【冲刺卷】八年级数学下期末一模试卷(带答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【冲刺卷】八年级数学下期末一模试卷(带答案)
一、选择题
1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
型号(厘
383940414243
米)
数量(件)25303650288
商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()
A.平均数B.中位数C.众数D.方差
2.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()
A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 3.下列命题中,真命题是()
A.两条对角线垂直的四边形是菱形
B.对角线垂直且相等的四边形是正方形
C.两条对角线相等的四边形是矩形
D.两条对角线相等的平行四边形是矩形
4.下列计算正确的是()
A.2
(4)
-=2B.52=3
÷
⨯D.62=3
-C.52=10
5.下列有关一次函数y=﹣3x+2的说法中,错误的是()
A.当x值增大时,y的值随着x增大而减小
B.函数图象与y轴的交点坐标为(0,2)
C.函数图象经过第一、二、四象限
D.图象经过点(1,5)
6.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()
A.1.5B.2C.2.5D.-6
7.如图,菱形中,分别是的中点,连接,则的周长为()
A.B.C.D.
8.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()
A .BA =BC
B .A
C 、B
D 互相平分 C .AC =BD D .AB ∥CD
9.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数
C .中位数
D .方差
10.如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是
( )
A .
B .
C .
D .
11.正方形具有而菱形不一定具有的性质是( ) A .对角线互相平分 B .每条对角线平分一组对角 C .对边相等 D .对角线相等
12.如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0
y ax b
kx y -=⎧⎨-=⎩的解是
( )
A .23x y =-⎧⎨=-⎩
B .3
2x y =-⎧⎨=⎩
C .3
2x y =⎧⎨=-⎩
D .3
2x y =-⎧⎨=-⎩
二、填空题
13.如图,在ABC V 中,AC BC =,点D E ,
分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC V 中
再添加一个条件为__________.
14.在函数4
x y -=
中,自变量x 的取值范围是______. 15.将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.
16.化简24的结果是__________.
17.在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.
18.函数x
____.
19.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:
笔试 面试 体能 甲 83 79 90 乙 85 80 75 丙
80
90
73
该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用. 20.已知3a b +=,2ab =a b
b a
的值为_________. 三、解答题
21.如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点
A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交
y 轴于点D .
(1)求直线CD 的解析式;
(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.
22.如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠. (1)求AE 的长;
(2)若F 是BC 中点,求线段EF 的长.
23.求证:三角形的一条中位线与第三边上的中线互相平分.
要求:(1)根据给出的ABC ∆和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹; (2)据此写出已知,求证和证明过程.
24.设a 8x =-b 3x 4=
+c x 2=+
(1)当x 取什么实数时,a ,b ,c 都有意义;
(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.
25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
故选C.
点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
2.C
解析:C
【解析】
【分析】
根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】
解:∵y=(m﹣2)x n﹣1+n是一次函数,
∴m﹣2≠0,n﹣1=1,
∴m≠2,n=2,
故选C.
【点睛】
本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.
3.D
解析:D
【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;
B、对角线垂直且相等的平行四边形是正方形,故选项B错误;
C、两条对角线相等的平行四边形是矩形,故选项C错误;
D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;
故选D.
4.C
解析:C
【解析】
【分析】
根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.
【详解】
,故A选项错误;
不是同类二次根式,不能合并,故B选项错误;
C选项正确;
D选项错误,
故选C.
【点睛】
本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.
5.D
解析:D
【解析】
【分析】
A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;
B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;
C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣
3x+2的图象经过第一、二、四象限,选项C不符合题意;
D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.
【详解】
解:A、∵k=﹣3<0,
∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;
B、当x=0时,y=﹣3x+2=2,
∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;
C、∵k=﹣3<0,b=2>0,
∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;
D、当x=1时,y=﹣3x+2=﹣1,
∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.
故选:D.
【点睛】
此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.
6.A
解析:A
【解析】
【分析】
根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.
【详解】
在一次函数y=-0.5x+2中k=-0.5<0,
∴y随x值的增大而减小,
∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,
故选A.
【点睛】
本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.
7.D
解析:D
【解析】
【分析】
首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.
【详解】
解:∵四边形ABCD是菱形,
∴AB=AD=BC=CD=2cm,∠B=∠D,
∵E、F分别是BC、CD的中点,
∴BE=DF,
在△ABE和△ADF中,,
∴△ABE≌△ADF(SAS),
∴AE=AF,∠BAE=∠DAF.
连接AC,
∵∠B=∠D=60°,
∴△ABC与△ACD是等边三角形,
∴AE⊥BC,AF⊥CD,
∴∠BAE=∠DAF=30°,
∴∠EAF=60°,BE=AB=1cm,
∴△AEF是等边三角形,AE=,
∴周长是.
故选:D.
【点睛】
本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.
8.B
解析:B
【解析】
【分析】
【详解】
解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,
则需添加条件:AC、BD互相平分
故选:B
9.D
解析:D
【解析】
【分析】
方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

【详解】
由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.
故选D.
10.C
解析:C
【解析】
【分析】
根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.
【详解】
解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;
②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、
三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;
故选:C.
【点睛】
本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
11.D
解析:D
【解析】
【分析】
列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.
【详解】
正方形具有而菱形不一定具有的性质是:
①正方形的对角线相等,而菱形不一定对角线相等;
②正方形的四个角是直角,而菱形的四个角不一定是直角.
故选D.
【点睛】
本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.
12.D
解析:D
【解析】
【分析】
根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.
【详解】
由图可知,交点坐标为(﹣3,﹣2),
所以方程组的解是
3
2 x
y
=-


=-


故选D.
【点睛】
本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题
13.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可
【详解】∠ACB=90°时四边形AD
解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°
【解析】
【分析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.
【详解】
∠ACB=90°时,四边形ADCF是正方形,
理由:∵E是AC中点,
∴AE=EC,
∵DE=EF,
∴四边形ADCF是平行四边形,
∵AD=DB,AE=EC,
∴DE=1
2 BC,
∴DF=BC,
∵CA=CB,
∴AC=DF,
∴四边形ADCF是矩形,
点D. E分别是边AB、AC的中点,
∴DE//BC,
∵∠ACB=90°,
∴∠AED=90°,
∴矩形ADCF是正方形.
故答案为∠ACB=90°.
【点睛】
此题考查正方形的判定,解题关键在于掌握判定法则
14.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式
解析:x≥4
【解析】
【分析】
根据被开方数为非负数及分母不能为0列不等式组求解可得.
【详解】
解:根据题意,知
40
10
x
x
-≥


+≠


解得:x≥4,
故答案为x≥4.
【点睛】
本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
15.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+2
解析:y=3x+2.
【解析】
【详解】
将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,可得y=3x﹣1+3=3x+2.
故答案为y=3x+2.
16.4【解析】【分析】根据二次根式的性质直接化简即可【详解】故答案为:4【点睛】此题主要考查了运用二次根式的性质进行化简注意:
解析:4
【解析】
【分析】
根据二次根式的性质直接化简即可.
【详解】
|4|4
=.
故答案为:4.
【点睛】
(0)
||0 (0)
(0)
a a
a a
a a


===

⎪-



.
17.x<1【解析】观察图象即可得不等式kx<-
x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键
解析:x<1
【解析】
观察图象即可得不等式kx<-x+3的解集是x<1.
点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.
18.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变
解析:0x >.
【解析】
【分析】
由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x 的取值即可.
【详解】
根据题意得,00x x ≥⎧⎨
≠⎩
解得,0x >
故答案为:0x >.
【点睛】
本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题. 19.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙 解析:乙
【解析】
【分析】
由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.
【详解】
解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分, ∴甲淘汰;
乙成绩=85×
60%+80×30%+75×10%=82.5, 丙成绩=80×
60%+90×30%+73×10%=82.3, 乙将被录取.
故答案为:乙.
【点睛】
本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.
20.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案
【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运
解析:2
【解析】
【分析】
先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.
【详解】
b a
=+
=(a b ab
+, ∵3a b +=,2ab =,
∴原式=
3=22;
故答案为:
2
. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.
三、解答题
21.(1)y=3x-10;(2)41033
x -≤≤ 【解析】
【分析】
(1)先把A (6,m )代入y=-x+4得A (6,-2),再利用点的平移规律得到C (4,2),接着利用两直线平移的问题设CD 的解析式为y=3x+b ,然后把C 点坐标代入求出b 即可得到直线CD 的解析式;
(2)先确定B (0,4),再求出直线CD 与x 轴的交点坐标为(103
,0);易得CD 平移到经过点B 时的直线解析式为y=3x+4,然后求出直线y=3x+4与x 轴的交点坐标,从而可得到直线CD 在平移过程中与x 轴交点的横坐标的取值范围.
【详解】
解:(1)把A (6,m )代入y=-x+4得m=-6+4=-2,则A (6,-2),
∵点A 向左平移2个单位,再向上平移4个单位,得到点C ,
∴C (4,2),
∵过点C 且与y=3x 平行的直线交y 轴于点D ,
∴CD 的解析式可设为y=3x+b ,
把C (4,2)代入得12+b=2,解得b=-10,
∴直线CD 的解析式为y=3x-10;
(2)当x=0时,y=4,则B (0,4),
当y=0时,3x-10=0,解得x=103,则直线CD 与x 轴的交点坐标为(103
,0), 易得CD 平移到经过点B 时的直线解析式为y=3x+4, 当y=0时,3x+4=0,解得x=43-
,则直线y=3x+4与x 轴的交点坐标为(43-,0),
∴直线CD 在平移过程中与x 轴交点的横坐标的取值范围为41033
x -≤≤. 【点睛】
本题考查了一次函数与几何变换:求直线平移后的解析式时要注意平移时k 的值不变,会利用待定系数法求一次函数解析式.
22.(1)12;(2)5
【解析】
【分析】
(1)先证明△ABD 是等腰三角形,再根据三线合一得到AE BD ⊥,利用勾股定理求得AE 的长;
(2)利用三角线的中位线定理可得:12EF CD =
,再进行求解. 【详解】
解:(1)13AD AC CD =-=
∴AB AD =
∵AE 平分BAC ∠,
∴5,EB ED AE BD ==⊥
根据勾股定理,得12AE =
= (2)由(1),知EB ED =,
又∵FB FC =, ∴152
EF CD =
=. 【点睛】 考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.
23.(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可,见解析;(2) 见解析.
【解析】
【分析】
(1)作BC 的垂直平分线得到BC 的中点F ,从而得到BC 边上的中线AF ;
(2)写出已知、求证,连接DF 、EF ,如图,先证明EF 为AB 边的中位线,利用三角形中位线性质得到EF ∥AD ,EF=AD ,则可判断四边形ADFE 为平行四边形,从而得到DE 与AF 互相平分.
【详解】
解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可。

(2)已知:D E F 、、分别为ABC ∆三边AB AC BC 、、的中点,AF 与DE 交于点O 。

求证:AC 与DE 互相平分。

证明:连结DF EF 、,
D F 、分别为AB BC 、的中点, 有1,2
DF AC DF AC =∕∕, 又E 为AC 中点,
所以,,DF AE DF AE =∕∕,
四边形ADFE 为平行四边形,
所以,AC 与DE 互相平分.
【点睛】
本题考查了作图——基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形中位线定理.
24.(1)483
x -
≤≤;(2)x =25或2. 【解析】
【分析】
(1)根据二次根式的被开方数为非负数,列不等式组求解;
(2)根据a 、b 、c 分别作直角三角形的斜边,由勾股定理分别求解.
【详解】 解:(1)由二次根式的性质,得8034020x x x -≥⎧⎪+≥⎨⎪+≥⎩
, 解得483
x -≤≤; (2)当c 为斜边时,由a 2+b 2=c 2,
即8-x+3x+4=x+2,
解得x=-10,
当b 为斜边时,a 2+c 2=b 2,
即8-x+x+2=3x+4,
解得x=2,
当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,
解得x=2 5

4
8 3
x
-≤≤
∴x=2
5
或2.
【点睛】
本题考查二次根式的性质及勾股定理的运用.在没有指定直角三角形的斜边的情况下,注意分类讨论.
25.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.
【解析】
分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;
(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;
(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.
详解:(1)56÷28%=200,
即本次一共调查了200名购买者;
(2)D方式支付的有:200×20%=40(人),
A方式支付的有:200-56-44-40=60(人),
补全的条形统计图如图所示,
在扇形统计图中A种支付方式所对应的圆心角为:360°×60
200
=108°,
(3)1600×60+56
200
=928(名),
答:使用A和B两种支付方式的购买者共有928名.
点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.。

相关文档
最新文档