九年级数学下册精品教案 平行投影与中心投影2个课时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29.1 投影
第1课时平行投影与中心投影
1.理解平行投影和中心投影的特征;(重点)
2.在投影面上画出平面图形的平行投影或中心投影.(难点)
一、情境导入
北京故宫中的日晷闻名世界,是我国光辉灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.
本节课学习有关投影的知识.
二、合作探究
探究点一:平行投影
【类型一】判断影子的形状
下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()
解析:选项A.影子平行,且较高的树的影子长度大于较低的树的影子,正确;选项B.影子的方向不相同,错误;选项C.影子的方向不相同,错误;选项D.不同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误.故选A.
方法总结:平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型二】平行投影作图
在某一时刻,操场上有三根测杆,如图所示,其中测杆AB的影子为BC,你能画出测杆MN的影子NP吗?若测杆XY的影子的顶端恰好落在点B处,且XY=MN,你能找出XY所在的位置吗?请将上述问题画在下面的示意图中,并简述画法.
解析:过物体顶点作光线的平行线得到物体的平行投影,再根据平行投影中物体与投影面平行时的投影是全等的可找到XY 的位置.
解:连接AC ,过点M 作MP ∥AC 交NC 于点P ,则NP 为MN 的影子.过点B 作BX ∥AC ,且BX =MP ,过X 作XY ⊥NC 交NC 于点Y ,则XY 即为所求.
方法总结:先根据物体投影确定光线,然后利用两个物体的顶端和各自影子的对应点的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定影子.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型三】 平行投影的相关计算
李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD =1.2m ,CE =0.6m ,CA =30m(点
A 、E 、C 在同一直线上).已知李航的身高EF 是1.6m ,请你帮李航求出楼高A
B .
解析:过点D 作DN ⊥AB ,可得四边形CDME 、ACDN 是矩形,即可证明△DFM ∽△DBN ,从而得出BN ,进而求得AB 的长.
解:过点D 作DN ⊥AB ,垂足为N ,交EF 于M 点,∴四边形CDME 、ACDN 是矩形,∴AN =ME =CD =1.2m ,DN =AC =30m ,DM =CE =0.6m ,∴MF =EF -ME =1.6-1.2=0.4m.∵EF ∥AB ,∴△DFM ∽△DBN ,
DM DN =MF BN ,即0.630=0.4BN
,∴BN =20m ,∴AB =BN +AN =20+1.2=21.2m.
答:楼高为21.2m.
方法总结:在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长
. 变式训练:见《学练优》本课时练习“课后巩固提升”第6题
探究点二:中心投影
【类型一】 判断是否是中心投影
下面属于中心投影的是( )
A .太阳光下的树影
B .皮影戏
C .月光下房屋的影子
D .海上日出
解析:中心投影的光源为灯光,平行投影的光源为阳光与月光.在各选项中只有B选项得到的投影为中心投影.故选B.
方法总结:判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型二】判断影长的情况
晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子()
A.逐渐变短B.先变短后变长
C.先变长后变短D.逐渐变长
解析:晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.
方法总结:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题
【类型三】中心投影作图
如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,粗线分别表示三人的影子.请根据要求,进行作图(不写画法,但要保留作图痕迹).
(1)画出图中灯泡所在的位置;
(2)在图中画出小明的身高.
解析:(1)利用中心投影的图形的性质连接对应点得出灯泡位置即可;(2)根据灯泡位置即可得出小明的身高.
解:(1)如图所示:O即为灯泡的位置;
(2)如图所示:EF即为小明的身高.
方法总结:连接物体和它影子的顶端所形成的直线必定经过点光源.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
【类型四】中心投影的相关计算
如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1m,继续往前走3米到达E处时,测得影子EF的长为2m,已知王华的身高是1.5m,求路灯A的高度AB.
解析:根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的光线三者构成的两个直角三角形相似解答.
解:当王华在CG 处时,Rt △DCG ∽Rt △DBA ,即CD BD =CG AB
;当王华在EH 处时,Rt △FEH ∽Rt △FBA ,即EF BF =EH AB =CG AB ,∴CD BD =EF BF
.∵CG =EH =1.5m ,CD =1m ,CE =3m ,EF =2m ,设AB =x ,BC =y ,∴1y +1=2y +5
,解得y =3,经检验y =3是原方程的根.∵CD BD =CG AB ,即1.5x =14
,解得x =6m.即路灯A 的高度AB =6m. 方法总结:解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
1.平行投影的定义及应用;
2.中心投影的定义及应用.
本节以自主探索、合作交流为设计主线,从皮影戏、手影、日晷等学生熟悉的生活实际出发,引入物体投影的相关概念,通过观察图片等活动,使学生认识中心投影和平行投影的区别与联系,加强主动学习数学的兴趣,体现数学的应用价值.
29.1 投影
第2课时 正投影
1.理解正投影的概念;(重点)
2.归纳正投影的性质,正确画出简单平面图形的正投影.(难点)
一、情境导入
观察下图,这三个图分别表示同一块三角尺在阳光照射下形成的投影,其中图①与图②③的投影线有什么区别?图②③的投影线与投影面的位置关系有什么区别?
二、合作探究
探究点:正投影
【类型一】 确定正投影的形状
如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )
解析:依题意,光线是垂直照下的,故只有D符合.故选D.
方法总结:当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形.若投影面不是平面,则投影形状要复杂得多.
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型二】物体与其正投影的关系
木棒长为1.2m,则它的正投影的长一定()
A.大于1.2m B.小于1.2m
C.等于1.2m D.小于或等于1.2m
解析:正投影的长度与木棒的摆放角度有关,但无论怎样摆都不会超过1.2 m.故选D.
方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型三】画投影面上的正投影
画出下列立体图形投影线从上方射向下方的正投影.
解析:第一个图投影线从上方射向下方的正投影是长方形,第二个图投影线从上方射向下方的正投影也是长方形,第三个图投影线从上方射向下方的正投影是圆且有圆心.解:如图所示:
方法总结:在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
探究点二:正投影的综合应用
【类型一】正投影与勾股定理的综合
一个长8cm的木棒AB,已知AB平行于投影面α,投影线垂直于α.
(1)求影子A1B1的长度(如图①);
(2)若将木棒绕其端点A逆时针旋转30°,求旋转后木棒的影长A2B2(如图②).
解析:根据平行投影和正投影的定义解答即可.
解:如图①,A1B1=AB=8cm;
如图③,作AE⊥BB2于E,则四边形AA2B2E是矩形,∴A2B2=AE,△ABE是直角三角形.∵AB=8cm,∠BAE=30°,∴BE=4cm,AE=82-42=43cm,∴A2B2=43cm.
方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段,可以用解直角三角形求得投影的长度.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
【类型二】正投影与相似三角形的综合
在长、宽都为4m,高为3m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,2≈1.414)
解析:根据题意画出图形,则AN=0.08m,AM=2m,由房间的地面为边长为4m的正方形可计算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.
解:如图,光线恰好照在墙角D、E处,AN=0.08m,AM=2m,由于房间的地面为边
长为4m的正方形,则DE=42m.∵BC∥DE,∴△ABC∽△ADE,∴BC
DE=AN
AM,即
BC
42
=
0.08
2,
∴BC≈0.23(m).
答:灯罩的直径BC约为0.23m.
方法总结:解决问题的关键是画出图形,根据图形相似的性质和判定解题.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
1.正投影的概念及性质;
2.正投影的综合应用.
本节课的学案设计,力求具体、生动、直观.因此,学生多以操作、观察实物模型和图片等活动为主.比如通过观察铁丝、圆柱、圆锥等图形在不同位置时的正投影特征,归纳出物体正投影的一般规律,并能根据此规律画出简单平面图形的正投影.在介绍投影概念时,借助太阳光线进行投影实例的观察,这样不仅直观而且富有真实感,能激发学生学习兴趣.。