靖江外国语学校九年级二模数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
靖江外国语学校九年级二模数学试卷
(满分150分,考试时间120分钟)
一、选择题(本大题共8个小题,每小题3分,共24分) 1.2的倒数是 ( ▲ )
A .2
B .-2
C .
21 D .2
1- 2.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( ▲ )
3.下列各式中,与2是同类二次根式的是 ( ▲ ) A .6 B .a 2(a >0) C .
21 D .2
3
4. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:
则这11双鞋的尺码组成的一组数据中,众数和中位数分别是 ( ▲ ) A .25,25 B .24.5,25 C .25,24.5 D .24.5,24.5
5.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才 能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为 ( ▲ )
6.2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机.受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是( ▲ ) A .2
200(1%)148a +=
B .2
200(1%)148a -=
C .200(12%)148a -
=
D .
2
200(1
%)148a -=
7.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C =50°, ∠ABC 的平分线B D 交⊙O 于点D ,则∠BAD 的度数是 ( ▲ ) A .45° B .85° C .90° D .95°
A D C
B A
B C D
8.如图, 平面直角坐标中,A 点坐标为(1,2),P 点坐标为(a ,2a -3),其中2≤a ≤4,设△OAP 的面积为S ,则S 与a 的函数图象大致为 ( ▲ )
二、填空(本大题共10个小题,每小题3分,共30分)
9.函数2-=
x y 中,自变量x 取值范围是
▲ .
10. 已知∠α的余角是30°,则∠α= ▲ °.
11.
甲、乙两台机器分别灌装每瓶质量为500克的矿泉水.从甲、乙灌装的矿泉水中分别随机抽取了30瓶,测算得
它们实际质量的方差是:2
S 甲=4.8,2
S 乙
=3.6.那么 ▲ (填“甲”或“乙”)灌装的矿泉水质量较稳定.
12. 一次函数y =-3x +2的图像一定不经过第 ▲ 象限. 13. 在实数范围内因式分解:x 3-2x = ▲ .
14.如果关于x 的一元二次方程:012
=++x mx (m 为常数)有两个实数根,那么m 的取值范围 是 ▲ .
15.已知,22=m
x 则22
3)3()2(m m x x -= ▲ .
16.如图,12345∠+∠+∠+∠+∠= ▲ °.
17.如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为2 和1,若用阴影部分....
围成一个圆锥,则该圆锥的底面半径为 ▲ .
18.如图,如果把图中任一线段沿网格线平移1格称为一步,那么平移图中的线段首尾相连构成一个三角形,最少
需要 ▲ 步.
三、解答题(本大题共10小题,共96分)
19.(本题满分10分) 计算或化简:
(10212cos 60(2013)()2
-︒+- ; (2)22
()()(2)3a b a b a b a ++-+-.
20.(本题满分6分)解方程:
3
19632-=-++x x x x . (第18题图)
(第17题图)
(第16题图)
5
4
3
21
a
O
S
2 2 2 4
4
A
B C D
21.(本题满分8分)在一次汽车车展期间,某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销.C
型号轿车销售的成交率为50%,其它型号轿车的参展与销售情况绘制在图1和图2两幅尚不完整的统计图中.
(1)参加展销的D 型号轿车有 ▲ 辆; (2) 请你将图2的统计图补充完整;
(3) 从成交率看,哪一种型号的轿车销售情况最好?
22.(本题满分8分)如图,A 信封中装有两张卡片,卡片上分别写着7 cm 、3 cm ;B 信封中装有三张卡片,卡片上分别写着2 cm 、4 cm 、6 cm ;信封外有一张写着5 cm 的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度. (1)求这三条线段能组成三角形的概率(画出树状图); (2)求这三条线段能组成直角三角形的概率.
23.(本题满分10分)已知:△ABC 中,∠C =60°,AD ⊥BC 于D ,BE ⊥AC 于E ,F 是AB 的中点, (1)证明:△DEC ∽△ABC ; (2) 若AB =4,求S △DEF .
24.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线的距离为2 km ,点B 位于点A 北偏东
60°方向且与A 相距10 km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5 min 后该轮船行至点A 的正北方向的D 处. (1)求观测点B 到航线的距离;
(2)求该轮船航行的速度(结果精确到0.1 km /h
1.73,sin 760.97°≈ cos 760.24°≈,tan 76 4.01°≈)
A B
5cm
型号
D
C
20% B 20%
A 35% 各型号参展轿车数的百分比
已售出轿车/辆
A B C
D
图2
图1
25.(本题满分10分)某工厂计划生产甲、乙两种型号的机器200台,生产机器一定要有A 、B 两种材料,现厂里有
A 种材料10000吨,
B 种材料6000吨,已知生产一台甲机器和一台乙机器所需A 、B 两种材料的数量和售后利润如下表所示:
设生产甲种型号的机器x 台,售后的总利润为y 万元. (1) 写出y 与x 的函数关系式;
(2) 若你是厂长,要使工厂所获利润最大,那么如何安排生产?(请结合所学函数知识说明理由).
26. (本题满分10分)如图,正方形ABCD 的顶点B 、C 在双曲线y =
x
k
上,另两个顶点在坐标轴上, (1)设OA =a ,OD =b , ①请直接写出B 、C 的坐标(用a 、b 表示): B ( ▲ , ▲ ),C ( ▲ , ▲ ), ②求证:a=b ( ①中结论可直接用 );
(2)如图(2),作正方形BFGH ,且F 在x 轴上,H 在双曲线上,当S 正方形BFGH =5时,求k ; (3)如图(3),作矩形BFGH ,且F 在x 轴上,H 在双曲线上,BH :BF =2:1,当S 矩形BFGH =17时, 请直接写出....k 的值.
27.(本题满分12分)已知平面直角坐标系xOy ,抛物线c bx x y ++=2
2
1经过点 )0,3(-A 、)2
3,0(-C .
(1)求该抛物线顶点P 的坐标;
y
x
y
x
y
x
图(1)
图(2)
图(3)
(2)过C 作AC 的垂线,求此垂线的函数关系式; (3)在抛物线求点Q ,使∠QAC =∠P AC.
28.(本题满分12分)如图,半径为2 cm ,圆心角为90°的扇形OAB 的弧AB 上有一动点P . 过P 作PH ⊥OA 于H ,设
I 为△OPH 的内心, (1) 求∠PIO 的度数;
(2) 连结AI 、AP ,请你猜想△API 是什么样的特殊三角形,并证明你的结论; (3) 当点P 从点A 运动到点B 时,请你画出内心I 所经过的路径l ,并直接写出....l 的长度.
y
x。