过电压保护电路汇总

合集下载

直流电源过电压过流保护电路

直流电源过电压过流保护电路

直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。

图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。

带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。

具体数值由实验决定。

电路如图16-91所示。

它适用于电动自行车或电动三轮车。

调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。

Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。

过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。

如果负载电流超过预设值,该电子保险将断开直流负载。

重置电路时,只需把电源关掉,然后再接通。

该电路有两个联接点(A、B标记),可以连接在负载的任意一边。

负载电流流过三极管T4、电阻R10和R11。

A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。

当电源刚刚接通时,全部电源电压加在保险上。

三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。

因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。

该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。

保险导电,负载有电流流过。

当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。

保险上的电压(VAB)通常小于2V,具体值取决于负载电流。

当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。

由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。

过欠电压保护提示电路

过欠电压保护提示电路

@@@大学课程设计报告目录1.概述 (3)1.1 过欠压电路课程设计背景 (3)1.2 过欠压电路课程设计目的 (3)1.3 设计任务与要求 (3)2.设计内容 (4)2.1 分模块电路设计思路 (4)2.2 电源模块的设计 (4)2.3 比较模块的设计 (5)2.4 报警模块的设计 (6)3.总电路图 (7)3.1 图像 (7)3.2 元件清单 (7)3.3 部分重要原件介绍 (8)4.仿真与调试 (12)4.1 仿真过程中数据记录 (12)4.2 结论 (19)5.心得体会 (20)1.概述1.1 过欠压电路课程设计背景日常生活中,我们不可避免的要用到要用到各种各样的电气设备。

由于电网电压的波动,在较高的电压下很有可能使电气设备受到损坏,而在低压时电气设备不能正常工作。

在这种情况下就需要有一个电压报警指示设备,使其可以及时准确地对电网电压进行分段指示并对过、欠压进行指示报警,从而实现保护电器设备的目的。

1.2 过欠压电路课程设计目的通过设计,使同学们对模拟电子技术理论知识在生产实际中的应用有一个初步的认识。

加深同学们对所学的理论知识与实际的应用的结合。

通过设计,全面提高同学们、分析、判断、解决问题的能力。

1.3 设计任务与要求(1) 设计一个过欠电压保护电路,当电网交流电压大于250V 或小于180V时,经3~4s本装置将切断用电设备的交流供电,并用LED发光警示。

(2) 在电网交流电压恢复正常后,经本装置延时3~5分钟后恢复用电设备的交流供电。

2.设计内容2.1 分模块电路设计思路a.电源模块的设计;b.比较模块的设计;c. 报警模块的设计.2.2 电源模块的设计电源设计图:电源模块说明:电源模块采用10 TO 1 的变压器降压,1A/50V桥式整流电路进行整流,RCπ型滤波器进行滤波。

当通以220V的交流电压时,经过变压器降压后,电压测量值为21.978V;通过由4 个相同型号的二极管组成的桥式整流电路后,得到14.725V直流电压;再通过RCπ型滤波器和LM7812与LM7806的滤波、稳压功能,最终得到6.012V的直流电压。

开关电源常用的几种保护电路

开关电源常用的几种保护电路

开关电源常用的几种保护电路评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

开关电源常用的几种保护电路如下:1、防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2、过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

保护电路设计方法 - 过电压保护

保护电路设计方法 - 过电压保护

保护电路设计方法- 过电压保护2.过电压保护⑴过电压的产生及抑制方法①过电压产生的原因对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线的电感,就产生了L di/dt电压(关断浪涌电压)。

这里,以IGBT关断时的电压波形为例,介绍产生原因和抑制方法,以具体电路(均适用IGBT/FWD)为例加以说明。

为了能观测关断浪涌电压的简单电路的图6中,以斩波电路为例,在图7中示出了IGBT关断时的动作波形。

关断浪涌电压,因IGBT关断时,主电路电流急剧变化,在主电路分布电感上,就会产生较高的电压。

关断浪涌电压的峰值可用下式求出:V CESP=E d+(-L dI c/dt)式中dl c/dt为关断时的集电极电流变化率的最大值;V CESP为超过IGBT的C-E间耐压(V CES)以至损坏时的电压值。

②过电压抑制方法作为过电压产生主要因素的关断浪涌电压的抑制方法有如下几种:1.在IGBT中装有保护电路(=缓冲电路)可吸浪涌电压。

缓冲电路的电容,采用薄膜电容,并靠近IGBT配置,可使高频浪涌电压旁路。

2.调整IGBT的驱动电路的V CE或R C,使di/dt最小。

3.尽量将电件电容靠近IGBT安装,以减小分布电感,采用低阻抗型的电容效果更佳。

4.为降低主电路及缓冲电路的分布电感,接线越短越粗越好,用铜片作接线效果更佳。

⑵缓冲电路的种类和特缓冲电路中有全部器件紧凑安装的单独缓冲电路与直流母线间整块安装缓冲电路二类。

①个别缓冲电路为个别缓冲电路的代表例子,可有如下的缓冲电路1.RC缓冲电路2.充放电形RCD缓冲电路3.放电阻止形RCD缓冲电路表3中列出了每个缓冲电路的接线图。

特点及主要用途。

表3 单块缓冲电路的接线圈特点及主电用途②整体缓冲电路作为这类缓冲电路的代表例子,有下面几种缓冲电路1.C缓冲电路2.RCD缓冲电路最近,为简化缓冲电路的设计,大多采用整体缓冲电路。

过欠压、过流、过温、软启动、CNT保护实际电路详解!

过欠压、过流、过温、软启动、CNT保护实际电路详解!

输出过压保护电路当用户在使用电源模块时,可能会由于某种原因,造成模块输出电压升高,为了保护用户电路板上的器件不被损坏,当模块的输出电压高于一定值时,模块必须封锁脉冲,阻止输出电压的继续上升。

D320产生一个5.1V电压基准送至运放U301反相输入端,R330、R334、R336用于检测输出电压、检测电压值送至运放U301同相输入端。

输出电压没有达到过压保护点时,运放U301 5脚的电压小于6脚的电压,运放输出为低电平,输出正常。

输出电压Vo升高到设定检测点电压时,电阻R336、R334、R330检测的分压比送入运放U301的5脚,此时5脚电压高于6脚电压,运放U301输出高电平,封闭控制芯片PWM信号,模块输出电压为零。

过流保护电路实例(1)图2.过流保护电路实例工作原理T2采集模块原边开关管的输入电流,采样电流经取样电阻R18转换成电压信号,再经两路开关二极管(D6)整流形成两路控制信号。

一路峰值信号去控制38C43的3脚;另一路准峰值电平进入38C43 EA的反相输入端2脚。

采用CT作电流采样的好处是采样电路功耗小,采样电路灵活,CT可以放置在MOSFET开关管的D极或S极,也可以串联于主变压器原边的Vin+端。

缺点是电路稍复杂,体积大,CT存在大占空比时不能有效复位的问题。

CT采样一般用于中大功率的模块。

3843PWM芯片介绍图3.3843芯片内部结构图芯片工作原理虚线所框部分为38C43芯片内置的误差放大器和电流放大器。

误差放大器的输出经过内部分压后(被钳位到1V),进入电流放大器的反相输入端,与电流采样信号比较后进入PWM产生电路。

最终在芯片的6脚输出PWM信号。

在这里,误差放大器被用来作OCP保护,电流控制放大器I/A作峰值电流限流保护。

误差放大器E/A用于准峰值限流。

当38C43反相输入端2脚的直流电平达到2.5V时,误差放大器E/A起作用,使38C43的6脚输出驱动信号占空比D减小,达到模块OCP之目的。

过电压保护ppt课件

过电压保护ppt课件
想; 间隙动作后会形成截波; 熄弧能力低
3.阀式避雷器 (1).普通型阀式避雷器
a.结构与元件的作用:
火花间隙:
作用原理:
根据火花间隙的结构,使间隙的放电时间 缩短,由于其伏秒特性曲线平缓,放电分散性 也较小,由于火花间隙由若干个小间隙组合串 联,易于切断工频续流,且不易重燃。
具有分路电阻的火花间隙:
1.保护间隙
作用原理: 当雷电侵入波要危及它所
保护的电气设备的绝缘时, 间隙首先击穿,工作母线 接地,避免了被保护设备 上的电压升高,从而保 护了设备。
6KV和10KV保护间隙,主间隙分别不小于15mm和25mm 辅助间隙不小于10mm。
优缺点:
优点: 结构简单、制造方便 缺点: 伏秒特性曲线比较陡,绝缘配合不理
优缺点
熄弧能力比保护间隙要强,但伏秒特 性较陡且放电分散性大,且会形成截波, 并受大气条件影响较大,所只用在线路 保护和变电所进线段保护
5.金属氧化物(氧化锌)避雷器
(1)、工作原理
正常运行时,在工频电压下氧化物 电阻片具有极高阻值,呈绝缘状态;当 出现过电压时,阀片呈低阻状态,泄放 电流,避雷器两端维持较低的残压,保 护电气设备不受损坏。过电压过后,立 即恢复高电阻值,继续保持绝缘。金属 氧化物避雷器不需要设置火花间隙,也 不需要进行灭弧。
第二节 直接雷击过电压
一.避雷针和避雷线
1.保护作用的原理
能使雷云电场发生突变,使雷电先导的发展沿 着避雷针的方向发展,直击于其上,雷电流通 过避雷针(线)及接地装置泄入大地而防止避 雷针(线)周围的设备受到雷击
独立避雷针
构架避雷针
消雷器
2.保护范围
(1).单支避雷针
hx
h 2

过电压保护

过电压保护

二、过电压的分类 直接雷击过电压 雷电反击过电压 雷电过电压 感应雷过电压 雷侵入波过电压 过电压 工频过电压 谐振过电压 内部过电压 操作过电压
线性谐振 非线性谐振 参数谐振 切、合空载长线路
切、合空载变压器
开断感应电动机 开断关联电容器 弧光接地
三、雷电过电压
1、雷电放电 雷电放电是雷云所引起 的放电现象。如果放电时 附近没有带异号电荷的其 他雷云,这时雷云就会对 地放电,特别是对地面上 的高大树木或建筑物放电。
例如:切除空载线路过电压 (断路器灭弧很强,截流过电压)
在电流波形瞬时值未达到零点之前, 就强行将电流截断,如果分断的又是电 感性负载,如高压电动机、变压器等设 备,则有可能发生截流过电压。因为电 流的突然变化,电感性负载设备磁路中 磁通量跟着发生突变,根据电磁感应原 理,将会产生很高的感应电动势,从而 发生过电压。
例如:切除空载线路过电压(断路器灭弧不
够强时)
切空线操作是常见的一种操作,如检修线路断路器触 头分离后,电弧熄灭,但触头间恢复电压上升速度超过了 介质强度的恢复速度,电弧就可能发生重燃,在线路上出 现过电压。如果断路器灭弧能力越差,重燃概率越大,过 电压幅值就越高(3倍以上)且持续时间很长(0.5-1个周 期)。因此220kV及以下系统绝缘水平考虑过电压时,主要 以切空线过电压为依据。
3.阀式避雷器 (1).普通型阀式避雷器
a.结构与元件的作用:
火花间隙:
作用原理:
根据火花间隙的结构,使间隙的放电时间 缩短,由于其伏秒特性曲线平缓,放电分散性 也较小,由于火花间隙由若干个小间隙组合串 联,易于切断工频续流,且不易重燃。
具有分路电阻的火花间隙:
为什么要在间隙两端并联电阻:

过电压保护电路

过电压保护电路

过电压保护电路
电压过高会对电子、电器产品造成损害,而且还有引起火灾的危险。

下图是一个过电压保护电路,当负载上电压超过设定的最高限值时,它能自动切断电源;当电源电压低于设定的最高允许限值时,它又能自动恢复对负载供电,所以该过电压保护电路能
够对电子、电器产品进行
保护。

220V交流电经T降
压、VDl~VD4整流及
A1稳压输出9V稳定的
直流电压供555时基电
路A2用电。

R1—R4、
RPl与RP2组成输入电压变化取样网络,调整RPl使输入交流电压在最高限值时,其滑动端输出电压即A2的⑥脚电位略高于6V;调整RP2使输入交流电压在允许最高限值时,其滑动端输出电压即A2的②脚电位略低于3V。

这样当输入交流电压超过设定的最高限压时,A2的⑥脚电位将超过6V(即超过A2电源电压的2/3);②脚电位超过3V(即超过A2电源电压的1/3),A2复位,③脚输出低电平,双向晶闸管VTH关断,电源停止对负载供电,从而实现过电压保护。

如果输入的交流电压低于设定的最高允许限值时,A2的⑥脚、②脚电位将分别低于6V与3V,A2即置位,③脚输出高电平,VTH导通,电源恢复对负载供电。

本电路设置两个最高
限值,一个为切断电源,一个
为恢复供电,其目的是可以消
除普通过电压保护电路只有一
个最高限制值,当电源电压在
限大小进行选择,并加装面积足够的散热板。

锂电池过充电 过放 短路保护电路详解

锂电池过充电 过放 短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。

充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。

在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。

放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电/压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。

二次锂电池的优势是什么?1. 高的能量密度2. 高的工作电压3. 无记忆效应4. 循环寿命长5. 无污染6. 重量轻7. 自放电小锂聚合物电池具有哪些优点?1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。

2. 可制成薄型电池:以的容量,其厚度可薄至。

3. 电池可设计成多种形状4. 电池可弯曲变形:高分子电池最大可弯曲900左右5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍IEC规定锂电池标准循环寿命测试为:电池以放至支后1. 1C恒流恒压充电到截止电流20mA搁置1小时再以放电至(一个循环)反复循环500次后容量应在初容量的60%以上国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准).电池在25摄氏度条件下以放至支后,以1C恒流恒压充电到,截止电流10mA,在温度为20+_5下储存28天后,再以放电至计算放电容量什么是二次电池的自放电不同类型电池的自放电率是多少?自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。

开关电源常用保护电路-过热、过流、过压以及软启动保护电路

开关电源常用保护电路-过热、过流、过压以及软启动保护电路

开关电源常用保护电路-过热、过流、过压以及软启动保护电路1 引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源 . 同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间 . 但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便.为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路.2 开关电源的原理及特点2.1 工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成.功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能.它主要由开关三极管和高频变压器组成.图 1 画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管 V ,激励信号,续流二极管 Vp ,储能电感和滤波电容 C 组成.实际上,直流开关电源的核心部分是一个直流变压器.2.2 特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体( Mn-Zn )材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时 SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄.因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化.直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱.由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3 直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路.3.1 过电流保护电路在直流开关电源电路中,为了保护调整管在电路短路、电流增大时不被烧毁.其基本方法是,当输出电流超过某一值时,调整管处于反向偏置状态,从而截止,自动切断电路电流.如图 2 所示,过电流保护电路由三极管 BG2 和分压电阻 R4 、 R5 组成.电路正常工作时,通过R4 与 R5 的分压作用,使得 BG2 的基极电位比发射极电位低,发射结承受反向电压.于是 BG2 处于截止状态(相当于开路),对稳压电路没有影响.当电路短路时,输出电压为零, BG2 的发射极相当于接地,则 BG2 处于饱和导通状态(相当于短路),从而使调整管 BG1 基极和发射极近于短路,而处于截止状态,切断电路电流,从而达到保护目的.3.2 过电压保护电路直流开关电源中开关稳压器的过电压保护包括输入过电压保护和输出过电压保护.如果开关稳压器所使用的未稳压直流电源(诸如蓄电池和整流器)的电压如果过高,将导致开关稳压器不能正常工作,甚至损坏内部器件,因此开关电源中有必要使用输入过电压保护电路.图 3 为用晶体管和继电器所组成的保护电路,在该电路中,当输入直流电源的电压高于稳压二极管的击穿电压值时,稳压管击穿,有电流流过电阻 R ,使晶体管 T 导通,继电器动作,常闭接点断开,切断输入.输入电源的极性保护电路可以跟输入过电压保护结合在一起,构成极性保护鉴别与过电压保护电路.3.3 软启动保护电路开关稳压电源的电路比较复杂,开关稳压器的输入端一般接有小电感、大电容的输入滤波器.在开机瞬间,滤波电容器会流过很大的浪涌电流,这个浪涌电流可以为正常输入电流的数倍.这样大的浪涌电流会使普通电源开关的触点或继电器的触点熔化,并使输入保险丝熔断.另外,浪涌电流也会损害电容器,使之寿命缩短,过早损坏.为此,开机时应该接入一个限流电阻,通过这个限流电阻来对电容器充电.为了不使该限流电阻消耗过多的功率,以致影响开关稳压器的正常工作,而在开机暂态过程结束后,用一个继电器自动短接它,使直流电源直接对开关稳压器供电,这种电路称之谓直流开关电源的“ 软启动” 电路 .如图 4 ( a )所示在电源接通瞬间,输入电压经整流桥( D1 ~ D4 )和限流电阻 R1 对电容器 C 充电,限制浪涌电流.当电容器 C 充电到约 80 %额定电压时,逆变器正常工作.经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻 R1 ,开关电源处于正常运行状态.为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图4 ( b )所示电路替代 RC 延迟电路.3.4 过热保护电路直流开关电源中开关稳压器的高集成化和轻量小体积,使其单位体积内的功率密度大大提高,因此如果电源装置内部的元器件对其工作环境温度的要求没有相应提高,必然会使电路性能变坏,元器件过早失效.因此在大功率直流开关电源中应该设过热保护电路.本文采用温度继电器来检测电源装置内部的温度,当电源装置内部产生过热时,温度继电器就动作,使整机告警电路处于告警状态,实现对电源的过热保护.如图 5 ( a )所示,在保护电路中将 P 型控制栅热晶闸管放置在功率开关三极管附近,根据 TT102 的特性(由 Rr 值确定该器件的导通温度, Rr 越大,导通温度越低),当功率管的管壳温度或者装置内部的温度超过允许值时,热晶闸管就导通,使发光二极管发亮告警.倘若配合光电耦合器,就可使整机告警电路动作,保护开关电源.该电路还可以设计成如图 5 ( b )所示,用作功率晶体管的过热保护,晶体开关管的基极电流被 N 型控制栅热晶闸管 TT201 旁路,开关管截止,切断集电极电流,防止过热.4 小结文中主要讨论了直流开关电源内部器件的各种保护方式,并介绍了一些具体电路.对一个给定的直流开关电源来说,保护电路是否完善并按预定设置工作,对电源装置的安全性和可靠性至关重要.因为开关电源的保护方案和电路结构具有多样性,所以对具体电源装置而言,应选择合理的保护方案和电路结构.在实际应用中,通常选用几种保护方式加以组合的方式构成完善的保护系统,确保直流开关电源的正常工作.。

开关电源常用的几种保护电路

开关电源常用的几种保护电路

开关电源常用的几种保护电路1 引言评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

2 开关电源常用的几种保护电路2.1 防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2.2 过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

IGBT过电压保护及其缓冲电路

IGBT过电压保护及其缓冲电路

IGBT过电压保护及其缓冲电路文章首先设计出斩波电路缓冲电路的模型,并研究和探讨了它的工作原理及过程,继而分析了该种电路对各元器件参数的要求,将其看作选择参数的根据;与此同时又指出缓冲电路在安装的时候要注意的一些问题;最后给出了IGBT的过电压保护和过流保护的措施【关键词】IGBT 缓冲电路过电压保护伴随电力及电子科技的迅猛发展,IGBT这种全控型的开关,以它良好的性能在高压大功率的电路中渐渐替代了以往的SCR从而得到十分广泛的运用。

因为IGBT开关的速率非常大,很容易在开关二端出现很高的du/dt以及尖峰电压Upk,导致器件受到损害,缩短寿命,使得发生故障的概率大大增加。

故而,应在电路内增设缓冲电路。

缓冲电路类型的选取应该综合考虑多方面因素确定。

一般而言,在低频小功率的时候,电容吸收电路即能够满足性能上的要求,而如果伴随功率的进一步增大,电容将和电路内的寄生电感产生谐振。

RCD的运用十分的广泛,其不但可以满足系统要求,还可于某种程度上抑制谐振,而且相对放电阻止型吸收电路而言,其成本相对比较低1 缓冲电路的工作原理和参数计算在以下的分析时设定下述条件:二极管和IGBT都是理想的器件,其通态压降都是零;电容为纯容性,电感为纯感性,其中都没有电阻1.1 换流过程换流前的初始状态分析如下:Vc、VD1、VD2都在截止的状态;电流流经过L1、IGBT构成回路,同时在这个过程内始终为恒值。

�冲电路图见图11.2 谐振阶段以上的换流阶段完成以后,IGBT已经完全切断,也就是it=0,继而Cs仍然通过电源向其进行充电,二端的电压仍在升高。

当达到Ucs=Ud的时候,VD0开始受到正向偏置的电压,达到导通的状态,而il通过VD0续流。

继而系统内的杂散电感和电容Cs产生谐振,VDs仍保持导通的状态,电感内的能量都转移到了电容内1.3 电容Cs放电等谐振的过程结束以后,VDs完成截止,Cs则开始利用电源、L1和Rs进行放电。

(完整word版)过电压保护

(完整word版)过电压保护

电力电子器件的保护一 、过电压保护电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。

外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。

电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。

内因过电压主要来自电力电子装置内部器件的开关过程,包括:(1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。

(2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。

电力电子电路常见的过电压有交流测过电压和直流测过电压。

常用的过电压保护措施及配置位置如图1-1所示。

SFRVRCDTDCUMRC 1RC 2RC 3RC 4L BS DC图9-10 过电压保护措施及装置位置F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。

由于电容两端电压不能突变,所以能有效抑制尖峰过电压。

串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。

视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。

图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。

+-+-a)b)网侧阀侧直流侧C a R aC a R aC dcR dc C dcR dc C a R aC a R a图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相二、过电流保护过电流分为过载和短路两种情况。

直流电源过电压过流保护电路

直流电源过电压过流保护电路

直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。

图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。

带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。

具体数值由实验决定。

电路如图16-91所示。

它适用于电动自行车或电动三轮车。

调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。

Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。

过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。

如果负载电流超过预设值,该电子保险将断开直流负载。

重置电路时,只需把电源关掉,然后再接通。

该电路有两个联接点(A、B标记),可以连接在负载的任意一边。

负载电流流过三极管T4、电阻R10和R11。

A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。

当电源刚刚接通时,全部电源电压加在保险上。

三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。

因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。

该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。

保险导电,负载有电流流过。

当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。

保险上的电压(VAB)通常小于2V,具体值取决于负载电流。

当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。

由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新疆大学
课程设计报告
所属院系:科学技术学院
专业:电气工程及其自动化
课程名称:电子技术基础上
设计题目:过电压保护电路设计
班级:电气14-1
学生姓名:庞浩
学生学号:20142450007
指导老师: 常翠宁
完成日期:2016. 6. 30
1.双向二极管限幅电路
图2 经典过电压保护电路
经典过电压保护电路虽然有许多优点,但是由于Multisim 12.0中无法找到元件
MAX6495,无法进行仿真,所以不选用该方案。

3.智能家电过电压保护电路
电路原理:该装置工作原理见图,电容器C1将220V 交流市电降压限流后,由二极管1D V 、 2D V 整流,电容器2C 担任滤波,得到12V 左右的直流电压。

当电网电压正常时,
稳压二极管VDW 不能被击穿导通,此时三极管VT 处于截止状态,双向可控硅VS 受到电压触发面导通,插在插座XS 中的家电通电工作。

(图3)
图3 智能家电过压保护电路
如果电网电压突然升高,超过250V ,此时在RP 中点的电压就导致VDW 击穿导通,VDW 导通后,又使得三极管VT 导通,VT 导通后,其集电极—发射极的压降很小,不足以触发VS ,又导致VS 截止,因此插座XS 中的家电断电停止工作,因而起到了保护的目的。

一旦电网电压下降,VT 又截止,VT 的集电极电位升高,又触发VS 导通,家电得电继续工作。

R 电阻5.1K1,RP 电位器15K 选用多圈精密电位器1,C1金属化纸介电容0.47uF 耐压≥400V1,C2电解电容100uF/25V1,1D V 、 2D V 整流二极管IN40072,VDW 稳压二极管
12V 的2CW121,VT 晶体三极管3DA87C 、3DG12等1,VS 双向可控硅6—10A 耐压≥600V1,CZ 电源插座10A 250V1
该装置的调试十分简单,当电网电压为220V 时,调整RP ,使VDW 不击穿,当电压升高至250V ,VT 饱和导通即可,调试时用一调压变压器来模拟市电的变化更方便。

优点:能够保护家用电器避免高电压的冲击带来的伤害,、
缺点:需要购买二极管,NPN 型BJT 以及双向可控硅VS ,不太经济。

图4 VGA过电压保护电路
优点:便于集成
缺点:需要特殊元件才能实现,竞技性差,技术要求高,不容易实现。

图5-3 单相桥式整流电路
图5-9 过电压保护电路保护负载并报警。

相关文档
最新文档