初二数学三角形全等的条件10[人教版]

合集下载

人教版数学《三角形全等的判定》_课件-完美版

人教版数学《三角形全等的判定》_课件-完美版

变形题:
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
已知AB=CD,AD=CB,求证:∠B=∠D
证明:连接AC, 在△ABC和△ ADC中 A
AB=CD(已知)
BC=AD(已知)
AC=AC(公共边)
B
∴ △ ABC≌ △ CDA(SSS)
D C
∴ ∠B=∠D(全等三角形对应角相等)
A
证明:在△ABC和△ADC中
B
D
AB=AD (已知)
BБайду номын сангаас=CD (已知)
AC = AC (公共边)
C
∴ △ABC ≌ △ADC(SSS)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
你能说明AB∥CD,AD∥BC吗?
• 证明:在△ABD和△CDB中 D
C
AB=CD(已知)
AD=CB(已知) A
BD=DB (公共边)
B
∴△ABD≌△ACD(SSS)
∴ ∠ A= ∠ C (全等三角形的对应角相等)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
∴∠B=∠C(全等三角形的对应角相等)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
1、如图,在四边形ABCD中,AB=CD,AD=CB, 求证:∠ A= ∠ C.

数学人教版八年级上册全等三角形的判定

数学人教版八年级上册全等三角形的判定

C
A
B
剪下 △A´B´C´放在△ABC上,可以看 到△A´B´C´ ≌ △ABC,由此可以得 A´ 到判定两个三角形全等的又一个公理.

探究活动 三边相等的两个三角形会全等吗?
先任意画出一个 ABC,再画一个A ' B'C ', 使A ' B'=AB,B'C '=BC,C ' A '=CA. 把画好的 A ' B'C '剪下,放到ABC上,它们全等吗?
画法:
1. 画线段AB=4cm;
2. 分别以A、B为圆心,5cm、 7cm 长为半径作圆弧,交于点C; 3. 连结AB、AC;
∴△ABC就是所求的三角形.
画全等三角形的另一个方法
已知任意△ABC,画一个△A´B´C´, 使A´B´=AB, A´C´=AC, B´C´ =BC.
画法:1、画线段A´B´=AB, 如右下图 2、分别以 A´、B´为圆心,AC、BC为半径画弧,两弧相 交于点C´ . 3、连结A´C´、 B´C´ 得 △A´B´C´. C´
(4)A=A' (5)B=B' (6)C=C'
在ABC和A' B' C'中,有
( 1 )AB=A' B' (2)BC=B'C' (3)CA=C' A' , , , (4)A=A (5)B=B (6)C=C 六个条件,可得到什么结论?
A
A'
B
C
B
'
C'
答:ABC ≌ A' B' C'
解:在CMO和CNO中,

人教版八年级数学上册教学课件三角形全等的判定

人教版八年级数学上册教学课件三角形全等的判定

AB = CD
A EB
∴△ADE≌△CBF ( SSS )
② ∵ △ADE≌△CBF
∴ ∠A=∠C (
全等三角形 对应角相等 )
课堂小结
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
谈谈本节课你有思哪路些分析收获以结现合有及图条形件存找,在隐证含准的条备件条困和件惑?
边边边 应 用
书写步骤
学习目标
1.通过三角形的稳定性,体验三角形全等的 “边边边”条件.
2.掌握并会运用“边边边”定理判定两个三 角形的全等.
学习重、难点
重点:寻求三角形全等的条件的方法. 难点:寻求三角形全等的条件的依据.
尝试发现,探索新知
生生 互动
已知△ABC ≌△ DEF,找出其中相等的边与角:
谈谈本节课你有哪些收获以及存在的困惑?
A
A′
B
C
B′
C′
想一想: 作图的结果反映了什么规律?你能用文
字语言和符号语言概括吗?
知识要点
“边边边”判定方法
文字语言:三边对应相等的两个三角形全等。
(简写为“边边边”或“SSS”) A
几何语言:
在△ABC和△ DEF中,
AB=DE, BC=EF,
BD
C
CA=FD,
∴ △ABC ≌△ DEF(SSS). E
∴ ∠A=∠C (
)
重点:寻求三角形全等的条件的方法.
活,用智慧点亮人
生!
一部分,是否也能保证两个三角形全等呢?从这节课开始,我们来探究全等三角形的判定.
∴△ABC≌△FDE(SSS);
=,
∴ △ABD ≌ △ACD ( SSS ).
情景问题

人教版八年级上册数学课件:两个直角三角形全等的判定条件

人教版八年级上册数学课件:两个直角三角形全等的判定条件

定理:如果两个直角三角形的斜边和一条直角边分别
对应相等,那么这两个直角三角形全等,简写成
“斜边、直角边”或“HL”表示。
B
几何语言
∵∠C=∠C ′=90°
A
C
B′
∴在RT∆ABC和RT∆A ′ B ′ C ′中
AB= A ′ B ′
AC= A ′ C ′
A′
C′
∴ RT∆ABC ≌ RT∆ A ′ B ′ C ′ (HL)
练习快速回答问题
1.两个锐角对应相等的两个直角三角形全等吗?
2.两条直角边对应相等的两个直角三角形全等吗?
3.有任意的两条边对应相等的两个直角三角形全等 吗? 4.有两边及一条边对应的三角形全等吗? 5.判定两个三角形全等,共有多少种方法?
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
DE=DF
∴Rt △DEB≌Rt △DFC
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
练习
2、如图,AC=AD,∠C=∠D=90° , 求证:BC=BD
C A

证明:∵∠C=∠D=90° ∴△ABC和△ABD是直角三角形 在Rt △ABC和Rt △ABD中 AB=AB
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
小结:
• 1、应用斜边直角边(HL)公理判定两个三 角形全等,要按照公理的条件,准确地 找出“对应相等”的边和角;
• 2、寻找使结论成立所需要的条件时,要注 意充分利用图形中的隐含条件,如“公 共边、公共角、对顶角等等”;

人教版数学八上第8讲直角三角形全等判定(提高)知识讲解

人教版数学八上第8讲直角三角形全等判定(提高)知识讲解

直角三角形全等判定(提高)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.【要点梳理】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,2、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.【思路点拨】从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt △CDE ≌Rt △ABF. 【答案与解析】证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL )∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE 在Rt △CDE 与Rt △ABF 中,DE BF DEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS ) ∴∠DCE =∠BAF ∴AB ∥DC.【总结升华】我们分析已知能推证出什么,再看要证到这个结论,我们还需要哪些条件,这样从已知和结论向中间推进,从而证出题目.3、如图 AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F .求证:AF 平分∠BAC .【思路点拨】若能证得AD =AE ,由于∠ADB 、∠AEC 都是直角,可证得Rt △ADF ≌Rt △AEF ,而要证AD =AE ,就应先考虑Rt △ABD 与Rt △AEC ,由题意已知AB =AC ,∠BAC 是公共角,可证得Rt △ABD ≌Rt △ACE . 【答案与解析】证明: 在Rt △ABD 与Rt △ACE 中∴Rt △ABD ≌Rt △ACE(AAS)∴AD =AE(全等三角形对应边相等) 在Rt △ADF 与Rt △AEF 中∴Rt △ADF ≌Rt △AEF(HL)∴∠DAF =∠EAF(全等三角形对应角相等) ∴AF 平分∠BAC(角平分线的定义)【总结升华】条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论. 举一反三:【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形 在Rt △ABD 和Rt △BAC 中AB BABD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL) ∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS) ∴OD =OC .4、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D. (1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.【答案与解析】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°. ∴∠D =∠AEC .又∵∠DBC =∠ECA =90°, 且BC =CA ,∴△DBC ≌△ECA (AAS ). ∴AE =CD .(2)解:由(1)得AE =CD ,AC =BC , ∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件 【巩固练习】 一、选择题1.下列命题中,不正确的是( )A.斜边对应相等的两个等腰直角三角形全等B.两条直角边对应相等的两个直角三角形全等C.有一条边相等的两个等腰直角三角形全等D.有一条直角边和斜边上的中线对应相等的两个直角三角形全等2. 如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( ) A. 3对 B. 4对 C. 5对 D. 6对3. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.44. 在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A. △ABE≌△ACFB. 点D在∠BAC的平分线上C. △BDF≌△CDED. 点D是BE的中点5.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是().A.相等 B.不相等C.互余或相等 D.互补或相等6. 已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定二、填空题7. 如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.8. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.9. 判定两直角三角形全等的各种条件:(1)一锐角和一边;(2)两边对应相等;(3)两锐角对应相等.其中能得到两个直角三角形全等的条件是_________.10. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.11. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则∠BAD=_______.12. 如图所示的网格中(4×4的正方形),∠1+∠2+∠3+∠4+∠5+∠6=________.三、解答题13.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON (如图),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.14. 求证:有两边和其中一边上的高对应相等的两个锐角三角形全等.15. 如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,•若AB=CD,试证明BD平分EF.【答案与解析】一.选择题1. 【答案】C;【解析】C选项如果是一个等腰三角形的腰和另一个等腰三角形的底边对应相等,这是肯定不全等.2. 【答案】D;【解析】Rt△ABD≌Rt△ACE;Rt△BEO≌Rt△CDO;Rt△AEO≌Rt△ADO;Rt△ABF≌Rt△ACF;Rt△BEC≌Rt△CDB;Rt△BFO≌Rt△CFO.3. 【答案】A;【解析】本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE-EH =4-3=1.4. 【答案】D;【解析】A选项:∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;B选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;C选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确.5. 【答案】D;【解析】如果两个三角形都是锐角三角形或钝角三角形,那么相等;如果一个是锐角三角形一个是钝角三角形,那么互补.6. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D 作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可二.填空题7. 【答案】△DFE ,HL ;【解析】EB +BF =FC +BF ,即EF =BC ,斜边相等; 8. 【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6; 9. 【答案】(1)(2) 10.【答案】20;【解析】过M 作MD ⊥AB 于D ,可证△ACM ≌△ADM ,所以DM =CM =20cm . 11.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形. 12.【答案】270°;【解析】∠1+∠6=∠2+∠5=∠3+∠4=90°,所以∠1+∠2+∠3+∠4+∠5+∠6=270°.三.解答题 13.【解析】证明:在Rt △OPM 和Rt △OPN 中, OP OPOM ON=⎧⎨⎩=∴Rt △OPM ≌Rt △OPN.∴∠POM =∠PON ,即OP 平分∠AOB.14.【解析】根据题意,画出图形,写出已知,求证.已知:如图,在△ABC 与△A B C '''中.AB =A B '',BC =B C '',AD ⊥BC 于D ,A D ''⊥B C '' 于D '且 AD =A D ''求证:△ABC ≌△A B C '''证明: 在Rt △ABD 与Rt △A B D '''中∵AB A B AD A D ''=⎧⎨''=⎩∴Rt △ABD ≌ Rt △A B D ''' (HL)∴∠B =∠B '(全等三角形对应角相等)在△ABC与△A B C'''中∵AB A BB B BC B C''=⎧⎪'∠=∠⎨⎪''=⎩∴△ABC≌△'''A B C (SAS)15.【解析】证明∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,,, AB CD AF CE=⎧⎨=⎩∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,,,,BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFG≌△DEG(AAS),∴FG=EG,即BD平分EF.。

人教版八年级上册第十二章全等三角形知识点复习

人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

新人教版八年级上册数学知识点:三角形全等的判定

新人教版八年级上册数学知识点:三角形全等的判定

新人教版八年级上册数学知识点:三角形全
等的判定
全等三角形的判定
①三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”);
②两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”);
③两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”);
④两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”);
⑤斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).
精品小编为大家提供的八年级上册数学知识点大家仔细阅读了吗?最后祝同学们学习进步。

新人教版初二数学角的平分线的性质知识点(上册)
新人教版初二数学三角形全等的判定知识点(上册)。

人教版八年级数学上《三角形全等的判定》知识全解

人教版八年级数学上《三角形全等的判定》知识全解

《三角形全等的判定》知识全解课标要求1.探索几何的基本图形——三角形,探索全等三角形的基本性质、三角形全等的判定条件和其相互关系,及角平分线性质,进一步丰富对空间图形的认识和感受.2.在探索全等三角形的性质、与他人合作交流等活动过程中,发展合情合理,进一步学习有条理地思考与表达;在积累了三角形的性质的基础上,探索全等三角形的判定条件和角平分线性质及其逆运用.知识结构内容解析在一个三角形的三条边,三个角中任取三个元素,可以有下列组合;SAS、SSA、ASA、AAS、SSS、AAA,但其中SSA和AAA不能判定三角形全等。

◆如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等。

(2)可以从已知条件出发,看已知条件确定哪两个三角形可证它们全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,可采用添加辅助线的方法,构造三角形全等。

重点难点本节的重点是:掌握三角形全等的判定定理,并灵活运用。

本节的难点是:在较复杂的图形中,找出证明两个三角形全等的条件,恰当的选择判定定理,正确地书写演绎推理过程。

教法导引1.注重培养探索归纳能力经历探究三角形全等条件的过程:由全等三角形的定义可以知道,由三条边对应相等、三个角对应相等能判定三角形全等,那么减少条件能否判定三角形全等呢?于是,依次探究:满足一个条件、两个条件、三个条件、……能否判定三角形全等.通过探究得到:满足一个条件、两个条件不能判定三角形全等;满足三个条件不一定能判定三角形全等,即“边边边”、“边角边”、“角边角”、“角角边”能判定三角形全等,“边边角”、“角角角”不能判定三角形全等.将三角形全等的判定方法运用于直角三角形,可以判定直角三角形全等;但对于满足斜边和直角边对应相等的两个直角三角形,就无法运用三角形全等的判定方法来进行判断了,因此应探究“斜边、直角边”能否判定直角三角形全等.2.注重培养推理能力本章要求学生有理有据地推理论证,精炼准确地表达推理过程,这对于学生比较困难,因此我们在教学中应采取以下措施突破难点:(1)注意减缓坡度,循序渐进.精心选择全等三角形的证明问题,开始阶段的例题,证明方向明确、过程简单,容易规范书写格式,主要让学生体会证明思路及格式.然后逐步增加题目的复杂程度,每一步都为下一步做准备,下一步又要注意复习前一步训练过的内容.(2)在不同的阶段,安排不同的内容,突出一个重点.先安排证明两个三角形全等,进而安排通过证明三角形全等证明两条线段或两个角相等,重点使学生熟悉证明的步骤和方法.最后安排的问题涉及前面学过的内容,重点培养学生分析问题,选择推理途径的证明能力.(3)注重分析思路注重分析思路,让学生学会思考问题.(4)注重规范书写格式注重规范书写格式,让学生学会清楚地表达思考的过程.3.注重联系实际从实际例子引入全等形的概念,易于学生理解概念,易于调动学生学习的积极性.从分析平分角仪器的原理引入角平分线的画法,通过确定集贸市场位置的问题引出“角的内部到角的两边的距离相等的点在角的平分线上”的结论,使学生感受理论来源于实际的需要.运用全等三角形可以解决实际中许多测量边、角的问题.学法建议学生在初一学习过三角形的相关知识,会作一个三角形等于已知三角形,本节是使学生在原有知识的基础上探索怎样判定三角形全等的判定条件及恰当地选择判定定理来判别两个三角形全等,并能灵活运用全等三角形的判定方法解决线段或者角相等的问题。

人教版初二数学上册:直角三角形全等判定(基础)知识讲解

人教版初二数学上册:直角三角形全等判定(基础)知识讲解

直角三角形全等判定(基础)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL ”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等. 【要点梳理】【高清课堂:379111 直角三角形全等的判定,知识点讲解】 要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”. 【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行. 【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD , ∴∠ABD =∠CDB =90° 在Rt △ABD 和Rt △CDB 中,AD BC BD DB ⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL ) ∴AB =CD (全等三角形对应边相等) (2)由∠ADB =∠CBD ∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法. 举一反三:【高清课堂:379111 直角三角形全等的判定,例3】 【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB , ∴∠DAE =∠CBA =90° 在Rt △DAE 与Rt △CBA 中, ED ACAE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL ) ∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90° 即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( ) (2)一个锐角和斜边对应相等; ( ) (3)两直角边对应相等; ( ) (4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS 、ASA 、AAS 、SSS 、HL. 举一反三:【变式】下列说法正确的有( )(1)一个锐角及斜边对应相等的两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等; (3)两个锐角对应等的两个直角三角形全等; (4)有两条边相等的两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等. A.2个 B.3个 C.4个 D.5个 【答案】C . 解:(1)一个锐角及斜边对应相等的两个直角三角形全等,根据AAS 可判定两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等,根据AAS 或ASA 可判定两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等,缺少“边”这个条件,故不可判定两个直角三角形全等;(4)有两条边相等的两个直角三角形全等,根据SAS 或HL 可判定两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等,根据HL 可判定两个直角三角形全等.所以说法正确的有4个.故选C .3、(2016春•深圳校级月考)如图,AB ⊥AC 于A ,BD ⊥CD 于D ,若AC=DB ,则下列结论中不正确的是( )OB CDAA .∠A=∠DB .∠ABC=∠DCBC .OB=OD D .OA=OD【思路点拨】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合已知条件与全等的判定方法逐一验证. 【答案与解析】解:∵AB ⊥AC 于A ,BD ⊥CD 于D ∴∠A=∠D=90°(A 正确) 又∵AC=DB ,BC=BC ∴△ABC ≌△DCB(HL)∴∠ABC=∠DCB (B 正确) ∴AB=CD又∵∠AOB=∠C∴△AOB ≌△DOC(AAS) ∴OA=OD (D 正确)C 中OD 、OB 不是对应边,不相等. 故选C .【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、已知:如图1,在Rt△ABC 和Rt△A′B′C′中,AB=A′B′,AC=A′C′,C=∠C′=90° 求证:Rt△ABC 和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)将△ABC 和△A′B′C′拼在一起,请你画出两种拼接图形;例如图2:(即使点A 与点A′重合,点C 与点C′重合.)(3)请你选择你拼成的其中一种图形,证明该命题.【答案与解析】解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等.(2)如图:图②使点A与点A′重合,点B与点B′重合图③使点A与B′重合,B与点A′重合.(3)在图②中,∵A和A′重合,B和B′重合,连接CC′.∵∠ACB=∠A′C′B′=90°,∠ACB﹣∠ACC′=∠A′C′B′﹣∠AC′C,即∠BCC′=∠BCC′,∴BC=B′C′.在直角△ABC和直角△A′B′C′中,,∴△ABC≌△A′B′C′(SSS).【总结升华】本题考查了直角三角形的全等中HL定理的证明,正确利用等腰三角形的性质是关键.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决; (2)内角和定理的应用:①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。

人教版八年级数学上全等三角形

人教版八年级数学上全等三角形

初中数学试卷全等三角形知识导引1、全等三角形的性质:(1)全等三角形的对应角相等,对应边相等;(2)全等三角形的对应角的角平分线相等,对应边上的中线、高线分别相等;2、全等三角形的判定方法:(1)定义:能够重合的两个三角形叫做全等三角形;(2)边角边(SAS):有两边和它们的夹角对应相等的两个三角形全等;(3)角边角(ASA):有两角和它们的夹边对应相等的两个三角形全等;(4)角角边(AAS):有两角和其中一个角的对边对应相等的两个三角形全等;(5)边边边(SSS):有三边对应相等的两个三角形全等。

3、会用三角形全等的判定定理来证明有关问题,并会进行有关计算。

4、全等三角形知识是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形等图形性质的有力工具,是解决与线段、角相关问题的一个出发点,运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线的位置关系等常见的几何问题。

利用全等三角形证明问题时,关键在于从复杂的图形中找到一对基础的三角形,这对基础的三角形从实质上来说,是由三角形全等判定定理中的一对三角形变位而来,也可能是由几对三角形组成,其间的关系互相传递,应熟悉涉及有公共边、公共角的以下几类基本图形:典例精析例1:如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中,和△ABC全等的图形是()A、甲、乙B、甲、丙C、乙、丙D、乙例2:如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需要添加的一个条件是(写出一个条件即可)。

例2—1:如图,∠E=∠F=90°,∠B=∠C,AC=AB,,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。

其中正确的结论是(把你认为所有正确结论的序号都填上)。

例3:众所周知,只有两边和一角对应相等的两个三角形不一定全等,你能想办法安排这三个条件,是这两个三角形全等吗?请同学们参照下面的方案(1)、(2)、(3),导出方案(4)。

人教版八年级数学上册12.1两直角三角形全等的条件教学设计

人教版八年级数学上册12.1两直角三角形全等的条件教学设计
-引导学生通过解决实际问题,发现数学与现实生活的紧密联系,增强数学学习的积极性。
5.总结环节:
-让学生自主总结全等三角形的判定方法,形成知识网络图,加深对知识体系的理解。
-教师通过提问、反馈等方式,检验学生对本节课重难点的掌握情况。
6.评价与反思:
-采用多元化的评价方式,如口头提问、书面作业、小组展示等,全面评估学生的学习效果。
-通过多媒体演示和黑板示例,详细讲解每种全等判定方法的特点和应用场景。
3.实践环节:
-设计不同难度层次的练习题,让学生独立完成,巩固全等判定方法。
-对于难度较大的题目,鼓励学生进行讨论,培养合作解决问题的能力。
4.应用环节:
-创设真实的情境问题,如测量距离、计算面积等,让学生运用全等知识解决,提高学生将理论知识应用于实际的能力。
1.教学活动设计:
-让学生自主总结本节课所学的全等判定方法,形成知识体系。
-教师通过提问、反馈等方式,检查学生对知识点的掌握情况。
2.教学反思:
-鼓励学生反思学习过程中的优点和不足,提高自我认知。
-教师根据学生的学习情况,调整教学策略,以提高教学效果。
五、作业布置
为了巩固本节课所学内容,检验学生对两直角三角形全等条件的掌握程度,特布置以下作业:
二、学情分析
八年级学生在前两年的数学学习中,已经掌握了平面几何的基本概念、性质和判定方法。在此基础上,学生对直角三角形有一定的了解,但可能对两直角三角形全等的判定方法掌握不够熟练。此外,学生在解决实际问题时,可能缺乏将理论知识与实际问题相结合的能力。
针对这一学情,教师在教学过程中应注重以下方面:
1.激发学生的学习兴趣,通过设置富有挑战性的问题,引导学生主动探究两直角三角形全等的条件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等的两个三角形全等,可以简写成“角角 边”或“AAS”
三角形全等的条件
布置作业 • 必做题:教科书104页第5、6、11题 • 选做题:教科书104页第12题
的结论吗?
证明: ∵在△ABC中
A
∠C=180°- ∠A- ∠B
在△DEF中∠F=180°- ∠D- ∠E
又∵ ∠A=∠D,∠B=∠E
∴ ∠C= ∠F
在△ABC和△DEF中,
∠B=∠E
BC=EF
∠C=∠F ∴ △ABC≌ △DEF(ASA) B
C
E
D F
三角形全等的条件
• 证明的结果得出什么结论? • 结论:两个角和其中一个角的对边对应相
C1
A
B
A1
B1
三角形全等的Βιβλιοθήκη 件• 探究的结果反映了什么规律?你能得出什么结论? • 结论:两角和它们的夹边对应相等的两个三角形
全等,可以简写成“角边角”或“ASA”
三角形全等的条件 动手做一做
在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,
△ABC和△DEF全等吗?能利用角边角条件证明你
义务教育课程标准实验教科书 八年级 上册 第十三章第二节
勤得利中学初三数学
开始
创设情景
导航界面
探索新知
巩固练习
能力提高
小 结
三角形全等的条件
问题情境
一同学不小心打破了一块三角形的玻璃,如图:他应 该拿哪一块回玻璃店做一块与原玻璃一模一样的?
C
B
A
三角形全等的条件
动手探究 先任意画一个△ABC,再画一个△A1B1C1,使 A1B1=AB,∠A1=∠A,∠B1=∠B(即使两角和 它们的夹边对应相等)。把画好的△A1B1C1剪 下,放到△ABC上,它们全等吗?
幼儿园装修设计/
奇光,把四块地毯装点的异常神奇华丽……而这次创意表演的内容就是要把蟒蛇转化制做成杂耍,并要求其中的十项主要指标至少要达到超级水准!随着五声礼炮的轰响,无数漂亮的小精灵拖着 五缕暗紫色的彩烟直冲天空……蘑菇王子站起身高声喝道:“本人蘑菇王子!太阳系的地球村!这次要让你们知道什么是森林,什么是小子,什么森林是真正的小子!!”蘑菇王子一边说着一边 ,超然俊朗英武的、顽皮灵活的脖子猛然振颤飘荡起来……青春四射的幼狮肩膀喷出蓝宝石色的飘飘雪气……好似小天神般的手掌透出纯红色的朦胧异香……接着旋动犹如雕像一般坚韧的下巴一 叫,露出一副美妙的神色,接着抖动犹如雕像一般坚韧的下巴,像水青色的千胃城堡猴般的一挥,时尚的青春光洁,好似小天神般的手掌顿时伸长了一百倍,好象美妙月牙一样的的瓜皮滑板也猛 然膨胀了九十倍。紧接着俊朗英武的、顽皮灵活的脖子猛然振颤飘荡起来……青春四射的幼狮肩膀喷出蓝宝石色的飘飘雪气……好似小天神般的手掌透出纯红色的朦胧异香……最后颤起充满活力 的幼狮肩膀一颤,快速从里面跳出一道银辉,他抓住银辉俊傲地一摆,一样明晃晃、凉飕飕的法宝∈七光海天镜←便显露出来,只见这个这件神器儿,一边闪烁,一边发出“咝咝”的美音!突然 间蘑菇王子加速地用自己极似玉白色样的额头烘托出蓝宝石色奇特跃动的云雾,只见他青春四射的幼狮肩膀中,变态地跳出五十团甩舞着∈七光海天镜←的仙翅枕头叉状的狮子,随着蘑菇王子的 摇动,仙翅枕头叉状的狮子像天平一样在双手上暴力地雕刻出缕缕光栅……紧接着蘑菇王子又使自己有着无限活力的神脚摇晃出蓝宝石色的榛子味,只见他隐藏着百种小神器的勇神护腕中,酷酷 地飞出五十组旋舞着∈七光海天镜←的菜丝状的仙翅枕头罐,随着蘑菇王子的扭动,菜丝状的仙翅枕头罐像蜈蚣一样,朝着美猪蓝光玉上面悬浮着的七条蟒蛇神扫过去!紧跟着蘑菇王子也傻耍着 法宝像弯刀般的怪影一样朝美猪蓝光玉上面悬浮着的七条蟒蛇神滚过去。只见一道玉光闪过……巨白菜顷刻化作一簇相当艺术的春绿色妖云流,像拖着一串虚幻尾巴的光柱一样直奔天穹,而蘑菇 王子也顺势追了上去!就见在明净淡净的爽丽碧天之上,拖着一串虚幻尾巴的光柱在空中画了一条悠然的曲线……猛然!光柱像烟花一样炸开!顿时,数不清的烟云状物质像焰火一样从碧天之上 倾泻下来……这时已经冲到光柱之中的蘑菇王子立刻舞动着∈七光海天镜←像耍标签一样,把烟云状物质状玩的如警灯般晃动……很快,空中就出现了一个很像森林小子模样的,正在壮丽神舞的 巨大怪物…………随着
相关文档
最新文档