884 920 80 、. 、.3 、 8 2 1. 6mi, 内 标 物 质 乙 酸 乙 酯 的 保 留 时 间 为 01 n 6 1.7mi。 316 n 计算 结果 表 明上 述各 溶剂 分离 度均 大 于 20 理论 塔板 数均 大于 10 0 ., 0 0 。色谱 图见 图 l 。
作者简介 : 以兵( 9 4 , , 余 17 一)男 工程师 , 主要从事药物分析 工作 。E ma :h7 10 C r o. me - i cb4 1 2 ̄a o o . l 6h e n
铸造短语 英汉对照
短语1 数值模拟:numerical simulation2 力学性能:mechanical property3 铝合金:aluminum alloy4 应力分析:stress analysis5 钛合金:titanium alloy6 表面处理:surface treatment7 电磁场:electromagnetic field8 抗拉强度:tensile strength9 晶粒细化:grain refinement10 工艺参数:process parameter11 有机合成:organic synthesis12 表面质量:surface quality13 定向凝固:directional solidification14 生产管理:production management15 制备工艺:preparation technology16 拉伸强度:tensile strength17 冷轧:cold rolling18 速度场:Velocity Field19 电子束:Electron beam20 ANSYS软件:ANSYS software21 电磁搅拌:electromagnetic stirring22 铸铁:cast iron23 隔振:vibration isolation24 动力学仿真:Dynamic Simulation25 铜合金:copper alloy26 离心铸造:centrifugal casting27 色差:color difference28 金属基复合材料:metal matrix composites29 应变速率:Strain Rate30 气力输送:pneumatic conveying31 压铸:Die Casting32 金属氧化物:metal oxide33 正电子湮没:Positron annihilation34 热效率:heat efficiency35 凝固组织:solidification structure36 界面反应:interfacial reaction37 模具设计:mold design38 置换通风:displacement ventilation39 镁合金:Mg alloy40 熔模铸造:Investment Casting41 高铬铸铁:high chromium cast iron42 电磁力:electromagnetic force 43 生产实践:production practice44 AZ91D镁合金:AZ91D magnesium alloy45 机械振动:mechanical vibration46 机械系统:mechanical system47 温差:temperature Difference48 传热模型:heat transfer model49 耐磨性能:wear resistance50 硅溶胶:silica sol51 生产系统:production system52 色散关系:dispersion relation53 超声振动:ultrasonic vibration54 知识表达:knowledge representation55 真空系统:Vacuum system56 工艺控制:process control57 TiAl合金:TiAl alloy58 离心力:Centrifugal force59 连续铸造:Continuous Casting60 液压控制:Hydraulic control61 球墨铸铁:nodular cast iron62 流变模型:rheological model63 时效处理:aging treatment64 小波网络:wavelet network65 软件包:software package66 弹簧钢:spring steel67 冷却速率:cooling rate68 铸钢:Cast steel69 水平连铸:horizontal continuous casting70 技术改造:technological transformation71 脉冲电流:pulse current72 凝固过程:Solidification Process73 气缸盖:cylinder head74 制备技术:preparation technology75 复合形法:Complex method76 工艺分析:process analysis77 动力学建模:dynamic modeling78 消失模铸造:Lost Foam Casting79 真空干燥:vacuum drying80 余热:waste heat81 系统控制:system control82 铝硅合金:Al-Si Alloy83 响应面分析法:Response surface methodology84 铸造工艺:casting process85 气缸套:cylinder liner86 SIMPLE算法:SIMPLE algorithm87 工艺优化:technology optimization88 流场:fluid field89 工艺过程:Technological process90 氮化硼:boron nitride91 精密铸造:investment casting92 热循环:thermal cycling93 表面缺陷:Surface defects94 节能技术:energy-saving technology95 低压铸造:Low Pressure Casting96 界面结构:interface structure97 铁水:hot metal98 Al-Cu合金:Al-Cu alloy99 AZ91镁合金:AZ91 magnesium alloy 100 凝固模拟:Solidification simulation101 碳酸钾:potassium carbonate102 等离子弧:plasma arc103 抗裂性:crack resistance104 模锻:die forging105 冲蚀磨损:erosion wear106 注射成形:injection molding107 热压缩变形:hot compression deformation108 激光淬火:laser quenching109 超声检测:ultrasonic inspection110 磨球:Grinding ball111 冷变形:cold deformation112 强韧化:strengthening and toughening 113 气泡:air bubble114 保温时间:holding time115 白口铸铁:white cast iron116 电磁铸造:electromagnetic casting117 断口形貌:fracture morphology118 氢含量:hydrogen content119 浇注温度:pouring temperature120 锥齿轮:bevel gear121 灰铸铁:gray iron122 喷丸:shot peening123 排气系统:exhaust system124 水玻璃:Sodium silicate125 挤压铸造:Squeezing Casting126 密度分布:density distribution127 渣浆泵:slurry pump128 分型面:parting surface 129 A356合金:A356 alloy130 静磁场:static magnetic field131 网格剖分:mesh generation132 电磁连铸:electromagnetic continuous casting133 快速制造:rapid manufacturing134 压铸模:die-casting die135 韧性断裂:ductile fracture136 ADAMS软件:ADAMS software137 弯曲变形:bending deformation138 缸体:cylinder block139 变频控制:frequency conversion control 140 热应力场:thermal stress field141 压铸机:Die Casting Machine142 TiNi合金:TiNi alloy143 碳当量:carbon equivalent144 析出相:precipitated phase145 保温材料:thermal insulation material 146 对甲苯磺酸:p-toluene sulphonic acid 147 组织性能:microstructure and property 148 半固态成形:Semi-solid Forming149 TC4合金:TC4 alloy150 疲劳破坏:fatigue failure151 熔池:molten pool152 超声处理:ultrasonic treatment153 阀体:Valve Body154 压缩变形:Compression Deformation 155 扩散层:Diffusion layer156 缸套:cylinder liner157 铸钢件:steel casting158 性能计算:Performance calculation 159 缸盖:cylinder head160 微波炉:microwave oven161 浇注系统:pouring system162 Al-Zn-Mg-Cu合金:Al-Zn-Mg-Cu alloy 163 炉衬:furnace lining164 规则推理:rule-based reasoning165 在线控制:on-line control166 共晶碳化物:eutectic carbide167 振动频率:vibrational frequency168 TA15钛合金:TA15 titanium alloy169 Cr12MoV钢:Cr12MoV steel170 变形镁合金:wrought magnesium alloy 171 功率超声:power ultrasound172 TiAl基合金:TiAl-based alloy173 Box-Behnken设计:Box-behnken design 174 专业课:specialized course175 金相组织:metallurgical structure176 模具寿命:die life177 研究应用:research and application 178 Al-Mg合金:Al-Mg alloy179 成本优化:cost optimization180 变形激活能:deformation activation energy181 干燥工艺:drying technology182 合金铸铁:alloy cast iron183 模具材料:die material184 铸态组织:as-cast microstructure185 电磁制动:electromagnetic brake186 球铁:ductile iron187 侧架:side frame188 气缸体:cylinder block189 洛伦兹力:Lorentz Force190 微观组织演变:microstructure evolution 191 显微组织:microscopic structure192 共晶组织:Eutectic structure193 冶金质量:metallurgical quality194 热震稳定性:thermal shock resistance 195 强迫对流:forced convection196 切削加工:cutting process197 过共晶Al-Si合金:Hypereutectic Al-Si Alloy198 定量金相:quantitative metallography 199 磁感应强度:Magnetic Flux Density 200 半固态浆料:Semi-solid Slurry201 电磁泵:electromagnetic pump202 超声衰减:Ultrasonic attenuation203 加热时间:heating time204 半连续铸造:Semi-continuous Casting 205 液压站:Hydraulic station206 三元硼化物:ternary boride207 内应力:inner stress208 热裂纹:hot crack209 黄麻纤维:jute fiber210 泡沫陶瓷:foam ceramics211 砂型铸造:Sand casting212 油润滑:oil lubrication213 预热温度:preheating temperature 214 维氏硬度:Vickers Hardness215 高温合金:high-temperature alloy216 拉速:casting speed217 铝熔体:aluminum melt218 异型坯:beam blank219 高钒高速钢:high vanadium high speed steel220 静液挤压:hydrostatic extrusion221 等轴晶:equiaxed grain222 摩擦角:friction angle223 初生相:Primary Phase224 转向节:steering knuckle225 快速成型技术:rapid prototyping technology226 冷坩埚:Cold Crucible227 A357合金:A357 Alloy228 焊接结构:welding structure229 耦合场:coupled field230 AZ80镁合金:AZ80 magnesium alloy 231 止推轴承:thrust bearing232 铝镁合金:Al-Mg alloy233 真空熔炼:vacuum melting234 铝锂合金:aluminum-lithium alloy235 充型过程:filling process236 AZ61镁合金:AZ61 magnesium alloy 237 声流:Acoustic streaming238 金属凝固:metal solidification239 高速钢轧辊:high speed steel roll240 石墨形态:graphite morphology241 磁粉检测:Magnetic particle testing 242 颗粒级配:particle size distribution243 型砂:molding sand244 收缩率:shrinkage rate245 Mg-Li合金:Mg-Li alloy246 自动生产线:automatic production line 247 高频磁场:High Frequency Magnetic Field248 组织与性能:microstructure and property249 连续定向凝固:continuous unidirectional solidification250 充型:mold filling251 失效机制:failure mechanism252 梯度分布:gradient distribution253 制动鼓:Brake drum254 摄动分析:perturbation analysis255 铸造企业:foundry enterprise256 超声波振动:Ultrasonic vibration257 测量系统分析:measurement system analysis258 固溶处理:solution heat treatment259 冷却速度:cooling velocity260 固液混合铸造:solid-liquid mixed casting 261 温度场分布:temperature distribution 262 部分重熔:Partial Remelting263 工艺措施:technological measures264 变形量:deformation amount265 模糊优化设计:Fuzzy optimal design 266 零缺陷:zero defect267 重力分离:gravitational separation268 晶粒:crystal grain269 离心力场:centrifugal force field270 凝固行为:Solidification Behavior271 铝铜合金:Al-Cu alloy272 组织和性能:microstructure and property 273 复合板:composite plate274 Al-Fe合金:Al-Fe alloy275 马氏体不锈钢:martensite stainless steel 276 冷却装置:cooling device277 铝合金车轮:aluminum alloy wheel 278 热应力分析:thermal stress analysis 279 Al含量:Al content280 挤压比:extrusion ratio281 相似准则:similarity criterion282 热疲劳裂纹:thermal fatigue crack283 原子团簇:atomic cluster284 湿型砂:green sand285 AZ91D合金:AZ91D alloy286 6061铝合金:6061 aluminum alloy287 锻造工艺:forging technology288 铸铁件:Iron casting289 表面复合材料:Surface composites 290 盲孔法:blind-hole method291 加热功率:heating power292 铸造合金:Cast Alloy293 低铬白口铸铁:Low chromium white cast iron294 初生硅:primary silicon 295 热节:Hot Spot296 锡青铜:tin bronze297 ZL101合金:ZL101 alloy298 真空感应熔炼:vacuum induction melting299 薄带连铸:strip casting300 真空压铸:vacuum die casting301 缩孔:shrinkage hole302 等温处理:Isothermal Treatment303 平均晶粒尺寸:average grain size304 抽芯:core pulling305 离心浇铸:Centrifugal casting306 铸铁管:cast iron pipe307 感应线圈:induction coil308 冷却介质:Cooling medium309 气体压力:gas pressure310 船用柴油机:marine diesel311 高温强度:high-temperature strength 312 3Cr2W8V钢:3Cr2W8V steel313 缺陷预测:defect prediction314 工艺方案:process scheme315 温度均匀性:temperature uniformity 316 电磁离心铸造:electromagnetic centrifugal casting317 横向应力:transverse stress318 超声声速:ultrasonic velocity319 残留应力:residual stress320 固化工艺:curing process321 精铸:Investment Casting322 铝锭:aluminum ingot323 短路过渡:short circuit transfer324 反重力铸造:counter-gravity casting 325 感应电炉:induction furnace326 稀土Y:rare earth Y327 工艺因素:Technological factor328 双辊铸轧:twin roll casting329 凝固速率:solidification rate330 含氢量:Hydrogen Content331 钢锭:steel ingot332 浆料制备:slurry preparation333 η相:η phase334 衬板:lining board335 压铸件:die casting336 水口堵塞:nozzle clogging337 陶瓷型芯:ceramic core338 车间布局:workshop layout339 安全操作:safe operation340 铸造不锈钢:cast stainless steel341 压铸模具:die casting die342 热裂:Hot Crack343 失效形式:failure form344 成形机理:forming mechanism345 AlSi7Mg合金:AlSi7Mg Alloy346 铸件缺陷:casting defect347 银合金:silver alloys348 反应层:reaction layer349 镍基高温合金:Ni base superalloy350 薄带:thin strip351 覆膜砂:coated sand352 CAE技术:CAE Technique353 性能预测:property prediction354 液态金属:liquid metals355 熔模精密铸造:investment casting356 空气压力:air pressure357 ZA合金:ZA alloy358 凝固传热:Solidification and heat transfer 359 侧向分型:Side Parting360 高温塑性:Hot Ductility361 黑斑:black spot362 点火温度:ignition temperature363 旋压机:spinning machine364 Al-Ti-B中间合金:Al-Ti-B master alloy 365 减排:discharge reduction366 射线检测:radiographic inspection367 耐热:heat resistant368 2024铝合金:2024 aluminum alloy369 技术现状:technology status370 复合变质:complex modification371 蠕墨铸铁:vermicular iron372 机械搅拌:mechanical agitation373 保温炉:holding furnace374 成形技术:forming technology375 碳化硅颗粒:SiC particle376 可锻铸铁:malleable iron377 模型控制:model control378 改性水玻璃:modified sodium silicate 379 熔炼工艺:melting process380 焊补:repair welding 381 异常组织:abnormal structure382 组织细化:structure refinement383 防止措施:preventing measures384 铸渗:Casting infiltration385 BT20钛合金:BT20 titanium alloy386 直流电场:direct current field387 铸造应力:casting stress388 初晶Si:primary Si389 夹紧装置:clamping device390 均衡凝固:Proportional solidification 391 熔模精铸:investment casting392 空心叶片:hollow blade393 ZL201合金:ZL201 alloy394 温轧:warm rolling395 不均匀变形:inhomogeneous deformation396 呋喃树脂砂:furan resin sand397 纸浆:paper pulp398 半连铸:semi-continuous casting399 锻锤:forging hammer400 延伸率:elongation rate401 焊接修复:welding repair402 冶金结合:metallurgical bond403 技术对策:technical measures404 结晶器振动:Mold Oscillation405 厚壁:thick wall406 WC颗粒:WC particles407 预处理技术:pretreatment technology 408 金属零件:metal part409 特种铸造:special casting410 低熔点合金:low melting point alloy 411 水模实验:water model experiment 412 复合管:clad pipe413 插装阀:plug-in valve414 金相试样:Metallographic specimen 415 抗吸湿性:humidity resistance416 近液相线铸造:near-liquidus casting 417 新设计:new design418 电机转子:motor rotor419 CAE:computer aided engineering420 交流变频:AC variable frequency421 下横梁:lower beam422 ZL102合金:ZL102 alloy423 模型参考控制:model reference control424 虚拟对象:virtual object425 加工图:processing maps426 立式离心铸造:vertical centrifugal casting427 抽芯机构:core pulling mechanism428 连铸连轧:casting and rolling429 残留强度:residual strength430 复合铸造:composite casting431 树脂砂:resin bonded sand432 AM60B镁合金:AM60B magnesium alloy 433 铸造CAE:casting CAE434 砂型:sand mould435 熔化:melting process436 高硼铸钢:high boron cast steel437 稳恒磁场:stable magnetic field438 Al-Ti-C晶粒细化剂:Al-Ti-C grain refiner 439 再生技术:regeneration technology 440 压铸工艺:die casting process441 管坯:tube billet442 厚大断面:Heavy section443 保护气体:protective gas444 性能特征:performance characteristics 445 Al-5%Fe合金:Al-5%Fe alloy446 半固态挤压:Semi-solid extrusion447 金属型铸造:Permanent mold casting 448 晶粒组织:grain structure449 综合经济效益:Comprehensive economic benefit450 半固态压铸:semi-solid die casting451 气膜:gas film452 硅酸乙酯:Ethyl Silicate453 自动化生产线:automatic production line454 Mg-Gd-Y-Zr合金:Mg-Gd-Y-Zr alloy455 渗透检测:Penetrant testing456 W-Cu复合材料:W-Cu composites457 存放时间:storage time458 ProCAST软件:ProCAST software459 滑板:sliding plate460 铸造铝合金:casting aluminum alloy 461 水玻璃砂:Water-glass Sand462 电脉冲:Electrical pulse463 蜡模:Wax Pattern464 悬浮铸造:suspension casting 465 D型石墨:D-type graphite466 工艺性能:technological performance 467 Al-1%Si合金:Al-1%Si alloy468 悬浮性:suspension property469 差压铸造:counter-pressure casting 470 工艺原理:process principle471 铸轧:continuous roll casting472 行波磁场:traveling magnetic field473 型壳:Shell Mold474 金属型:permanent mould475 脱模机构:demolding mechanism476 调压铸造:adjusted pressure casting 477 喷砂:sand blasting478 界面换热系数:interfacial heat transfer coefficient479 Al-Mg-Si-Cu合金:Al-Mg-Si-Cu alloy 480 电熔镁砂:fused magnesia481 充型速度:Filling Velocity482 泵体:pump body483 钢锭模:ingot mould484 Cu-Fe合金:Cu-Fe alloy485 辐射力:radiation force486 空化泡:Cavitation bubble487 渣池:slag pool488 原位生成:In-situ Synthesis489 热型连铸:heated-mold continuous casting490 缩松:dispersed shrinkage491 CO2气体保护焊:CO_2 arc welding 492 伺服控制系统:servo system493 端盖:End cover494 铸造技术:casting technology495 水力学模拟:Hydraulics simulation496 再生铝:secondary aluminum497 轴套:axle sleeve498 成形模具:forming die499 抗磨性能:Wear Resistance500 水模拟:water model501 快速铸造:rapid casting502 电磁软接触:electromagnetic soft-contact503 石膏型:plaster mold504 大型铸钢件:heavy steel casting505 移动磁场:traveling magnetic field506 轴承座:bearing seat507 混合稀土:rare earth508 铸态球铁:as-cast nodular iron509 砂芯:sand core510 铸造性能:casting properties511 真空差压铸造:vacuum counter-pressure casting512 玻璃模具:glass mold513 双联熔炼:duplex melting514 设备改进:improvement of equipment 515 铸坯质量:billet quality516 局部加压:Local Pressurization517 旧砂再生:used sand reclamation518 结晶速度:Crystallization rate519 壳体:shell body520 干强度:dry strength521 浇注系统设计:gating system design 522 慢压射:slow shot523 图像分析仪:image analysis system 524 温度曲线:Temperature profile525 水力效率:hydraulic efficiency526 单晶铜:single-crystal copper527 电渣重熔:electroslag refining528 铸造起重机:casting crane529 Cu-Cr合金:Cu-Cr alloys530 堆垛机:stacking machine531 巴氏合金:Babbitt alloy532 自抗扰控制器:auto-disturbance rejection controller(ADRC)533 陶瓷型:ceramic mold534 直流磁场:direct current magnetic field 535 漏气:air leakage536 泡沫陶瓷过滤器:foam ceramic filter 537 过共晶高铬铸铁:Hypereutectic High Cr Cast Iron538 壁厚差:wall thickness difference539 HPb59-1黄铜:HPb59-1 Brass540 旋转喷吹:Spinning Rotor541 水玻璃旧砂:used sodium silicate sand 542 冷却强度:cooling strength543 耐磨铸铁:wear resistant cast iron544 ZA35合金:ZA35 alloy545 钠基膨润土:sodium bentonite546 熔体净化:melt purification 547 油雾润滑:oil-mist lubrication548 初生α相:primary α phase549 铸造生产:foundry production550 高电位:High Potential551 钴基高温合金:cobalt base superalloy 552 Al-Zn-Mg-Cu-Zr合金:Al-Zn-Mg-Cu-Zr alloy553 水平连续铸造:Horizontal continuous casting554 自硬砂:no-bake sand555 微区分析:micro-area analysis556 顺序凝固:sequential solidification557 非枝晶组织:Non-dendritic microstructure558 反变形:reverse deformation559 铬青铜:Chromium bronze560 湿型铸造:green sand casting561 配料计算:burden calculation562 热-力耦合:Thermo-mechanical Coupling 563 浇注时间:Pouring time564 铸造速度:Casting velocity565 亚共晶铝硅合金:Hypoeutectic Al-Si Alloy566 搅拌功率:power consumption567 热电场:thermoelectricity field568 铸铝合金:cast aluminum alloy569 陶瓷型铸造:Ceramic mold casting570 热凝固:Thermal coagulation571 界面压力:interface pressure572 多尺度模拟:multiscale simulation573 输送链:Conveyor Chain574 关键措施:key measures575 冒口系统:Riser system576 开炉:blowing in577 铜锡合金:Cu-Sn alloy578 无铅黄铜:unleaded brass579 球墨铸铁管:ductile cast iron pipe580 二次枝晶间距:secondary dendrite arm spacing581 GA-BP网络:GA-BP network582 铝合金熔体:aluminum alloy melt583 生产条件:production conditions584 铬铁矿砂:chromite sand585 再生效果:regeneration effect586 导向叶片:Guide Vane587 金属管:Metal tube588 空心管坯:hollow billet589 超高强铝合金:ultra-high strength aluminum alloy590 流变曲线:flow curve591 蠕化剂:vermicularizing alloy592 波浪型倾斜板:wavelike sloping plate 593 凝固特性:solidification characteristics 594 磨头:grinding head595 反白口:reverse chill596 黑线:black line597 净化技术:purifying technology598 中间合金:master alloys599 捏合块:Kneading Block600 硅相:silicon phase601 低过热度浇注:low superheat pouring 602 3004铝合金:3004 aluminum alloy603 液态压铸:liquid die casting604 中频感应电炉:intermediate frequency induction electric furnace605 球墨铸铁件:Ductile iron casting606 凝固路径:solidification path607 喷枪:spraying gun608 ZL201铝合金:ZL201 aluminum alloy 609 质量改善:quality improvement610 气路:gas circuit611 补缩设计:Feeding design612 油底壳:Oil sump613 汽缸体:cylinder block614 CREM法:CREM process615 铸造机:Casting machine616 提高措施:improving measure617 SIMA法:SIMA method618 铬系白口铸铁:Chromium white cast iron 619 高合金钢:High alloy steels620 增压系统:pressurization system621 收缩缺陷:shrinkage defect622 卧式离心铸造:Horizontal Centrifugal Casting623 测控仪:measuring and controlling instrument624 精铸件:Investment Castings625 制动阀:Brake valve 626 金属成型:metal forming627 有机纤维:organic fiber628 大气采样器:air sampler629 钢支座:steel bearing630 低频磁场:low frequency magnetic field 631 破坏面:failure surface632 偏轨箱形梁:bias-rail box girder633 数值处理:data processing634 双辊薄带:twin-roll thin strip635 合成铸铁:Synthetic cast iron636 堆冷:stack cooling637 行星轧制:planetary rolling638 铸造缺陷:foundry defect639 二次冷却:second cooling640 炉衬材料:lining material641 弥散强化:dispersion hardening642 2D70铝合金:2D70 aluminum alloy 643 A356铝合金:A356 Al alloy644 元胞自动机方法:Cellular Automaton method645 铸造温度:casting temperature646 铸造涂料:Foundry coating647 耦合模拟:coupled simulation648 充型能力:Filling ability649 复合尼龙粉:nylon composite powder 650 改性纳米SiC粉体:modified SiC nano-powders651 炉外脱硫:external desulfurization652 绿色铸造:green casting653 净化方法:purification method654 制芯:Core making655 铸态球墨铸铁:as-cast ductile iron656 复合轧辊:compound roller657 冷隔:cold shut658 薄壁件:thin-wall part659 铸钢车轮:cast steel wheel660 铁水质量:quality of molten iron661 热物理性能:Thermo-physical properties 662 7050铝合金:7050 Al alloy663 半固态金属加工:semi-solid metal forming664 半固态铸造:semisolid casting665 表面反应:Surface reactions666 KBE:knowledge-based engineering(KBE)667 倾斜板:inclined plate668 弯销:dog-leg cam669 多边形效应:polygonal effect670 脱模剂:releasing agent671 铜包铝线:copper clad aluminum wire 672 球化衰退:nodularization degeneration 673 低过热度:low superheat674 升降机构:lifting mechanism675 SLS:selective laser sintering(SLS)676 溢流槽:spillway trough677 制浆技术:pulping technology678 浇注工艺:casting process679 变形行为:deformation behaviors680 转移涂料:transfer coating681 牵引速度:haulage speed682 WC/钢复合材料:WC/steel composites 683 泡沫模样:foam pattern684 皮下气孔:surface blowhole685 超高强度铝合金:ultrahigh strength aluminum alloy686 薄带铸轧:strip casting687 造型线:moulding line688 工具杆:tool rod689 铸锭组织:ingot microstructure690 复合变质剂:composite modifier691 发热剂:Heating Agent692 液相线半连续铸造:liquidus semi continuous casting693 Mg-Al-Zn合金:Mg-Al-Zn alloy694 洛仑兹力:Lorenz force695 散射比:scattering ratio696 翻转机构:turnover mechanism697 超声铸造:Ultrasonic Casting698 A356:A356 alloy699 Mg-Li-Al合金:Mg-Li-Al alloy700 复合磁场:electromagnetic field701 单缸机:single cylinder engine702 快速产品设计:Rapid Product Design 703 真空阀:Vacuum valve704 界面传热系数:Interfacial heat transfer coefficient705 液态金属冷却:liquid metal cooling 706 散射衰减:scattering attenuation707 电磁场频率:Electromagnetic Frequency 708 半连续铸锭:semicontinuous casting ingot709 凝固补缩:Solidification Feeding710 Mg-Zn合金:Mg-Zn alloy711 连铸-热轧区段:CC-HR region712 TC11钛合金:titanium alloy713 损坏机理:failure mechanism714 元素分布:Distribution of element715 原位TiC颗粒:in-situ TiC particles716 均匀化处理:uniform heat treatment 717 使用要求:application requirement718 初生相形貌:morphology of primary phase719 枝晶形貌:dendritic morphology720 铸造废弃物:foundry waste721 AZ91D:AZ91D Magnesium Alloy722 高压铸造:high pressure die casting 723 细化变质:Refinement and Modification 724 结疤:scale formation725 连续铸轧:continuous casting726 热变形行为:Thermal Deformation Behavior727 壳型铸造:shell mould casting728 消失模:evaporative pattern729 手机外壳:mobile phone shell730 热管技术:heat pipe731 水韧处理:water toughening process 732 阻燃镁合金:Ignition proof magnesium alloys733 除尘装置:dust collector734 悬浮率:suspending rate735 非线性估算法:nonlinear estimation method736 电解铝液:electrolytic aluminum melt 737 双金属复合:bimetal compound738 离心浇注:centrifugal pouring739 抗磨损:abrasion resistance740 薄壁铸件:thin-walled casting741 盖包法球化处理:tundish-cover nodulizing process742 无定形二氧化硅:amorphous silicon dioxide743 排气槽:air vent744 高铬白口铸铁:high chromium cast iron745 熔炼炉:smelting furnace746 过滤机理:Filtration mechanism747 汽车覆盖件模具:auto panel die748 低合金高强度钢:Low-alloy high-strength steel749 精铸模具:investment casting mould 750 铝板带:aluminum plate751 球状石墨:nodular graphite752 铸轧区:casting-rolling zone753 接线盒:junction box754 铁水净化剂:purifying agent for molten iron755 石墨块:graphite block756 优质铸件:high quality casting757 处理温度:treatment temperature758 高尔夫球头:golf head759 固相体积分数:solid volume fraction 760 纳米SiC颗粒:SiC nanoparticle761 检测仪器:testing instrument762 Mg17Al12相:Mg_(17)Al_(12) phase 763 攻关:tackling key problems764 硬化机理:Hardening mechanism765 真空吸铸:vacuum suction766 热分析技术:thermal analysis technology 767 高频调幅磁场:High Frequency Amplitude-modulated Magnetic Field768 坯料制备:blank production769 补缩通道:feeding channel770 水基涂料:water-based coating771 球铁件:Ductile Iron Castings772 稀土Er:rare earth Er773 陶瓷型壳:Ceramic shell774 精密电铸:precision electroforming 775 发气性:Gas evolution776 充型凝固:Mold Filling and solidification 777 铝带:aluminum strip778 新SIMA法:new SIMA method779 AZ91HP镁合金:AZ91HP magnesium alloy780 电子束冷床熔炼:electron beam cold hearth melting781 粘砂:metal penetration782 物理冶金学:physical metallurgy783 砂处理:Sand preparation 784 铸造裂纹:casting crack785 气冲造型:air impact molding786 金属模:metal mould787 磷共晶:phosphor eutectic788 近液相线半连续铸造:nearby liquidus semi-continuous casting789 液固反应:liquid-solid reaction790 呋喃树脂:furane resin791 汽缸盖:Cylinder Cap792 充型模拟:Simulation of mold filling 793 铸造工艺CAD:casting technology CAD 794 粘土砂:Clay sand795 冲天炉熔炼:cupola smelting796 射料充填过程:filling process797 半固态金属:semisolid metals798 大型铸件:heavy casting799 电机端盖:motor cover800 熔铸工艺:casting process801 加入方法:Joined technique802 区域熔化:zone melting803 真空除气:Vacuum Degassing804 相平衡热力学:phase equilibrium thermodynamics805 溢流系统:overflow system806 Al-Ti-C中间合金:Al-Ti-C master alloys 807 晶界碳化物:grain boundary carbide 808 净化装置:purification equipment809 液穴形状:sump shape810 铝合金铸造:Aluminum Alloy Casting 811 修模:Tool modification812 SKD61钢:SKD61 steel813 软化退火:Softening Annealing814 大齿轮:Large Gear815 合金渗碳体:Alloy cementite816 工艺性能试验:technological property tests817 硅碳比:Si/C ratio818 冷却曲线:Cooling Curves819 壁厚不均:non-uniform wall thickness 820 V法铸造:V process821 铸造系统:casting system822 电渣加热:electroslag heating823 残余内应力:residual stress824 表面清理:surface cleaning825 黄斑:macular region826 电磁振荡:Electromagnetic Oscillation 827 初始组织:initial structure828 气密性能:air permeability performance 829 电极调节:electrode adjustment830 气体速度:gas velocity831 抑制方法:suppressing method832 孔洞率:void ratio833 废品率:reject rate834 气动装置:pneumatic actuator835 应急发电机:emergency generator836 缺陷修复:Error repair837 有机高聚物:organic polymer838 理论成果:theoretical achievements 839 凝固曲线:Solidification curve840 元胞自动机法:cellular automaton841 ZL101铝合金:ZL101 Al alloy842 高韧性球墨铸铁:High toughness ductile iron843 搅拌方式:stirring method844 沉积坯尺寸:deposit dimension845 高锌镁合金:high zinc magnesium alloy 846 雕铣机:carves-milling machine847 铸造模拟:Casting simulation848 精益设计:lean design849 无余量精密铸造:Investment Casting 850 热顶铸造:hot-top casting851 羊油:mutton tallow852 压射速度:injection speed853 DOE试验:DOE experiment854 超声波振荡:ultrasonic oscillation855 酯固化:ester cured856 缸盖罩:cylinder head cover857 尺寸变化率:dimension variance rate 858 大型铸铁件:heavy iron castings859 单晶铜线材:copper single crystal wire 860 厚大断面球墨铸铁:heavy section ductile iron861 钛镍合金:Ti-Ni alloy862 实型铸造:Full Mold863 6082合金:6082 Alloy864 奥贝球铁:austenite-bainite nodular-iron 865 白口组织:white microstructure866 铸轧工艺参数:casting process parameters867 铸铁轧辊:cast iron milling roll868 强化处理:strengthen treatment869 半固态成型:semi-solid processing870 深腔:deep cavity871 耐热镁合金:Heat resistant magnesium alloys872 斜滑块:inclined sliding block873 回炉料:recycled scrap874 半固态坯:semi-solid billet875 感应熔炼:inductive melting876 链板:chain board877 含泥量:sediment percentage878 模料:mould material879 复合界面:compounded interface880 铸造方法:casting methods881 模温:mold temperature882 轻合金:light alloys883 增碳工艺:recarburation process884 定位装置:location equipment885 加压速率:pressurization rate886 半固态流变成形:Semi-solid Rheoforming887 复杂铸件:Complicated casting888 高强度灰铸铁:High strength grey cast iron889 针孔度:pinhole degree890 中频感应加热:intermediate frequency induction heating891 石墨转子:graphite rotor892 修磨机:Grinding machine893 动态顺序凝固:dynamic directional solidification894 针状组织:acicular structure895 粒度配比:particle size distribution896 铝合金壳体:aluminum alloy shell897 内冷铁:Internal chill898 铸件质量:quality of casting899 精炼效果:refining effect900 发动机缸体:cylinder body901 增碳剂:carburizing agent902 7005铝合金:7005Al alloys903 复合孕育:Multiple inoculations904 复合孕育剂:compound inoculation905 气孔缺陷:blowhole defect906 铁液质量:quality of molten iron907 钛铝合金:TiAl alloys908 7A09铝合金:7A09 aluminium alloy 909 SiC颗粒增强:SiC particle reinforcement 910 沉淀相:precipitated phases911 铝母线:aluminum bus912 凝固分数:solid fraction913 球化组织:spheroidized microstructure 914 蠕铁:vermicular iron915 组织均匀性:microstructure uniformity 916 压铸型:die-casting die917 镁合金压铸机:magnesium alloy die casting machine918 凝固微观组织:solidification microstructure919 灰铸铁件:Gray iron casting920 最大剪应力:ultimate shear stress921 热挤压成形:hot extrusion922 铝合金铸件:aluminium alloy cast923 抗湿性:humidity resistance924 耳子:rolling edge925 结合面:joint face926 推管:ejector sleeve927 黑点:black spot928 铝铸件:aluminum casting929 固相分数:Solid fraction930 快干硅溶胶:Quick-dry silica sol931 激冷铸铁:Chilled iron932 负压消失模铸造:Negative pressure EPC 933 LC9铝合金:LC9 aluminium alloy934 接触层:Contact layer935 工频炉:main frequency furnace936 消失模涂料:lost foam casting coating 937 高温均匀化:high temperature homogenization938 均热炉:pit furnace939 镁合金轮毂:magnesium wheel940 平砧:flat anvil941 铝合金扁锭:aluminum alloy slab942 凝固界面:solidifying interface943 低温冲击功:Low Temperature Impact Energy944 复合发泡剂:Composite Foaming Agent 945 交叉型芯:Crossed Core946 SCR连铸连轧:SCR continuous casting-rolling947 FS粉:FS powder948 AZ81镁合金:AZ81 alloy949 ZL109活塞:ZL109 piston950 掉砂:dropping sand951 型腔壁厚:cavity wall thickness952 铝件:aluminum part953 导向装置:guide mechanism954 彩色云图:color contour image955 柴油机缸体:Diesel engine cylinder block 956 圆盘铸锭机:casting wheel957 热风冲天炉:Hot-blast cupola958 充氧压铸:pore-free die casting959 铝钛硼细化剂:Al-Ti-B refiner960 保温冒口:Insulating riser961 共晶相:Eutectic phase962 夹砂:sand inclusion963 无冒口铸造:Riserless casting964 充芯连铸:continuous core-filling casting 965 熔体混合:melt mixing966 保护渣道:mold flux channel967 碱性酚醛树脂:alkaline phenolic resins 968 细深孔:Long-deep hole969 行星减速机:planetary reducer970 直接铸型制造:direct casting mold manufacturing971 引锭头:dummy bar head972 静置炉:holding furnace973 工艺出品率:process yield974 真空法:vacuum process975 石灰石砂:limestone sand976 整体浇注:monolithic casting977 混料工艺:mixing procedure978 螺旋套:screwy sheath979 胶凝机理:gelling mechanism980 覆砂铁型:permanent mould with sand facing981 球铁铸件:ductile iron casting982 成型率:molding rate983 球状组织:spherical structure984 电弧冷焊:arc cold welding985 钢液流场:flow field of molten steel。
外加应力下AZ91D镁合金在NaCl溶液中的电化学行为
引用格式:王占业.外加应力下AZ91D镁合金在NaCl溶液中的电化学行为[J].石油化工腐蚀与防护,2022,39(4):11 15. WANGZhanye.ElectrochemicalbehaviorofAZ91DmagnesiumalloyinNaClsolutionunderappliedstress[J].Corrosion&ProtectioninPetrochemicalIn dustry,2022,39(4):11 15.外加应力下AZ91D镁合金在NaCl溶液中的电化学行为王占业(马鞍山钢铁股份有限公司技术中心,安徽马鞍山 243000)摘要:主要研究了外加应力下AZ91D镁合金在NaCl溶液中的极化曲线和阻抗谱,结果表明:只有当AZ91D镁合金试样的外加应力值超过屈服强度和发生塑性应变时,才能激发AZ91D镁合金的电化学活性,从而加速腐蚀。
关键词:AZ91D镁合金;应力;电化学收稿日期:2021 08 24;修回日期:2022 07 28。
作者简介:王占业(1986-),工程师,硕士,主要研究方向为家电用新产品开发及应用技术研究。
E mail:307816921@qq.com 镁合金是密度最低的金属结构材料,具有高的比强度、比刚度以及良好的阻尼性能和易加工性、易回收再生性,被誉为21世纪的超轻量材料。
近年来,由于环境和能源问题越来越受重视,镁合金的广泛应用已成为一种趋势。
发达国家正在大力开发镁基材料,镁基材料被认为是21世纪最具开发和应用潜力的绿色材料[1]。
镁合金之所以没有得到铝合金那样的大规模应用,其中最重要的一个原因就是其耐电化学腐蚀性能以及耐应力腐蚀性能不及铝合金。
由于镁是极其活泼的金属,标准电极电位很负(-2.36V),即使在室温下也会与空气发生反应生成一层自然氧化膜,这层膜对基体虽有一定的防护作用,但不适用于大多数腐蚀性环境,尤其是含Cl-的环境[2]。
镁合金作为结构材料应用的最大用途是铸件,其中90%以上是压铸件,使用过程中难免受到应力影响[3]。
汽车行业铝合金材料对照表
Materials Comparison 材料对照表Applications for precision diecasting are limitless and though Value and product differential. Dynacast operates zinc ,aluminium and magnesium diecasting facilities globally, manufacturing miniature to large precision components utilizing proprietary multi-slide and conventional hot and cold chamber diecasting technologies. dynacast knowledge , combined with structured project management methods , supports customers from concept , though rapid prototyping , tooling and pre-production stages as well as into full-scale manufacturing .Zinc Alloy composition 锌合金成分% ALLOY 2 ALLOY 3 ALLOY 5 ALLOY7 ZA8 ZA27 Z210 AcuZinc5 BERIC Aluminium 铝 3.5-4.3 3.5-4.3 3.5-4.3 3.5-4.3 8.0-8.8 25.0-28.0 1.7-2.5 2.8-3.3 3.0-4.0 Copper 铜 2.5-3.0 0.25max 0.75-1.25 0.25max 0.8-1.3 2.0-2.5 0.8-1.2 5.0-6.0 3.0-4.0 Magnesium 镁 0.02-0.050.02-0.050.03-0.080.005-0.02 0.015-0.03 0.01-0.02 0.03-0.08 0.025-0.05 0.04 Iron (max) 铁 0.1 0.1 0.1 0.075 0.075 0.075 0.02 0.075 - Lead (max) 铅 0.005 0.005 0.005 0.003 0.006 0.006 0.006 0.005 - Cadmium(max) 镉 0.004 0.004 0.004 0.002 0.006 0.006 0.006 0.004 - Tin (max) 锡 0.003 0.003 0.003 0.001 0.003 0.003 0.001 0.003 - Nickel 镍 - - - 0.005-0.02- - - - - Others 其他 - - - - - - - - 0.04Be,0.1Ti Zinc 锌RemainderRemainderRemainderRemainderRemainderRemainderRemainderRemainderRemainderMAGNESIUM Alloy composition ALUMINIUM Alloy composition 镁合金成分 铝合金成分Designation & StandardsCross Reference材料 Material USDesignation EuropeanDesignation USStandard European Standard Zinc 锌Alloy 2 ZP2 ASTM B86 EN12844 Alloy 3 ZP3 ASTM B86 EN12844 Alloy 5 ZP5 ASTM B86 EN12844Alloy 7 - ASTM B86 - ZA8 ZP8 ASTM B791 EN12844 ZA27ZP27 ASTM B86 EN12844 Aluminium 铝A380 46500 ASTM B85 EN1706 A383 46100 ASTM B85 EN1706B390- ASTM B85 - Magnesium 镁AZ91D MC21121 ASTM B94 EN1753 AM60AMC21230ASTM B94EN1753%AZ91D AM60A %A380 A383 B390 Aluminium 铝 8.3-9.7 5.5-6.5 Beryllium 铍- - - Magnesium 镁 0.15-0.5 0.13-0.6 Copper 铜3.0-4.0 2.0-3.0 4.0-5.0 Zinc 锌0.35-1.0 0.22max Iron (max) 铁 1.3 1.3 1.3 Silicon (max) 硅 0.1 0.5 Magnesium 镁 0.1max 0.1max 0.45-0.65 Copper (max) 铜 0.03 0.35 Manganese 锰 0.5max 0.5max 0.5max Nickel (max) 镍 0.002 0.03 Phosphorus 磷 - - 0.01min Iron (max) 铁0.005 - Silicon 硅 7.5-9.5 9.5-11.5 16.0-18.0 Other Metallic (max each) 0.02 -Zinc (max) 锌 3.0 3.0 1.5 Magnesium 镁RemainderRemainderNickel (max) 镊 0.5 0.3 0.1 Tin 锡 0.35max 0.15max - Titanium 钛 - - 0.1max Others 0.5total 0.5total 0.2total Aluminium 铝RemainderRemainderRemainderThe optimum material choice.Dynacast produces precision diecasting components in a broad range of zinc ,aliminium and magnesium alloys .Each of these alloys has unique mechanical and physical characteristics to match your specific application .For more details on materials , refer to the “design help “ section of our Website , including information on country specific standards .Mechanical Properties 机械性能材料Material牌号Designation拉伸强度Tensile Strength屈服强度(0.2%offset)Yield Strength冲击韧性Impact Strength剪切强度Shear Strength硬度Hardness Brinell50mm内的延长%Elongation % in 50mm Mpa psi Mpa psi J ft.lb. Mpa psi 91 7锌ZincALLOY2 358 52000 - - 48 35 317 46000 100 8 ALLOY3 248-283 36-41000 221 32000 58 43 214 31000 82 10 ALLOY5 289-331 42-48000 269 39000 65 48 262 38000 91 7 ALLOY728341000221320005440214310008013 ZA8365-38653-560002904200032-4824-35275400001038 ZA27425610003715300059325470001181~3 Z210 280 405000 - - - - - - 90 8 ACuZinc5 407 59000 338 49000 - - 280 4060 118 5 BERIC 392 56500 - - - - - - 130 8镁Magnesium AZ91D23034000159230003213820000630.5-3 AM60A 220 32000 131 19000 6 5 62 8铝Aluminum A38032547000159230003219528000834 3833004300013119000322002900065-901~3 B390283410002423500065200290001201黄铜Brass C38500 430-530 62-77000 228 33000 17 12 - - 143 15-25 C38000 420-460 61-67000 228 33000 16 12 - - 133 20-25钢Steel SAE1020 448 65000 331 48000 87 64 - - 143 36 Physical Properties 物理性能材料Material牌号Designation密度Density熔化范围Melting Range热导率Thermal Conductivity热量扩张Thermal Expansion电传导率(%IACS)ElectricalConductivity g/cm3 lb/cu o C o F W/m o C Btu-ft/h-ft20F10-6C-1x10-6o F-1锌ZincALLOY2 6.7 0.24 379-390 715-734 105 60.5 27.4 15.2 25 ALLOY3 6.7 0.24 381-387 719-728 113 65.3 27.4 15.2 27 ALLOY5 6.7 0.24 380-386 717-727 109 62.9 27.4 15.2 26 ALLOY7 6.70.24381-387718-72811365.327.415.227 ZA8 6.30.23375-404707-75911566.323.312.927.7 ZA2750.181376-484708-90312572.52614.429.7 Z210 6.9 0.25 380-403 717-758 100 57.6 28 15.5 - ACuZinc5 6.850.25402-460755-86010661.22413.326.9 BERIC 6.8 0.24 390 734 105 60.5 24 13.3 -镁Magnesium AZ91D 1.810.066468-596875-11057241.8271511 AM60A 1.80.065540-6151005-114062362614.412.4铝Aluminum A380 2.70.097537-5931000-11009655.62111.727 383 2.70.097525-570977-105810057.92011.126 B390 2.75 0.099 507-649 945-1200 134 77.5 17.9 10 27黄铜Brass C385008.40.3880-9001616-165211365.32614.426 C380008.40.3900-9201652-168810962.92111.725钢Steel SAE10207.80.28142626005028.912.1 6.712。
AZ91D合金的时效分析.pdf
Ξ 收稿日期:2006-05-29作者简介:黄光杰(1964-),男,重庆江津人,博士,副教授,主要从事材料加工方面的研究。
【材料科学】AZ91D 合金的时效分析Ξ黄光杰,赵煜炜(重庆大学材料科学与工程学院,重庆 400045)摘要:通过光学显微观察、扫描电镜等实验手段对AZ 91D 镁合金在时效处理过程中组织和性能的变化规律进行了研究,结果表明:时效析出相可大大增加合金的硬度值,但当析出达到一定程度后,合金硬度稳定在较高的水平上;时效可使沉淀相大量析出,强化效果明显,可显著提高材料的性能.关 键 词:镁合金;β-Mg 17Al 12相;时效中图分类号:TG 166.4 文献标识码:A文章编号:1671-0924(2006)11-0038-03Aging Analysis of AZ 91D Magnesium AlloyHUANG G uang-jie ,ZHAO Y u-wei(C ollege of Materials Science and Engineering ,Chongqing University ,Chongqing 400045,China )Abstract :The variable rules of contexture and performance of AZ91D magnesium alloy in the course of aging treatment have been investigated with the aids of OM and SE M.It has been concluded that the aging precipi 2tated phase can greatly increase the hardness value of the alloy ,but the degree of hardness of the alloy keeps at the higher level when the number of precipitated phase reaches a given degree ;and the aging can make precipitated phase separate out considerably with noticeable strengthening effect ,which greatly increases the material performance.K ey w ords :magnesium alloy ;β-Mg17Al12phase ;aging0 引言 镁合金作为最轻的工程金属材料,具有比重轻、比强度及比刚度高、切削加工性优良、导热性好、电磁屏蔽能力强、防震性好以及优异的阻尼性能和易于回收等一系列独特的优点,能满足航空航天、现代武器装备和汽车工业对减重、节能的要求,被誉为“21世纪的绿色工程材料”[1-2].其中AZ 91D 是目前应用最为广泛的镁合金,具有良好的力学性能、抗腐蚀能力和铸造性能,并能在高温下短时工作.在所有的Mg -Al 系合金中,只有AZ 91合金可热处理强化[3].AZ 91D 合金在固溶和时效处理过程中随着β-Mg 17Al 12溶解、再析出及析出过程形态的转变,都导致合金性能的变化.本文中通过对AZ 91D 铸造合金的时效处理,研究了AZ 91合金在时效处理过程组织的变化及组织对性能的影响规律.1 实验方法 实验所用材料为AZ 91D 铸造镁合金,经400℃固熔热处理10h 后,采用170℃进行不同时间的时效处理,取样观察合金的时效过程.样品经过研磨抛光后采用苦味酸溶液腐蚀,采用Olympus 光学显微镜进行金相观察,再通过扫描电子显微镜(SE M )对合金的微观组织进行进一步观察.第20卷 第11期Vol.20 No.11重 庆 工 学 院 学 报Journal of Chongqing Institute of T echnology2006年11月Nov.20062 实验结果与分析2.1 AZ 91D 合金的形貌观察.图1给出了此合金的典型铸态金相组织,由图可知合金的铸态组织形貌是由初晶的α-Mg 枝晶结构以及沿着枝晶分布的共晶α-Mg +粗大β-Mg 17Al 12相组成.在电镜下还可发现在α-Mg 枝晶壁外缘存在有β-Mg 17Al 12相与α-Mg 形成的非连续的层状析出物及微细的AlMn 相,如图2所示.这些相在对合金进行固溶热处理时是无法消除的.此外,晶界处还存在少量不溶解的共晶β-Mg 17Al 12相[4].图1 AZ 91D 合金的铸态金相组织图2 AZ 91D 合金铸态显微组织2.2 合金的固溶时效组织.合金时效前进行固溶处理,经固溶处理后合金的组织如图3所示,晶内的β-Mg 17Al 12相基本溶入到α-Mg 基体中,形成了过饱和固溶体.时效处理时,溶入到α-Mg 基体中的β-Mg 17Al 12相会再次析出,图4给出了AZ91D 合金在保持170℃的温度时不同时效时间所形成的组织.从图4a )中可以看出时效过程中β-Mg 17Al 12相是直接沿晶界非连续析出的,由于时效时间比较短,析出相很少,多集中在晶界处.随着时效时间的延长,β-Mg 17Al 12析出相的数目持续增加,而当时效时间增为5h 时,已有一定量的沉淀相析出,析出物也由晶界向晶内蔓延,如图4(b )所示.继续增加时效时间,析出相不断增多.当时效时间增为8h 时,已经有大量的沉淀相析出,而且晶粒粗大,如图4(c )所示.图3 AZ 91D 合金的固溶态金相组织a )2h ,b )5h ,c )8h图4 AZ 91D 合金的不同时间时效金相组织2.3 合金时效过程分析.固溶后得到的过饱和组织在受热条件下,沿着晶界析出第二相.这种沿晶界的析出相为非连续片层状组织,其形貌如图5所示.镁合金的时效过程不存在过渡相阶段,是β-Mg 17Al 12相直接沿晶界析出.由于β-Mg 17Al 12相位向与基体不符,不存在共格关系,所以在时效的初始阶段,为了利于形核析出,该相以细小片状的形式平行于基体形成非连续析出.随着时间的延长,从晶界93黄光杰,等:AZ91D 合金的时效分析开始的非连续沉淀析出进行到一定程度后,晶内产生连续析出.这是由于伴随着晶内β-Mg 17Al 12相的析出过程,β-Mg 17Al 12相周围基体的含铝量不断下降,晶格常数连续增大,使得晶格常数的变化是连续的,形成连续析出[5-8].连续析出和非连续析出是β-Mg 17Al 12相按析出方式划分的两种情况,它们的基本位向关系相同,均为[111]β∥[2110]α,(011)β∥(0001)α[8].从20世纪30年代开始对Mg -Al 合金时效过程的研究表明,在不同的时效条件下,两种析出机制是相互竞争的.如果非连续析出较多则连续析出进行得不够充分,反之亦然[9].当充分时效后,合金的整个基面上基本都分布着析出的β-Mg 17Al 12相,合金中还存在Al-Mn 相.图5 AZ 91D 合金非连续沉淀SE M形貌图6 合金不同温度时效的硬度值 时效析出相大大增大了合金的硬度值.图6给出了不同时间时效后得到的合金硬度值.在一定温度下时效,伴随着沉淀相的析出,合金的硬度值比固溶处理后有了明显的升高,特别是由固溶处理到时效10h 后.但当析出达到一定程度后,合金硬度变化并不明显,这说明在较短的时效时间内使得沉淀相达到一定的数量后,它的硬度就稳定保持在一个较高的水平上,说明该组织在时效温度下比较稳定.3 结论 1)时效析出相可显著增加合金的硬度值.2)沉淀相达到一定数量后,组织在时效温度下较稳定.3)时效可使沉淀相大量析出,强化效果明显.参考文献:[1] 余琨,黎文献,李松瑞.变形镁合金材料的研究进展[J ].轻合金加工技术,2001,29(7):6-11.[2] 黄光杰,赵国丹1AZ 31铝合金热变形规律的研究[J ].重庆工学院学报,2006,20(2):60-64.[3] 吕宜振.Mg -Al -Zn 合金组织、性能、变形和断裂行为研究[D].上海:上海交通大学,2001.[4] P olmear I J.Light Alloys[M].3rd edition.[S.l.]:Ddi 2vision of H odder Headline P LC ,1995.[5] 刘正,张奎,曾小勤.镁基轻质合金理论基础及应用[M].北京:机械工业出版社,2002.[6] Lee Y C ,Dahle A K,S tJohn D H.The role of s olute ingrain refinement of magnesium[J ].Metallurgical and Mate 2rials T ransactions A ,2000,31(11):2895-2906.[7] 唐仁正.物理冶金基础[M].北京:冶金工业出版社,1997.[8] Crawley A F ,Milliken K S.Precipitate M orphology andOrientation Relationships in an Aged Mg -9%Al -1%Zn -0.3%Mn Alloy[J ].Acta Metall.,1974,22:557-562.[9] Zhang M X ,K elly P M.Crystallography of Mg17Al12pre 2cipitates in AZ 91D alloy [J ].Scripta Materialia ,2003,48(7):647-652.(责任编辑 刘 舸)(上接第37页)constitutive m odel[J ].Int J S olids S truct ,2001,38:6925-6940.[7] T anaka K.Thermalmechanical sketch of shape mem ory ef 2fect-one-dimensional tensile behavior [J ].Res Mechanica ,1986,18(3):251-263.[8] Armstrong R J ,Frederick C O.A mathematical representa 2tion of the multiaxial Bauschinger effect [J ].G eneral E lec 2tricity G enerating Board ,1966(3):731.[9] Nakanshi N ,M ori T ,Miura S ,et al.Pseudoelasticity inAu-Cd therm oelastic martenite [J ].Phil Mag ,1973,28:277-292.(责任编辑 陈 松)04重庆工学院学报。
无磷脱脂粉 MSDS-中英文
脱脂剂安全技术说明书(中英文)根据GB16483---2000编写产品型码:产品名称:无磷脱脂剂印刷日期:2019年10月8日修改于:2023年10月08日MATERIAL SAFTEY DATA SHEETCompiled according to GB16483-2000.Product Product Name: Defatted Powder Printed Date:8th,Oct.2019 Revised: 8th,Oct.2023第一部分化学品及企业标识化学品中文名称:无磷脱脂剂化学品英文名称:DEGREASING AGENT企业名称:地址:传真号码:企业应急电话:技术说明书编码:生效日期:国家应急:SECTION 1: CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Chemical Chinese Name: Defatted PowderChemical English Name: Defatted PowderManufacture’s Name:Address: Zip Code: 201512Fax: Enterprise Emergency Tel:Technical specification code: Effective date :Country Emergency :第二部分成分组成信息纯品□混合物■化学品名称:无磷脱脂剂有害物成分:无浓度:粉体CAS 含量硅酸钠(98%): 1344-09-8 70% - 80%碳酸钠: 497 - 19 - 8 10% - 20% SECTION 2: COMPOSITION INFOMATION ON INGREDIENTSPure Product□Mixture■Chemical Name: Defatted PowderHarmful Composition: No Concentration: PowderCAS ContentSodium Silicate(98%): 1344-09-8 70% — 80%Sodium Carbonate:497-19-8 10% — 20%第三部分危险性概述危险性类别:强碱性化学物质侵入途径:碱性腐蚀健康危害:对人体无害,直接接触对皮肤有轻微粗糙反应环境危害:碱化燃爆危险:本品不燃,具腐蚀性、刺激性,可致人体灼伤SECTION 3: HAZARDS SUMMARIZEClassification of Hazards: Strong Alkaline ChemicalsRoutes of Invasion: Alkaline CorrosionHealth Hazards: Harmless to body, a slightly rough skin reaction if directly contacting Environment Hazards: AlkalizationFire and explosion hazards: N on-flammable, with corrosive, irritant, causing burns to human body第四部分急救措施皮肤接触:用水清洗眼睛接触:以大量的水冲洗被接触的眼睛,同时联系医院.没有医生的许可不要施任何药物于患者的眼睛。
镁合金复合细晶强化研究进展
精 密 成 形 工 程第13卷 第6期 98 JOURNAL OF NETSHAPE FORMING ENGINEERING2021年11月收稿日期:2021-03-17基金项目:国家自然科学基金面上项目(52071042,51771038);重庆英才计划(CQYC202003047);重庆市自然科学基金(cstc2018jcyjAX0249,cstc2018jcyjAX0653) 作者简介:章欧(1997—),男,硕士生,主要研究方向为镁合金组织与性能的优化调控。
通讯作者:胡红军(1976—),男,博士,教授,主要研究方向为轻合金材料科学与工程。
镁合金复合细晶强化研究进展章欧1,胡红军1,胡刚1,张丁非2,戴庆伟3,欧忠文4(1. 重庆理工大学材料科学与工程学院,重庆 400050;2. 重庆大学 材料科学与工程学院,重庆 400044;3. 重庆科技学院 冶金与材料学院,重庆 401331;4. 陆军勤务学院 化学与材料学院,重庆 401311) 摘要:细化镁合金的晶粒可极大改善其综合力学性能,单一的细化方法包括在熔体中施加外力场作用、高压和激冷作用以及大塑性变形,单一细化方法下的材料性能难以满足实际需求,且生产效率低、成本高、质量难以保证。
2种及以上细化晶粒方法的结合可以实现镁合金性能的极大提升,通过评述镁合金复合加工方法,包括挤压铸造-固态挤压成形、挤压铸造-正挤压成形、FE-CCAE 复合变形工艺、电磁脉冲结合轧制工艺、超声振动-挤压加工等,详细阐述镁合金复合细晶强化工艺的研究进展,为进一步研究和开发更加高效绿色的镁合金晶粒细化复合成形技术提供参考。
关键词:镁合金;复合加工;外加场DOI :10.3969/j.issn.1674-6457.2021.06.013中图分类号:TG146.2+2 文献标识码:A 文章编号:1674-6457(2021)06-0098-08Research Progress on Composite Refinement Strengthening of Magnesium AlloyZHANG Ou 1, HU Hong-jun 1, HU Gang 1, ZHANG Ding-fei 2, DAI Qing-wei 3, OU Zhong-wen 4(1. School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050, China;2. School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;3. School of Metallurgy and Materials, Chongqing University of Science and Technology, Chongqing 401331, China;4. School of Chemistry and Materials, Army Service College, Chongqing 401311, China) ABSTRACT: The grain refinement of magnesium alloy can greatly improve the comprehensive mechanical properties. Single refinement method includes applying external force field, high pressure and chilling action, and large plastic deformation in melt. The properties of materials processed by single refinement method are difficult to meet the actual production needs, and the production efficiency is low, the cost is high, and the quality is difficult to guarantee. The combination of two or more grain re-finement methods can achieve greater improvement in the properties of magnesium alloys. Through the review on composite processing methods of magnesium alloy, including squeeze casting-solid extrusion forming, squeeze casting-positive extrusion, FE-CCAE composite deformation process, electromagnetic pulse combined rolling process, ultrasonic vibration-extrusion proc-essing, et al, the research progress on composite refinement strengthening process of magnesium alloy is expounded in detail, which provides a reference for further research and development of more efficient and green composite forming technology of refining magnesium alloy grains.KEY WORDS: magnesium alloy; composite processing; external field. All Rights Reserved.第13卷第6期章欧等:镁合金复合细晶强化研究进展99镁合金作为最轻的结构材料,具有比强度和比刚度高等特点,被誉为“21世纪绿色工程金属”。
测定硫酸根浓度如何确定钡镁合剂用量
测定硫酸根浓度如何确定钡镁合剂用量杜 瑾,齐芳云(西北电力设计院,陕西 西安 710032)摘要:由于EDTA 络合容量法测定硫酸根离子的传统方法过于复杂,且肉眼很难分清浑浊程度。
在溶液中,硫酸根的主要存在方式是与钙镁等二价离子结合,文章通过大量试验数据找出钙镁、钡镁合剂与硫酸根的关系,进而确定在试验中应添加钡镁合剂用量,使EDTA 络合容量法测定硫酸根离子高效准确。
关键词:EDTA ;络合容量法;硫酸根离子;钡镁合剂。
中图分类号:TM621 文献标志码:B 文章编号:1671-9913(2019)01-0042-04How to Adding a Suitable Quantity Barium and Magnesium Mixture for Determination of Sulfuric Acid Radical IonDU Jin, QI Fang-yun(Northwest Electric Power Design Institute Co.,Ltd., Xi'an 710032, China)Abstract: Determination of sulfuric acid radical ion by EDTA complex titration method, the traditional method is too complicated, and the naked eye can hardly distinguish the muddy degree. Sulfuric acid radical ion, known mostly in the form of combined with the bivalent ion like calcium and magnesium in solution. In this paper, do a great deal of experimentation for finding the relationship of calcium and magnesium ,barium and magnesium mixture with sulfuric acid radical ion. To take a step further, adding a suitable quantity barium and magnesium mixture. Make the EDTA complex titration method more efficiency and accuracy.Key words: EDTA; complex titration method; sulfuric acid radical ion; barium and magnesium mixture.* 收稿日期:2017-08-21作者简介:杜瑾(1989- ),女,陕西西安人,硕士研究生,工程师,从事土工试验、水质分析工作。
加拿大拟定肟菌酯的最大残留限量
加拿大拟定肟菌酯的最大残留限量
2008年5月20日,加拿大卫生部有害生物管理局(PMRA)拟定肟菌酯(Trifloxystrobin)最大残留限量。
目前,加拿大的最大残留限量是通过官方公报进行磋商后,根据食品药物法规(FDR)制定的。
通过Bill C-28对食品药物法的修订,预计于2008年生效,这将允许按照有害生物控制产品法合法的制定杀虫剂最大残留限量,而无须经过FDA所属法规的批准。
本文件的目的是对所列肟菌酯(Trifloxystrobin),包括代谢物CGA-321113的MRLs进行咨询,这些限量是在PCPA于2008年6月28日生效后由PMRA拟定的。
咨询活动已经在Bill C-28生效之前开始,以便在FDA被修改后尽快合法的制定本文件所列的MRLs。
(注意:在将有关杀虫剂最大残留限量立法从食品药物法案过渡为有害生物控制产品法案(对拟定最大残留限量的磋商(PMRL2006-01))的文件中拟定的0.04ppm最大残留限量在G/SPS/N/CAN/276中通报)。
所列产品补充了作物14组核果的最大残留限量。
上海第二工业大学获科学道德和学风建设宣讲教育优秀案例
102上海第二工业大学学报2019年第36卷solution[J].J Magnesium Alloys,2017,5(3):277-285. [13]BUFFA G,CAMPANELLA D,FRATINI L,et al.AZ31magnesium alloy recycling through friction stir extrusion process[J].Int J Mater Forming,2016,9(5):613-618. [14]HU M L,JI Z S,CHEN X Y.Effect of extrusion ratio onmicrostructure and mechanical properties of AZ91D magnesium alloy recycled from scraps by hot extrusion[J].Transactions of Nonferrous Metals Society of China,2010, 20(6):987-991.[15]CHEN C G,SI Y J,YU D M,et al.Electrochemical behavior of AZ31magnesium alloy in MgSC)4solution[J].The Chinese Journal of Nonferrous Metals,2006,16(5): 781-785.[16]FENG X S,XIONG Z P,SI Y J,et parison of electrochemical behaviors of AZ31and AZ61magnesium alloy sin MgSC)4solution[J].Corrosion and Protection,2007, 28(11):553-555.[1*7]SONG G L,ATRENS A.Corrosion mechanisms of magnesium alloys[J].Advanced Engineering Materials,1999, 1(1):11-33.简讯上海第二工业大学获科学道德和学风建设宣讲教育优秀案例6月20日下午,以“弘扬爱国奋斗精神,争做科技创新先锋”为主题的2019年上海市科学道德和学风建设宣讲教育报告会在科学会堂举行。
热处理对细晶AZ91D镁合金组织和性能的影响
中国铸造装备与技术6/20096结束语对国内外现有的耐热钢而言,要求在1200℃长时间带载工作,已远远超过了任何合金钢的本能,因此必须对还原罐化学成分、冶炼和铸造工艺进行调整和互补,采取合金强化和工艺化同时进行才能达到提高还原罐使用寿命和降低成本的要求。
如要大幅度提高还原罐使用寿命,降低成本,选取二种不同成分的适用于不同工作温度区间的耐热钢的方法是必须的也是可行的。
参考文献[1]李志华,戴永年.我国镁工业现状[J].昆明理工大学学报,2001,26:83~86.[2]李德臣.制镁还原罐的研制[J].铸造技术,2002(2):124~128.[3]郭国文.一种新的炼镁还原罐结构[J].铸造,2001(7):395~397.[4]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,l983,9:41-98.[5]黄乾尧等.高温合金[M].北京:冶金工业出版社,2000,4:10~39.[6]合金钢编写组.合金钢[M].北京:机械工业出版社,1978,9:210-225.20世纪90年代以来,镁合金在世界汽车工业中的应用以每年约20%的速度增长,其中又以AZ 和AM 两个Mg-Al 系铸造镁合金的应用最为广泛[1,2]。
AZ91D 镁合金是开发最早、应用最广的商用镁合金之一。
已有的研究表明[3-5],该合金可进行热处理强化,但其组织对热处理敏感,通过均匀化退火或固溶可使AZ91D 镁合金组织中的β-Mg 17Al 12相发生数量、形态上的改变,或者利用时效处理使β-Mg 17Al 12热处理对细晶AZ91D 镁合金组织和性能的影响Effects of Heat Treatment on Structure and Mechanics Propertiesof AZ91D Mg Alloys with Fine-Grain王瑞权陈体军马颖(兰州理工大学材料科学与工程学院,兰州730050)摘要:采用MEF-3金相显微镜、JSM-6700F 扫描电镜、EMPA-1600电子探针以及WDW-100D 型电子万能实验机等,对经Al-Ti-B 细化处理的AZ91D 镁合金铸态组织及固溶-时效态的显微组织和力学性能进行了观察和分析。
国家有色金属钙标准品
国家有色金属钙标准品The national standard for colored metal calcium reference materials is an essential aspect of the quality control and assurance processes in the metal industry. 国家有色金属钙标准品是金属行业质量控制和保证过程中必不可少的一个方面。
These standardized materials are used to calibrate analytical instruments, validate testing methods, and ensure the accuracy and reliability of metal composition analysis. 这些标准化材料用于校准分析仪器,验证测试方法,并确保金属成分分析的准确性和可靠性。
The importance of these reference materials cannot be overstated, as they serve as the foundation for quality control in the production, processing, and distribution of colored metals. 这些参考材料的重要性不可低估,因为它们为有色金属的生产、加工和分配中的质量控制奠定了基础。
From a regulatory perspective, the establishment and implementation of national standards for colored metal calcium reference materials are crucial for ensuring compliance with industry regulations and international quality standards. 从监管的角度来看,制定和实施有色金属钙标准品的国家标准对确保符合行业法规和国际质量标准至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Alloys and Compounds 496 (2010) 218–225Contents lists available at ScienceDirectJournal of Alloys andCompoundsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j a l l c omGrain refinement of AZ91D magnesium alloy by SiCT.J.Chen ∗,X.D.Jiang,Y.Ma,Y.D.Li,Y.HaoKey Laboratory of Gansu Advanced Nonferrous Materials,Lanzhou University of Technology,Lanzhou 730050,Chinaa r t i c l e i n f o Article history:Received 9January 2010Received in revised form 26February 2010Accepted 1March 2010Available online 4 March 2010Keywords:AZ91D alloyGrain refinement SiC particleRefining mechanism Al 4C 3particlea b s t r a c tAZ91D magnesium alloy has been grain-refined by SiC particles.The effects of grain-refining parameters on its grain size have been investigated.Simultaneously,the corresponding refining mechanism has also been discussed.The results indicate that the SiC particle is an effective grain refiner for AZ91D alloy and can decrease the grain size from 311m of the not refined alloy to 71m under an optimized refining technology.The added SiC particles cannot directly act as the nucleation sites of ␣-Mg crystals and the Al 4C 3particles formed from the reaction between the SiC particles and the molten alloy are the actual nucleation sites.© 2010 Elsevier B.V. All rights reserved.1.IntroductionMg alloys are very attractive for applications in aerospace and automobile industries owing to their high specific strength.How-ever,AZ91D alloy,one of the most commonly used Mg alloys,suffers from the challenge in meeting the requirements of strength,ductility,fatigue and creep resistance [1].It is well known that grain refinement can improve mechanical properties of most of alloys.Thus,a fine-grain microstructure is important for overcoming the relatively low mechanical properties of AZ91D alloy.In addition,a fine-grain microstructure is also important for the properties of semi-fabricated products,e.g.,ingots for extrusion and semisolid forming [2,3].In view of grain refinement,Mg alloys can be classified into two broad groups:aluminum free and aluminum bearing.Aluminum free alloys can be well grain-refined by Zr and the corresponding technique has been commercially used.But for aluminum bear-ing alloys,such as AZ91D,AM50,AM60and so on,there is no a commercially available grain refiner although several approaches have been developed [4].These approaches mainly include four kinds,superheating [4–7],the Elfinal process [4,5,7],grain refine-ment by other additives [4,7–14]and carbon inoculation [4,15–18].Comparatively,carbon inoculation has the best refining effect and good adaptability to alloys with different compositions and impu-rity contents [4].So this method has attracted much attention.The carbon inoculation refers to that a quality of carbon-containing materials is added into Mg melt or bubbling the melt with car-∗Corresponding author.Tel.:+869312976573;fax:+869312976578.E-mail addresses:chentj1971@ ,chentj@ (T.J.Chen).bonaceous gases prior to pouring.The key step of this method is the introduction of carbon into molten Mg alloys.Reported methods to introducing carbon include,but are not limited to,graphite,paraf-fin wax,lampblack,organic compounds such as C 2Cl 6and C 6Cl 6,carbides (Al 4C 3,SiC,CaC 2),and bubbling the melt with CO,CO 2and CH 4gasses [4,15–19].It can be expected that the absorptivity of car-bon for the bubbling method are difficult to be accurately controlled and the reliability is not so well to guarantee similarly good refining effect for reach operation.For the additions of organic compounds of C 2Cl 6,C 6Cl 6,the introduced carbon also results from gasses decomposed from the additives and they have similar shortcom-ings to the bubbling method.Among the commonly used carbides,SiC has the largest potential in commercial applications because of its good grain-refining effect and relatively low cost [4,15].In addi-tion,the resulting Mg 2Si phase can improve creep strength of Mg alloys and it does not generate deleterious products [20].However,there is no reference to detailedly report how the SiC inoculation parameters,such as addition amount,addition temper-ature,holding time at addition temperature and cooling rate from the addition temperature to pouring temperature affect the grain size and what are the optimal parameters.In addition,from the preparation of SiC particle reinforced Mg matrix composites,it is well known that it is quite difficult to introduce SiC particles into molten Mg alloys.It always needs special technology,i.e.,preheat-ing or roasting the SiC particles,mechanical stirring at semisolid state of Mg alloys [21,22].To promptly introduce SiC particles into Mg melts in a short time prior to pouring,the addition,not similar to the composites,is in form of pure SiC particles,but a mixture with the other dilute powders.Furthermore,the dimensions of casting ingots affect the cooling rate during solidification,and thus the grain size.But the existing references have not involved these0925-8388/$–see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.jallcom.2010.03.002T.J.Chen et al./Journal of Alloys and Compounds 496 (2010) 218–225219T a b l e 1T h e d e t a i l e d r e fin i n g p a r a m e t e r s u s e d i n t h i s w o r k .R e fin i n g p a r a m e t e r sR e fin e r c o m p o s i t i o n (i n w t .)A d d i t i o n a m o u n t (w t .%)A d d i t i o n t e m p e r a t u r e (◦C )C o o l i n g r a t e (◦C s −1)H o l d i n g t i m e (m i n )R o d d i a m e t e r (m m )R e fin e r c o m p o s i t i o n A l /S i C =3:1,(M g +J D M J )/S i C =3:1,M g /S i C =3:10.27704.331016A d d i t i o n a m o u n t M g /S i C =3:10,0.05,0.1,0.15,0.2,0.4,0.6,0.8,1.0,1.2,1.47704.331016A d d i t i o n t e m p e r a t u r e M g /S i C =3:10.2710,740,770,8004.331016C o o l i n g r a t e M g /S i C =3:10.27704.33,1.57,0.56,0.21016H o l d i n g t i m e M g /S i C =3:10.27700.210,20,30,4016R o d d i a m e t e rM g /S i C =3:10.27704.331016,45,70two aspects [4,15–20].Finally,most of the existing references have focused on the refining mechanism and suggested that SiC particles,Al 4C 3or Al 2CO particles formed from the reaction between SiC and Mg melt can act as nucleation sites of ␣-Mg crystals [4,15,16].But there is dispute which kind of particle on earth acts [18].Therefore,in this paper,the effects of the refining parameters by SiC particles mentioned above on the microstructure of AZ91D alloy have been investigated and the corresponding mechanism has also been discussed.2.Experimental processThe alloy used in the work is commercial AZ91D alloy and it contains 9.04%Al,0.6%Zn,0.31%Mn and some trace elements or impurities (<0.002%Cu,<0.001%Fe,<0.001%Ni and <0.001%Be)(the percentage in this paper all refers to weight percentage).A quantity of AZ91D alloy was first remelted at 710◦C and degassed by 1.5%C 2Cl 6(containing <0.002%ignition residue and 0.02%chloride).The melt then was adjusted to a given temperature and a quantity of SiC particle refiner was added and mechanically stirred for 30s every 10min (stirred for two times).Following,the melt was held for a given duration,and then cooled to pouring temperature of 705◦C in a given rate,and finally poured into a permanent mould with a given cavity diameter.The detailed parameters are presented in Table 1.Repeating the above experiment procedure according to the parameters shown in Table 1,the cast AZ91D alloy rods prepared by different parameters can be obtained.Table 1shows that six parameters,such as refiner composition,addition amount of SiC,addition temperature,cooling rate from addition temperature to pouring temperature,holding time at addition temperature and ingot diameter were con-sidered.The refiner composition refers to the weight rate of the metal powders (Al or Mg)or reagent (JDMJ reagent)to SiC particles.Three kinds of compositions were employed,such as Al/SiC =3:1,(Mg +JDMJ)/SiC =3:1and Mg/SiC =3:1,which were named Al matrix refiner,hybrid matrix refiner and Mg matrix refiner respectively.In the hybrid matrix refiner,the weight rate of Mg +JDMJ is 1:1.The aim of these tests is to verify which composition can farthest increase the absorptivity of carbon.The size of the used SiC particles is 1–2m.The JDMJ is a commercial degassing reagent for Mg alloys and it contains 43–45%MgCl 2,20–30%KCl,20–30%NaCl,3–5%CaCl 2,3–4.5%BaCl 2and 1%foaming agent.The powder mixtures with the compositions shown in Table 1were milled for 2h in a ball mill and then pressed into small blocks.During experiment,a quantity of the prepared refiner blocks was enwrapped by alu-minum foil and then added into the melt.The addition amount in Table 1refers to the net amount of SiC particles and does not include the other constituents of the refiner.Some small specimens were cut from the obtained cast rods,and finished and polished by standard metallographic technique.Then they were etched by aque-ous solution containing glycerol,nitric acid,hydrochloric acid and acetic acid and observed on an optical microscope (OM).In order to delineate grain boundaries and quantitatively examine the grain size,these specimens were first solution treated for 8h at 420◦C,and then again processed according to the above procedures for preparing metallographic specimen and observed on the OM.The obtained images were analyzed by Image-Pro Plus 5.0software.The diameter of a round with equiva-lent area to a grain is taken as the size of this grain.On each specimen,three images with magnification of 100times were examined.The average value of all of the rounds’diameters is taken as the grain size of this specimen.To clarify the grain-refining mechanism of SiC inoculation,the specimen with addition of 0.2%SiC particles were analyzed by energy dispersive spectroscopy (EDS)equipped in a scanning electron microscope (SEM).In addition,in order to obviously show the products formed from the reaction between the SiC particles and Mg melt,and thus deduce the detailed reaction and the refining mechanism,a specific exper-iment with addition of 5%SiC was carried out.The resulting alloy was observed on SEM and analyzed by X-ray diffractometer (XRD)and electron microprobe analyzer (EPMA).3.Results and discussion3.1.Effects of grain-refining parameters on the microstructure 3.1.1.Effect of refiner compositionFig.1presents the microstructures of the AZ91D alloys not refined (i.e.,refined by 0%SiC)and refined by the refiners with different compositions.It shows that the primary grains of the not refined alloy are developed dendrites with long secondary dendrite arms (Fig.1(a)).After being refined by the Al matrix refiner,the third dendrite arms are likely refined,but the secondary dendrite arms,similar to those of the not refined alloy,are still quite devel-oped (Fig.2(b)).This indicates that the added SiC that has dissolved in the melt is little and the resulting refining role is very limited.220T.J.Chen et al./Journal of Alloys and Compounds496 (2010) 218–225Fig.1.OM micrographs of (a)not grain-refined,(b)Al matrix refiner refined,(c)hybrid matrix refiner refined and (d)Mg matrix refiner refined AZ91D alloys.When it has been treated by the hybrid matrix refiner,the sec-ondary dendrite arms are significantly shortened and the size of the whole primary dendrites is obviously decreased (Fig.1(c)).When SiC particles have been added in form of the Mg matrix refiner,the refining effect is further improved and the primary dendrites become into very fine and uniform equiaxed grains (Fig.1(d)).These imply that the mixture with Mg powder is beneficial for SiC particle dissolution.It is well known that the melting point of pure Mg is lower to that of pure Al,so the Mg matrix in the refiner is easier to melt than the Al matrix when these two refiners are added.Thus,the SiC particles in the Mg matrix refiner are rapider to distribute or suspend in the melt during the subsequent mechanical stirring.In addition,the existing investigations suggest that SiC particles can only react with Al element in the melt,but not with Mg [14–17].So the bonding between the neighboring SiC particles in the Al matrix refiner is quite good due to the reaction and they are difficult to be separated during mechanical stirring.Therefore,the SiC particles in the Al matrix refiner are difficult to dissolve into the melt and some small refiner blocks that have not dissolved can be frequently seen in the crucible after being poured.The resulting grains are relatively developed due to the low carbon absorptivity.But for the Mg matrix refiner,the SiC particles can be easily separated and then uniformly distributes in the AZ91D alloy melt because the Mg matrix is easy to melt and there is no reaction.These SiC particles then rapidly react with Al element in the melt to form large numbers of nucleation sites that uniformly suspend in the melt [14–18].Consequently,the resulting grains are very fine.The JDMJ in the hybrid matrix refiner is a kind of degassing reagent designed for Mg alloys and it has large sorption to inclu-sions in Mg melt.In fact,the added SiC particles,similar to the othernonmetallic,essentially belong to inclusions in the Mg melt.When the refiner is added into the melt,the molten JDMJ closely enwraps and absorbs the SiC particles and there is little possibility for the SiC particles to contact with the Mg melt.So the amount of dissolved SiC particles is very little and the resulting refining effect is smaller than that treated by the Mg matrix refiner.However,its refining role is better than that of the Al matrix refiner because its matrix contains a certain amount of pure Mg.Fig.2presents the microstructures of the solution-treated speci-mens.It obviously shows that the Al matrix refiner treated alloy has equivalent grain size to the not refined alloy (comparing Fig.2(a)and (b)),and the Mg matrix refiner treated one has the smallest grain size although the hybrid matrix refiner has quite good refining effect (comparing Fig.2(b–d)).This difference in grain size can be more clearly seen by the quantitative examination shown in Fig.3.It indicates that 0.2%SiC particles added in form of the Mg matrix refiner decrease the grain size from 311m of the not refined alloy to 71m.So it can be concluded that the Mg matrix refiner pre-pared in the present work is an effective grain refiner for AZ91D alloy.3.1.2.Effect of addition amount of SiCFig.4gives the variation of grain size with the added SiC parti-cle amount.The SiC particles are added in form of the Mg matrix refiner at 770◦C.It shows that the grain size sharply decreases with increasing the amount of SiC particles.But when the amount exceeds 0.2%,the grain size slowly increases.It can be expected that the number of the formed nucleation sites increases as the SiC particle amount increases.But when the nucleation sites exceed a given limitation,the possibility of their mutual collision or contact may rapidly increase,resulting in fre-T.J.Chen et al./Journal of Alloys and Compounds 496 (2010) 218–225221Fig.2.OM micrographs of the alloys shown in Fig.1after being solution treated at 420◦C for 8h.quent coarsening through mergence.The existing investigations suggest that the nucleation sites for carbon inoculation are Al 4C 3particles [14–18]and the density of the Al 4C 3is higher than that of the Mg alloy melt [23].So the coarsened Al 4C 3particles settle.Both the coalescence and sedimentation decrease the number of the effective nucleation sites,and thus the refining effect decreases.This should be the main reason why the grain size increases when the SiC particle amount exceeds0.2%.Fig.3.Grain sizes of the AZ91D alloys treated by the refiners with different compo-sitions.3.1.3.Effect of addition temperatureFig.5shows the variation of grain size with the addition tem-perature (adding 0.2%SiC particles at 770◦C).It indicates that the grain size continuously decreases as the temperature rises and then basically maintains a constant when it exceeds 770◦C.As discussed in the above sections,the effective nucleation sites result from the reaction between the SiC particles and Al element in the melt [14–18].This reaction is an endothermic reaction and its operation will become more and more active as the temperature rises,result-ing in more Al 4C 3particles formation [24,25].In addition,properFig.4.Variation of grain size with addition content of SiC particles.222T.J.Chen et al./Journal of Alloys and Compounds496 (2010) 218–225Fig.5.Variation of grain size with addition temperature.increasing superheating can also increase the number of heteroge-neous nucleation sites [24].Finally,the superheating mechanism may play a role to some extent [5].It is just because of the three reasons that the grain size decreases with increasing the addition temperature.But when the addition temperature reaches 770◦C,all of the added SiC particles have completely reacted and the resulting Al 4C 3particles are up to the maximum number.Further increasing the temperature cannot increase the Al 4C 3particle number when the amount of added SiC particles is given.In addition,too high tem-perature can lead some originally formed nucleation particles to partially melt and thus decrease the total number of the nucleation sites.Due to these two reasons,the grain size slowly increases when the temperature exceeds 770◦C.The present result implies that the addition temperature of 770◦C is appropriate.3.1.4.Effect of cooling rateFig.6shows the variation of grain size with the cooling rate from the addition temperature of 770◦C to the pouring tempera-ture of 705◦C.It obviously shows that increasing the cooling rate is beneficial for grain refinement.It can be expected that increas-ing the cooling rate does not only shorten the time for the melt being at high temperature,but also shorten the time for the melt being rested prior to pouring.The former decreases the possibility of the formed nucleation sites to be melted and the latterlessensFig.6.Variation of grain size with coolingrate.Fig.7.Variation of grain size with holding time.the number of the coarsened and settled nucleation sites.So the grains size decreases with increasing the cooling rate.In addition,the melt is poured into permanent mould with ambient temperature as soon as its temperature is cooled to from 770to 705◦C during experiment.It can be suggested that the cool-ing rate of the permanent mould is relatively high and this high cooling rate after pouring and even that during solidification will be accelerated if the cooling rate from 770to 705◦C is also high.The high cooling rate after pouring may increase the degree of supercooling,and thus refine the primary grains [26].That is to say that the contribution of the high cooling rate from 770to 705◦C to the cooling rate after pouring is another reason why the grain size decreases with increasing the cooling rate.3.1.5.Effect of holding timeFig.7presents the variation of grain size with the holding time at the addition temperature of 770◦C.It shows that the grain size slowly increases as the holding time increases and then sharply increases when the time exceeds 30min.It is known that inoc-ulation fading is a common phenomenon during grain-refining treatment.As discussed above,the inoculation fading results from the melting,coalescence and sedimentation of the nucleation sites.The longer the holding time,the less the number of the effective nucleation sites.The present result indicates that the sensitivity of the used refiner to inoculation fading is relatively high and the longest holding time cannot exceed 30min.The melt should be completely poured within 30min after the melt being treated by this kind of refiner.3.1.6.Effect of ingot diameterIn order to verify the sensitivity of the refined AZ91D alloy’grain size to casting thickness,the treated melt by 0.2%SiC particles has been poured into permanent moulds with different cavity diame-ters.The result is presented in Fig.8.The grain size for each cast rod in Fig.8refers to the average of grain sizes in the center and edge zones.It shows that the grain size increases from 71to 144m when the cavity diameter increases from 16to 70mm,i.e.,the grain size increases one time when the thickness of cast rod increases about three times.To examine the microstructure uniformity,the microstructures in the edge and center of each rod have been observed and quan-titatively examined.The results are shown in Figs.9and 10,respectively.Fig.9visually shows that the difference in grain size between these two zones increases as the diameter increases.Fig.10indicates that the microstructure is very uniform when theT.J.Chen et al./Journal of Alloys and Compounds496 (2010) 218–225223Fig.8.Variation of grain size with cast rod diameter.casting thickness is within16mm.But the grain size in the center increases53%compared with that in the edge when the diame-ter increases to45mm and the difference percentage reaches86% when the diameter increases to70mm.All of these imply that the microstructure of the AZ91D alloy is quite sensitive to its casting thickness.In fact,the essence of the thickness effect on microstructure is the effect of cooling rate during solidification on microstructure.The larger the rod diame-ter,the larger the difference in cooling rates in different regions along the radial direction,and thus the larger the difference in microstructures.3.2.Mechanisms of grain refinementFor the carbon inoculation,several possible nucleation particles, such as Al4C3,Al2CO and SiC(refined by SiC),have been suggested [15–18,27–29].In addition,Jin et al.consider that carbondiffused Fig.10.Grain sizes of different regions of the cast AZ91D rods with different diam-eters.out from the␣-Mg during solidification may generate a constitu-tional undercooling region,which does not only prevent the␣-Mg from growth,but also can facilitate the formation of new stable nucleation particles[30].But the experimental result from Qian et al.shows that only Mg–Al alloy can be refined when pure Mg, Mg–Zn and Mg–Al contain same amount of carbon(20ppm)and disproves the standpoint from Jin et al.[18].The existing experi-ment and analysis results show that the heterogeneous nucleation mechanism taking the Al4C3particles as nucleation sites has been commonly accepted[27–29].But so far,there is no direct evidence to support this mechanism.In the present work,to demonstrate the nucleation sites of the Al4C3particles,XRD,EPMA and EDS analyses have been carried out.Fig.11presents the XRD results of the not refined alloy and the alloy refined by5%SiC particles.It obviously shows that a new phase of Mg2Si forms when the alloy treated by SiC particles,which implies that the added SiC particles react with the molten alloyand Fig.9.OM micrographs of different regions of the cast AZ91D rods with different diameters.(a)and(b)16mm,(c)and(d)45mm,(e)and(f)70mm.224T.J.Chen et al./Journal of Alloys and Compounds496 (2010) 218–225Fig.11.X-ray diffractograms of the AZ91D alloys refined by5%SiC and not grain-refined.one of the resulting products is Mg2Si.Fig.11also shows that no SiC particles are left.This indicates that the SiC particles are not the heterogeneous nucleation sites.Considering from thermody-namics,the SiC particles can only react with Al among the main elements of the molten AZ91D alloy[18,30,31].This reaction can be expressed[16]:3SiC+4Al=Al4C3+3Si(1) The formed Si element then reacts with Mg to generate the Mg2Si phase through the reaction:2Si+Mg=Mg2Si(2) In fact,reaction(1)is always found in SiC particle reinforced Al matrix composites prepared by compocasting[24,25,31].Fig.12(a) shows that a new phase with Chinese script morphology distributes in the Mg matrix besides the eutecticphase.The results from the EPMA analysis indicate that this phase is Si-rich(Fig.12(b and c)). The investigations about cast Mg2Si reinforced Mg matrix compos-ites reveal that the Mg2Si reinforcements are in Chinese script form [32,33].Together with the above XRD result,it can be confirmed that the new Chinese script phase should be the Mg2Si.So it can be concluded that reactions(1)and(2)really occur and the addition of SiC particles generate two phases of Mg2Si and Al4C3.In view of crystal lattice relationship,the Mg2Si phase cannot act as the nucleation sites of␣-Mg[16].So the Al4C3is the only candidate of nucleation site.Fig.13(a)shows that a small white particle distributes in the center of an equiaxed dendrite(marked by a cross)and it may be the nucleus of this dendrite.The EDS result indicates that the particle is composed of C,Al,Mg and O(Fig.13(b).The Mg peak is believed to be contributed by the Mg matrix.In addition,due to low oxygen potential or small Al2OC activity in the melt[27,30],it is impossi-ble to form Al–C–O compounds,such as Al2OC compound that can acts as the nucleation site of␣-Mg in view of the crystal mismatch between them[17,18].Moreover,the Al4C3is extremely reactive to water and it can react with water during specimenpreparation Fig.12.(a)SEM micrograph,(b)BEI(back scattered electron image)micrograph and(c)Si map of the alloy refined by5%SiC.T.J.Chen et al./Journal of Alloys and Compounds496 (2010) 218–225225Fig.13.(a)SEM micrograph and(b)EDS analysis of the white point marked by a cross in(a).through the reaction:[27,29]Al4C3+12H2O=4Al(OH)3+3CH4(3) This reaction leads the Al4C3becoming into the Al–C–O com-pound.So the O peak in Fig.13(b)results from this reaction and the actual nucleus consists of C and Al,and should be the Al4C3.It is also just because of this reaction that the Al4C3cannot be detected by XRD(Fig.11).4.Conclusions(1)SiC particle is an effective grain refiner for AZ91D alloy.Additionof0.2%SiC particles can decrease the grain size from311m of the not refined alloy to71m.(2)Grain-refining parameters,such as refiner composition,addi-tion amount,addition temperature,holding time at addition temperature,cooling rate from addition temperature to pour-ing temperature,have obvious effects on the grain size.Thesmallest grain size can be obtained when0.2%SiC particles is added into the melt in form of the Mg matrix refiner at770◦C, and then the melt is held for10min and rapidly cooled to705◦C followed by pouring.(3)The AZ91D melt treated by SiC particles should be completelypoured within30min.In addition,the sensitivity of the grain size to casting thickness is relatively high.(4)SiC particles cannot act as the nucleation sites of␣-Mg.TheAl4C3particles formed from the reaction between the added SiC particles and Al element in the molten alloy are the actual nucleation sites.AcknowledgementThis work was supported by the National Basic Research Pro-gram of China(grant no.G2007CB613706),the Development Program for Outstanding Young Teachers in Lanzhou University of Technology and the Opening Foundation of Key Laboratory of Gansu Advanced Non-ferrous Materials.References[1]D.Eliezer,E.Aghion,F.H.Froes,Adv.Perform.Mater.5(1998)201–212.[2]Y.X.Wang,X.Q.Zeng,W.J.Ding,A.A.Luo,A.L.Sachdev,Metall.Mater.Trans.A38A(2007)1358–1366.[3]T.J.Chen,G.X.Lu,Y.Ma,Y.D.Li,Y.Hao,J.Alloys Compd.486(2009)124–135.[4]A.V.StJohn,M.Qian,M.A.Easton,P.Cao,Z.Hildebrand,Metall.Mater.Trans.A36A(2005)1669–1679.[5]P.Cao,M.Qian,D.H.StJohn,Scripta Mater.51(2004)125–129.[6]P.Cao,M.Qian,D.H.StJohn,Scripta Mater.54(2006)1853–1858.[7]C.J.Song,Q.Y.Han,Q.J.Zhai,China Foundry6(2009)93–103.[8]S.C.Wang,C.P.Chou,J.Mater.Process.Technol.197(2008)116–121.[9]Y.X.Wang,X.Q.Zeng,W.J.Ding,Scripta Mater.54(2006)269–273.[10]J.H.Zhang,J.Wang,X.Qiu,D.P.Zhang,Z.Tian,X.D.Niu,D.X.Tang,J.Meng,.J.Alloys Compd.464(2008)556–564.[11]K.Hirai,H.Somekawa,Y.Takigawa,K.Higashi,Mater.Sci.Eng.A403(2005)276–280.[12]Y.X.Wang,X.Q.Zeng,W.J.Ding,Metall.Mater.Trans.A38(2007)1358–1366.[13]L.G.Wang,B.F.Zhang,S.K.Guan,Rare Met.Mater.Eng.36(2007)59–62(inChinese).[14]H.M.Fu,D.Liu,M.X.Zhang,H.Wang,P.M.Kelly,J.A.Taylor,J.Alloys Compd.456(2008)390–394.[15]R.Gunther,C.Hartig,R.Bormann,Acta Mater.54(2006)5591–5597.[16]M.A.Easton,A.Schiffl,J.Y.Yao,H.Kaufmann,Scripta Mater.55(2006)379–382.[17]M.X.Zhang,P.M.Kelley,M.Qian,J.A.Taylor,Acta Mater.53(2005)3261–3270.[18]M.Qian,P.Cao,Scripta Mater.52(2005)7415–7419.[19]C.E.Nelson,Trans.AFS56(1948)1–23.[20]A.K.Dahle,Y.C.Lee,M.D.Nave,P.L.Schaffer,D.H.StJohn,J.Light Met.1(2001)61–72.[21]S.Seshan,M.Jayamathy,S.V.Kailas,T.S.Srivatsan,Mater.Sci.Eng.A363(2003)345–351.[22]Y.Cai,M.J.Tan,G.J.Shen,H.Q.Su,Mater.Sci.Eng.A282(2000)232–239.[23]/view/488587.htm.[24]J.-C.Lee,J.-Y.Byun,S.-B.Park,Acta Mater.46(1998)1771–1780.[25]T.Fan,Z.Shi,D.Zhang,Mater.Sci.Eng.A257(1998)281–286.[26]Z.X.Cui,Metallography&Heat Treatment,1st ed.,China Machine Press,Beijing,2004,55p.[27]L.Lu,A.K.Dahle,D.H.StJohn,Scripta Mater.53(2005)517–522.[28]P.Cao,M.Qian,D.H.StJohn,Scripta Mater.53(2005)841–844.[29]T.Motegi,Mater.Sci.Eng.A413–414(2005)408–411.[30]Q.L.Jin,J.-P.Eom,S.-G.Lim,W.-W.Park,B.-S.You,Scripta Mater.52(2005)421–423.[31]T.Sritharan,L.S.Chan,L.K.Tan,N.P.Hung,Mater.Chatact.47(2001)75–77.[32]H.Y.Wang,Q.C.Jiang,B.X.Ma,Y.Wang,J.G.Wang,J.B.Li,J.Alloys Compd.387(2005)105–108.[33]J.Du,K.Iwai,Mater.Trans.50(2009)562–569.。