QYR:预测全球封闭式门铃收入将以每年1%至6%的增长率持续增长

合集下载

A multiperiod two-echelon multicommodity capacitated plant location problem

A multiperiod two-echelon multicommodity capacitated plant location problem
Y. Hinojosa
a
a,*
, J. Puerto b, F.R. Fern andez
b
Dept. Econom õa Aplicada I. Fac. de Ciencias Econom. y Empresar., Universidad de Sevilla, 41018 Sevilla, Spain b Dept. Estad õstica e IO, Universidad de Sevilla, Sevilla, Spain
*
Corresponding author. E-mail address: yhinojos@cica.es (Y. Hinojosa).
0377-2217/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved. PII: S 0 3 7 7 - 2 2 1 7 ( 9 9 ) 0 0 2 5 6 - 8
Abstract In this paper we deal with a facility location problem where one desires to establish facilities at two dierent distribution levels by selecting the time periods. Our model intends to minimize the total cost for meeting demands for all the products speci®ed over the planning horizon at various customer locations while satisfying the capacity requirements of the production plants and intermediate warehouses. We address this problem by means of a formulation as a mixed integer programming problem. A Lagrangean relaxation is proposed to solve the problem, together with a heuristic procedure that constructs feasible solutions of the original problem from the solutions at the lower bounds obtained by the relaxed problems. Computational tests are provided showing the good performance of this approach for a wide range of problems. Ó 2000 Elsevier Science B.V. All rights reserved. Keywords: Multiperiod multi-echelon facility-location; Integer programming; Lagrangean dual; Heuristic

Analytical Solution for Wave Propagation in Stratified AcousticPorous Media. Part II the 3D

Analytical Solution for Wave Propagation in Stratified AcousticPorous Media. Part II the 3D

EPI Magique-3D, Centre de Recherche Inria Bordeaux Sud-Ouest Laboratoire de Math´ ematiques et de leurs Applications, CNRS UMR-5142, Universit´ e de Pau et des Pays de l’Adour – Bˆ atiment IPRA, avenue de l’Universit´ e – BP 1155-64013 PAU CEDEX


Centre de recherche INRIA Bordeaux – Sud Ouest Domaine Universitaire - 351, cours de la Libération 33405 Talence Cedex
Téléphone : +33 5 40 00 69 00
Solution analytique pour la propagation d’ondes en milieu stratifi´ e h´ et´ erog` ene acoustique/poro´ elastique. Partie II : en dimension 3
Julien Diaz∗ † , Abdelaˆ aziz Ezziani†

Th` eme NUM — Syst` emes num´ eriques ´ Equipe-Projet Magique-3D Rapport de recherche n 6595 — Juillet 2008 — 29 pages
Analytical solution
3
Introduction
The computation of analytical solutions for wave propagation problems is of high importance for the validation of numerical computational codes or for a better understanding of the reflexion/transmission properties of the media. Cagniard-de Hoop method [4, 6] is a useful tool to obtain such solutions and permits to compute each type of waves (P wave, S wave, head wave...) independently. Although it was originally dedicated to the solution of elastodynamic wave propagation, it can be applied to any transient wave propagation problem in stratified media. However, as far as we know, few works have been dedicated to the application of this method to poroelastic medium. In [12] the analytical solution of poroelastic wave propagation in an homogeneous 2D medium is provided and in [13] the authors compute the analytical expression of the reflected wave at the interface between an acoustic and a poroelastic layer in two dimension but they do not explicit the expression of the transmitted waves. In order to validate computational codes of wave propagation in poroelastic media, we have implemented the codes Gar6more 2D [10] and Gar6more 3D [11] which provide the complete solution (reflected and transmitted waves) of the propagation of wave in stratified 2D or 3D media composed of acoustic/acoustic, acoustic/elastic, acoustic/poroelastic or poroelastic/poroelastic The 2D code and the 3D code are freely downloadable at /library/software/Gar6more2D. and /library/software/Gar6more3D. In previous studies [8, 9] we have presented the 2D acoustic/poroelastic and poroelastic/poroelastic cases and we focus here on the 3D acoustic/poroelastic case,the 3D poroelastic/poroelastic case will be the object of forthcoming papers. We first present the model problem we want to solve and derive the Green problem from it (section 1). Then we present the analytical solution of wave propagation in a stratified 3D medium composed of an acoustic and a poroelastic layer (section 2) and we detail the computation of the solution (section 3). Finally we illustrate our results through numerical applications (section 4).

古诗70首拼音标注

古诗70首拼音标注

1 《江jiāng 南nán 》乐yuè府fǔ民mín 歌gē江jiāng 南nán 可kě采cǎi莲lián,莲lián叶yè何hé田ti án 田ti án。

鱼yú戏x ì莲lián 叶yè间jiān。

鱼yú戏x ì莲lián叶yè东dōng,鱼yú戏x ì莲lián叶yè西xī, 鱼yú戏x ì莲lián叶yè南nán,鱼yú戏x ì莲lián叶yè北běi。

2《敕chì勒lè歌gē》北běi朝cháo 民mín歌gē敕chì勒lè川chuān,阴yīn 山shān 下xià。

天tiān似s ì穹qióng 庐lú,笼lǒng 盖gài四s ì野yǎ。

天ti ān 苍cāng 苍cāng,野yě茫máng 茫máng,风fēng 吹chuī草cǎo 低dī见xiàn 牛niú羊yáng。

3《咏yǒng 鹅é》骆luò 宾bīn 王wáng (唐t áng )鹅é,鹅é,鹅é,曲qǔ项xiàng 向xiàng 天ti ān 歌gē,白bái 毛máo 浮fú绿lǜ水shuǐ,红hóng掌zhǎng拨bō清qīng 波bō。

4《风》fēng李l ǐ 峤qiáo (唐táng )解jiě落luò三sān 秋qiū叶yè,能néng 开kāi 二èr月yuè花huā。

特 殊 字 的 读 音

特 殊 字 的 读 音

特殊字的读音觊觎jìyú 龃龉jǔyǔ囹圄língyǔ魍魉wǎngliǎng 纨绔wánkù 鳜鱼guìyú 耄耋màodié 饕餮tāotiè痤疮cuóchuāng 踟躇chíchú 倥偬kǒnɡzǒnɡ倥侗kōngdòng。

彳亍chìchù 谄媚chǎnmèi 佝偻gōulóu 蓓蕾bèilěi蹀躞diéxiè 迤逦yǐlǐ呷茶xiāc há 呷作象声词念作gā。

狡黠jiǎoxiá 猥亵wěixiè 猥狎wěixiá蟾蜍chánchú迷惘míwǎnɡ趔趄lièqie 窥觑kuīqù 肄业yìyè徜徉chánɡyánɡ叱咤chìzhà 绸缪chóumóu 咄嗟duōjiē罹难línàn 龌龊wòchuò 旮旯gālá 戛然jiárán参差cēncī 鳏夫guānfū 髑髅dúlóu 妊娠rènshēn老鸨lǎobǎo 东莞dōngguǎn 孑孓jiéjué 斡旋wòxuán弹劾tánhé 旌旗jīngqí 沟壑gōuhè 交媾jiāogòu毓婷yùtíng 拈花niānhuā 褴褛lánlǚ执拗zhíniù匍匐púfú 整饬zhěngchì舐犊shìdú 单于chányú尉迟yùchí噱头juétou或xuétóu 一般取后一种。

二年级语文部编版词语表看拼音写词语

二年级语文部编版词语表看拼音写词语
清 明 节 难 为 情 五 角 星 花 草 树 木 哈哈大 笑 万 里无 云
yǐnrénzhù mù
引 人 注目
liànliànbù shě jīnpí lì jìn
恋 恋 不 舍 筋 疲力 尽
wánɡyánɡbǔ láo yì wànɡwú biān
亡 羊 补牢 一 望 无 边
huǒyào
火药
hé lì
合力
ɡānjìnɡ
干净
cónɡlái
从来
cǎo dì
草地
quànɡào
劝告
tónɡxué
同学
zuòwèi
座位
jiǎo dù
角度
yuàn yì
愿意
ɡū niánɡ
姑娘
zǐ xì
仔细
yě huā
野花
xiānhuā
鲜花
xiānshēnɡ yuánlái
先 生 原来
jīnɡ qí
惊奇
中秋
shēn tǐ
身体
měishí
美食
sēnlín
森林
yì zhí
一直
yóu xì
游戏
fēi jī
飞机
liúshén
留神
yè wǎn
夜晚
lǎoshī
老师
huàzhǐ
画纸
bó bó
伯伯
qiūqiān
秋千
yóu jú
邮局
yé yé
爷爷
xiǎoxīn
小心
chūnfēnɡ
春风
jiùshì
就是
jīnɡɡuò
经过
便利
jiǎ ɡǔ wén
甲骨文
dànchǎofàn yóudì yuán

汉字转拼音表

汉字转拼音表

汉字转拼音表
汉字转拼音表是一种将汉字转换为拼音的工具,它可以帮助我们将汉字转换成拼音,方便我们阅读和发音。

以下是一个简单的汉字转拼音表:
一、声母表:
b p m f d t n l g k h j q x zh ch sh r z
c s y w
二、韵母表:
a o e i u v ai ei ui ao ou iu ie ve er an en in un vn ang eng ing ong
三、声调表:
阴平(第一声):一声,调值为55
阳平(第二声):二声,调值为35
上声(第三声):三声,调值为214
去声(第四声):四声,调值为51
使用方法:
1.找到对应的声母和韵母。

2.拼读对应的声母和韵母。

3.根据声调确定声母和韵母的音调。

4.拼读出对应的拼音。

需要注意的是,汉字转拼音表只是一种辅助工具,它可以帮助我们快速地转换汉字为拼音,但并不能完全准确地反映汉字的发音。

因此,在使用时还需要结合实际发音进行校对和调整。

An-iterative-algorithm-for-the-reflexive-solutions-of-the-generalized-coupled-Sylvestermatrixequatio

An-iterative-algorithm-for-the-reflexive-solutions-of-the-generalized-coupled-Sylvestermatrixequatio

An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equationsand its optimal approximationMehdi Dehghan *,Masoud HajarianDepartment of Applied Mathematics,Faculty of Mathematics and Computer Science,Amirkabir University of Technology,No.424,Hafez Avenue,Tehran 15914,IranAbstractThe generalized coupled Sylvester matrix equations ðAY ÀZB ;CY ÀZD Þ¼ðE ;F Þwith unknown matrices Y ;Z are encountered in many systems and control applications.Also these matrix equations have several applications relating to the problem of computing stable eigendecompositions of matrix pencils.In this work,we construct an iterative algo-rithm to solve the generalized coupled Sylvester matrix equations over reflexive matrices Y ;Z .And when the matrix equa-tions are consistent,for any initial matrix pair ½Y 0;Z 0 ,a reflexive solution pair can be obtained within finite iteration steps in the absence of roundofferrors,and the least Frobenius norm reflexive solution pair can be obtained by choosing a spe-cial kind of initial matrix pair.Also we obtain the optimal approximation reflexive solution pair to a given matrix pair ½Y ;Z in the reflexive solution pair set of the generalized coupled Sylvester matrix equations ðAY ÀZB ;CY ÀZD Þ¼ðE ;F Þ.Moreover,several numerical examples are given to show the efficiency of the presented iterative algorithm.Ó2008Elsevier Inc.All rights reserved.Keywords:The generalized coupled Sylvester matrix equations;Generalized reflection matrix;Kronecker matrix product;Reflexive matrix;Optimal approximation reflexive solution pair1.IntroductionWe first give some notations which are used in this paper.The notation R m Ân denotes the set of all m Ân real matrices.The unit matrix of order n is denoted by I n .1n denotes the matrix of order n whose all elements are 1.We use A T ,tr ðA Þand R ðA Þto denote the transpose,the trace and the column space of the matrix A ,respectively.For a matrix A 2R m Ân ,the so–called stretching function vec ðA Þis defined by the following:vec ðA Þ¼a T 1a T 2...a T nÀÁT;0096-3003/$-see front matter Ó2008Elsevier Inc.All rights reserved.doi:10.1016/j.amc.2008.02.035*Corresponding author.E-mail addresses:mdehghan@aut.ac.ir (M.Dehghan),mhajarian@aut.ac.ir ,masoudhajarian@ (M.Hajarian).Available online at Applied Mathematics and Computation 202(2008)571–588/locate/amcwhere a k is the k th column of A .A B stands for the Kronecker product of matrices A ¼ða ij Þm Ân and B which is defined asA B ¼a 11B a 12B ÁÁa 1n Ba 21B a 22B ÁÁa 2n B ÁÁÁÁÁÁÁÁÁÁa m 1B a m 2B ÁÁa mn BBB BB BB@1C CC C C C A :In addition,h A ;B i ¼tr B T A ÀÁis defined as the inner product of the two matrices,which generates the Frobe-nius norm,i.e.h A ;A i ¼k A k 2[1,8,15].An n Ân real matrix P is said to be a real generalized reflection matrix if P T ¼P and P 2¼I n .An n Ân real matrix A is said to be a reflexive (anti-reflexive)matrix with respect to the generalized reflection matrix P ifA ¼PAP ðA ¼ÀPAP Þ.R n Ân r ðP ÞðR n Âna ðP ÞÞdenotes the subspace reflexive (anti-reflexive)matrices with respect to the n Ân generalized reflection matrix P .The reflexive and anti-reflexive matrices with respect to a general-ized reflection matrix P have applications in system and control theory,in engineering,in scientific computa-tions and various other fields [3–5].In this paper we consider the reflexive solutions of the linear matrix equationsAY ÀZB ¼E ;CY ÀZD ¼F ;ð1Þwhere A ;B ;C ;D ;E ;F 2R n Ân ,that is,we will find Y 2R n Ân r ðP Þand Z 2R n Ânr ðQ Þwhich satisfy in (1).Also we consider the reflexive solutions of the matrix pair nearness problemmin Y ;Z 2S YZfk Y ÀY k 2þk Z ÀZ k 2g ;ð2Þwhere Y 2R n Ân r ðP Þand Z 2R n Ânr ðQ Þare given reflexive matrices,and S YZ is the reflexive solution pair set of the generalized coupled Sylvester matrix equations (1).A large number of papers have been written for solving matrix equations [17,19,24,27,30–33].Chu [6]stud-ied the linear matrix equationAXB ¼C ;ð3Þwith an unknown symmetric matrix X .Peng and Hu in [26]established the necessary and sufficient conditions for the existence of solution and the expressions for the reflexive and anti-reflexive with respect to a generalized reflection matrix P solutions of the matrix equationAX ¼B :In [7],the existence of a reflexive,with respect to the generalized reflection matrix P ,solution of the matrix equation (3)is presented.By extending the well-known Jacobi and Gauss–Seidel iterations for Ax ¼b ,Ding et al.in [14]derived iterative solutions of matrix equations AXB ¼F and generalized Sylvester matrix equa-tions AXB þCXD ¼F .Navarra et al.[25]studied a representation of the general common solution X to the matrix equationA 1XB 1¼C 1;A 2XB 2¼C 2:ð4ÞPeng et al.[29]presented an algorithm which is constructed to solve the reflexive with respect to the general-ized reflection matrix P solution of the minimum Frobenius norm residual problemA 1XB 1A 2XB 2 ÀC 1C 2 ¼min :In [28]an iterative algorithm is reported to solve the matrix equationAXB þCYD ¼E :572M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588We know the Sylvester matrix equations have a close relation with many problems in linear control theory of descriptor systems,and the matrix equations have important applications in stability analysis,in observers de-sign,in output regulation with internal stability,and in the eigenvalue assignment,and a large number of papers have presented several methods to solve these matrix equations[2,16,20–23].The generalized coupled Sylvester matrix equations(1)are very active research in the Sylvester matrix equations,and have been widely applied in various areas.In[23]Ka_gstro¨m and Poromaa introduced LAPACK–style error bounds for the generalized cou-pled Sylvester matrix equations,and presented their software that implement algorithms for solving this matrix equation.In[9,10,13,14],to solve(coupled)matrix equations,the iterative methods are given which are based on the hierarchical identification principle[11,12].The gradient-based iterative(GI)algorithms[9,14]and least squares based iterative algorithm[10]for solving(coupled)matrix equations are innovational and computa-tionally efficient numerical algorithms and were presented based on the hierarchical identification principle [11,12]which regards the unknown matrix as the system parameter matrix to be identified.Also Ding and Chen [13],applying the gradient search principle and the hierarchical identification principle,presented the gradient-based iterative algorithms for generalized Sylvester equation and general coupled matrix equations.This paper is organized as follows:In Section2,we propose an iterative algorithm and its properties to obtain the reflexive solutions of the generalized coupled Sylvester matrix equations(1).When the matrix equa-tions(1)are consistent over reflexive matrices,we show using the introduced iterative algorithm,for any(spa-cial)initial matrix pair½Y1;Z1 ,a reflexive solution pair(the minimal Frobenius normal reflexive solution pair) can be obtained withinfinite steps.Also the optimal approximation reflexive solution to a given matrix pair can be derived byfinding the least norm reflexive solution of new matrix equationsðA e YÀe ZB;C e YÀe ZDÞ¼ðe E;e FÞ.Several numerical examples are given in Section3to illustrate the application of the new iterative algorithm.2.Iterative algorithm to solve(1)and(2)In this section,wefirst introduce an iterative algorithm,then we propose some properties of this iterative algorithm which are essential tools forfinding the reflexive solution of matrix equations(1).Algorithm1step1.Input matrices A;B;C;D;E;F2R nÂn;step2.Chosen arbitrary Y12R nÂnr ðPÞ,Z12R nÂnrðQÞwhere P and Q are two nÂn arbitrary generalizedreflection matrices; step3.CalculateR1¼EÀAY1þZ1B00FÀCY1þZ1D;U1¼1A TðEÀAY1þZ1BÞþC TðFÀCY1þZ1DÞþPA TðEÀAY1þZ1BÞPþPC TðFÀCY1þZ1DÞP ÂÃ;V1¼12ÀðEÀAY1þZ1BÞB TÀðFÀCY1þZ1DÞD TÀQðEÀAY1þZ1BÞB T QÀQðFÀCY1þZ1DÞD T Q ÂÃ;k:¼1;step4.If R k¼0,then stop;Else go to step5; step5.CalculateY kþ1¼Y kþk R k k2k U k k2þk V k k2U k;Z kþ1¼Z kþk R k k2k U k kþk V k kV k;R kþ1¼EÀAY kþZ k B00FÀCY kþZ k D;¼R kÀk R k k2k U k k2þk V k k2AU kÀV k B00CU kÀV k D;M.Dehghan,M.Hajarian/Applied Mathematics and Computation202(2008)571–588573U k þ1¼12A TðE ÀAY k þ1þZ k þ1B ÞþC T ðF ÀCY k þ1þZ k þ1D ÞþPA T ðE ÀAY k þ1þZ k þ1B ÞP ÂþPC TðF ÀCY k þ1þZ k þ1D ÞP Ãþk R k þ1k 2k R k kU k ;V k þ1¼12ÀðE ÀAY k þ1þZ k þ1B ÞB T ÀðF ÀCY k þ1þZ k þ1D ÞD TÂÀQ ðE ÀAY k þ1þZ k þ1B ÞB T Q ÀQ ðF ÀCY k þ1þZ k þ1D ÞD TQ Ãþk R k þ1k 2k R k k 2V k ;step 6.If R k þ1¼0,then stop;Else,let k :¼k þ1,go to step 5.Since the above algorithm,we can easily see that Y k ;U k 2R n Ân r ðP Þand Z k ;V k 2R n Ânr ðQ Þ.Now we intro-duce some properties of the above algorithm.Lemma 1.Assume that the sequences R i ,U i and V i (i ¼1;2;...;s ,R i ¼0)are generated by Algorithm 1,then we havetr R T j R i ¼0;and tr U T j U i þtr V Tj V i ¼0;i ;j ¼1;2;...;s ;i ¼j :ð5ÞProof.It is obvious that tr R T j R i ¼tr ðR T i R j Þ,tr U T j U i ¼tr U T i U j ÀÁand tr V Tj V i ¼tr V T iV j ÀÁ,hence we need only to show thattr R Tj R i ¼0;andtr U T j U i þtr V Tj V i ¼0for 16i <j 6s :ð6ÞWe use induction to prove (6),and also we do it in two steps.Step 1.We first showtr R T i þ1R i ÀÁ¼0;and tr U T i þ1U i ÀÁþtr V T i þ1V i ÀÁ¼0;i ¼1;2;...;s :ð7ÞWe also prove (7)by induction.Because all matrices in Algorithm 1are real for i ¼1,we can writetr R T 2R 1ÀÁ¼tr R 1Àk R 1k 2k U 1k þk V 1kAU 1ÀV 1B 00CU 1ÀV 1D "#T R 10@1A ¼k R 1k 2Àk R 1k 2k U 1k 2þk V 1k2tr AU 1ÀV 1B 00CU 1ÀV 1D T ÂE ÀAY 1þZ 1B 00F ÀCY 1þZ 1D¼k R 1k 2Àk R 1k 2k U 1k 2þk V 1k2tr AU 1ÀV 1B ðÞTE ÀAY 1þZ 1B ðÞh i þðCU 1ÀV 1D ÞTðF ÀCY 1þZ 1D Þh i¼k R 1k 2Àk R 1k2k U 1k þk V 1ktr U T 1A TðE ÀAY 1þZ 1B ÞþU T 1C TðF ÀCY 1þZ 1D ÞÀÀB T V T 1ðE ÀAY 1þZ 1B ÞÀD T V T1ðF ÀCY 1þZ 1D ÞÁ¼k R 1k 2Àk R 1k 2k U 1k 2þk V 1k 2tr U T 1A T ðE ÀAY 1þZ 1B ÞþC TðF ÀCY 1þZ 1D Þ2 þA T ðE ÀAY 1þZ 1B ÞþC T ðF ÀCY 1þZ 1D Þ2574M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588þPA TðEÀAY1þZ1BÞPþPC TðFÀCY1þZ1DÞP2ÀPA TðEÀAY1þZ1BÞPþPC TðFÀCY1þZ1DÞP2!þV T1ÀðEÀAY1þZ1BÞB TÀðFÀCY1þZ1DÞD T2þÀðEÀAY1þZ1BÞB TÀðFÀCY1þZ1DÞD T2þÀQðEÀAY1þZ1BÞB T QÀQðFÀCY1þZ1DÞD T Q2ÀÀQðEÀAY1þZ1BÞB T QÀQðFÀCY1þZ1DÞD T Q!¼k R1k2Àk R1k2k U1kþk V1ktr U T1A TðEÀAY1þZ1BÞþC TðFÀCY1þZ1DÞ2þPA TðEÀAY1þZ1BÞPþPC TðFÀCY1þZ1DÞP2!þV T1ÀðEÀAY1þZ1BÞB TÀðFÀCY1þZ1DÞD T2þÀQðEÀAY1þZ1BÞB T QÀQðFÀCY1þZ1DÞD T Q2!¼k R1k2Àk R1k2k U1kþk V1ktr U T1U1þV T1V1ÀÁ¼0:ð8ÞAlso we havetr U T2U1ÀÁþtr V T2V1ÀÁ¼tr A TðEÀAY2þZ2BÞþC TðFÀCY2þZ2DÞ2þPA TðEÀAY2þZ2BÞPþPC TðFÀCY2þZ2DÞP2þk R2k2k R1k2U1#TU1!þtrÀðEÀAY2þZ2BÞB TÀðFÀCY2þZ2DÞD T2þÀQðEÀAY2þZ2BÞB T QÀQðFÀCY2þZ2DÞD T Q2þk R2k2k R1k2V1#TV11A¼tr A TðEÀAY2þZ2BÞþC TðFÀCY2þZ2DÞ2þA TðEÀAY2þZ2BÞþC TðFÀCY2þZ2DÞ2ÀPA TðEÀAY2þZ2BÞPþPC TðFÀCY2þZ2DÞP2þPA TðEÀAY2þZ2BÞPþPC TðFÀCY2þZ2DÞP2þk R2k2k R1kU1#TU1!þtrÀðEÀAY2þZ2BÞB TÀðFÀCY2þZ2DÞD T2þÀðEÀAY2þZ2BÞB TÀðFÀCY2þZ2DÞD T2ÀÀQðEÀAY2þZ2BÞB T QÀQðFÀCY2þZ2DÞD T Q2þÀQðEÀAY2þZ2BÞB T QÀQðFÀCY2þZ2DÞD T Q2þk R2k2k R1kV1#TV11AM.Dehghan,M.Hajarian/Applied Mathematics and Computation202(2008)571–588575¼tr U T 1A T ðE ÀAY 2þZ 2B ÞþC T ðF ÀCY 2þZ 2D ÞÂÃþV T 1ÀðE ÀAY 2þZ 2B ÞB T ÀðF ÀCY 2þZ 2D ÞD TÂÃÀÁþk R 2k 2k R 1kðk V 1k 2þk U 1k 2Þ¼tr ððE ÀAY 2þZ 2B ÞT AU 1þðF ÀCY 2þZ 2D ÞT CU 1ÀðE ÀAY 2þZ 2B ÞT V 1B ÀðF ÀCY 2þZ 2D ÞT V 1D Þþk R 2k 2k R 1k2ðk V 1k 2þk U 1k 2Þ¼trðE ÀAY 2þZ 2B ÞT0ðF ÀCY 2þZ 2D ÞT!AU 1ÀV 1B0CU 1ÀV 1D! !þk R 2k 2k R 1kðk V 1k 2þk U 1k 2Þ¼k U 1k 2þk V 1k 2k R 1ktr ðR T 2ðR 1ÀR 2ÞÞþk R 2k 2k R 1kðk V 1k 2þk U 1k 2Þ¼0:ð9ÞAssume that (7)holds for i ¼d À1.Now let i ¼d .Similar to the proofs of (8)and (9),we can obtaintr R T d þ1R d ÀÁ¼k R d k 2Àk R d k 2k U d k þk V d ktr AU d ÀV d B 00CU d ÀV d D T ÂE ÀAY d þZ d B00F ÀCY d þZ d D¼k R d k 2Àk R d k 2k U d k 2þk V d k2tr U T d A T ðE ÀAY d þZ d B ÞþU T d C TðF ÀCY d þZ d D ÞÀÀB T V T d ðE ÀAY d þZ d B ÞÀD T V TdðF ÀCY d þZ d D ÞÁ¼k R d k 2Àk R d k 2k U d k 2þk V d k2tr U T d A T ðE ÀAY d þZ d B ÞþC TðF ÀCY d þZ d D Þ2 þPA T ðE ÀAY d þZ d B ÞP þPC T ðF ÀCY d þZ d D ÞP 2!þV T dÀðE ÀAY d þZ d B ÞB T ÀðF ÀCY d þZ d D ÞD T 2þÀQ ðE ÀAY d þZ d B ÞB TQ ÀQ ðF ÀCY d þZ d D ÞD T Q 2! ¼k R d k 2Àk R d k 2k U d k þk V d k tr U T d U d Àk R d k 2k R d À1k U d À1 !þV Td V d Àk R d k 2k R d À1kV d À1! !¼k R d k 2Àk R d k 2k U d k þk V d kk U d k 2þk V d k 2 þk R d k 4k U d k 2þk V d k 2 k R d À1k 2tr U T d U d À1ÀÁþtr V T d V d À1ÀÁ1A ¼0ð10ÞAnd we havetr U T d þ1U d ÀÁþtr V T d þ1V d ÀÁ¼tr U T dA T ðE ÀAY d þ1þZ d þ1B ÞþC TðF ÀCY d þ1þZ d þ1D ÞÂÃÀþV Td ÀðE ÀAY d þ1þZ d þ1B ÞB T ÀðF ÀCY d þ1þZ d þ1D ÞD TÂÃÁþk R d þ1k 2k R d k 2k V d k 2þk U d k 2¼tr E ÀAY d þ1þZ d þ1B ðÞT AU d þðF ÀCY d þ1þZ d þ1D ÞT CU dÀðE ÀAY d þ1þZ d þ1B ÞT V d B ÀðF ÀCY d þ1þZ d þ1D ÞTV d D576M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588þk R d þ1k2k R d k 2ðk V d k 2þk U d k 2Þ¼tr ðE ÀAY d þ1þZ d þ1B ÞT 0ðF ÀCY d þ1þZ d þ1D ÞT!ÂAU d ÀV d B00CU d ÀV d Dþk R d þ1k 2k R d k2ðk V d k 2þk U d k 2Þ¼k U d k 2þk V d k2k R d ktr ðR T d þ1ðR dÀR d þ1ÞÞþk R d þ1k 2k R d kðk V d k 2þk U d k 2Þ¼0:ð11ÞHence,(7)holds for i ¼d .Then since (8)–(11),(7)holds by principal of induction.Step 2.In this step,we assume tr R T i þt R i ÀÁ¼0,and tr ðU Ti þt U i Þþtr ðV T i þt V i Þ¼0for 16i 6t and 1<t <s .Now we show tr R T i þt þ1R i ÀÁ¼0,and tr U T i þt þ1U i ÀÁþtr ðV Ti þt þ1V i Þ¼0.By using step 1and similar to the proofs of (8)–(11),we can writetr R T i þt þ1R i ÀÁ¼tr R i þt Àk R i þt k 2k U i þt k þk V i þt kAU i þt ÀV i þt B 00CU i þt ÀV i þt D "#T R i 0@1A ¼tr R T i þt R i ÀÁÀk R i þt k 2k U i þt k 2þk V i þt k2tr AU i þt ÀV i þt B 00CU i þt ÀV i þt D T ÂE ÀAY i þZ i B 00F ÀCY i þZ i D¼Àk R i þt k 2k U i þt k þk V i þt ktr U T i þt A T ðE ÀAY i þZ i B ÞþU T i þt C TðF ÀCY i þZ i D ÞÀÀB T V T i þt ðE ÀAY i þZ i B ÞÀD T V Ti þtðF ÀCY i þZ i D ÞÁ¼Àk R i þt k 2k U i þt k 2þk V i þt k 2tr U Ti þt A T ðE ÀAY i þZ i B ÞþC T ðF ÀCY i þZ i D Þ2 þA T ðE ÀAY i þZ iB ÞþC T ðF ÀCY i þZ iD Þ2þPA T ðE ÀAY i þZ i B ÞP þPC T ðF ÀCY i þZ i D ÞP 2ÀPA T ðE ÀAY i þZ i B ÞP þPC T ðF ÀCY i þZ i D ÞP 2!þV Ti þtÀðE ÀAY i þZ i B ÞB T ÀðF ÀCY i þZ i D ÞD T 2þÀðE ÀAY i þZ i B ÞB T ÀðF ÀCY i þZ i D ÞD T 2þÀQ ðE ÀAY i þZ i B ÞB T Q ÀQ ðF ÀCY i þZ i D ÞD T Q 2ÀÀQ ðE ÀAY i þZ i B ÞB T Q ÀQ ðF ÀCY i þZ i D ÞD T Q 2!¼Àk R i þt k 2k U i þt k 2þk V i þt k2tr U Ti þtA T ðE ÀAY i þZ iB ÞþC T ðF ÀCY i þZ iD Þ2 þPA T ðE ÀAY i þZ i B ÞP þPC T ðF ÀCY i þZ i D ÞP !M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588577þV Tiþt ÀðEÀAY iþZ i BÞB TÀðFÀCY iþZ i DÞD T2þÀQðEÀAY iþZ i BÞB T QÀQðFÀCY iþZ i DÞD T Q2!¼Àk R iþt k2k U iþt kþk V iþt ktr U TiþtU iÀk R i k2k R iÀ1kU iÀ1!þV TiþtV iÀk R i k2k R iÀ1kV iÀ1!!¼Àk R iþt k2k U iþt kþk V iþt ktr U TiþtU iÀÁþtr V TiþtV iÀÁÂÃþk R iþt k2k R i k2ðk U iþt kþk V iþt kÞk R iÀ1kþtr U Tiþt U iÀ1ÀÁþtr V Tiþt V iÀ1ÀÁÂü0:ð12ÞNothing that we have tr R Tiþtþ1R iÀÁ¼0,and tr R Tiþtþ1R iþ1ÀÁ¼0,hence we can obtaintr U Tiþtþ1U iÀÁþtr V Tiþtþ1V iÀÁ¼trA T EÀAY iþtþ1þZ iþtþ1BðÞþC TðFÀCY iþtþ1þZ iþtþ1DÞ2þPA TðEÀAY iþtþ1þZ iþtþ1BÞPþPC TðFÀCY iþtþ1þZ iþtþ1DÞP2þk R iþtþ1k2k R iþt k2U iþt#TU i!þtr ÀðEÀAY iþtþ1þZ iþtþ1BÞB TÀðFÀCY iþtþ1þZ iþtþ1DÞD T2þÀQðEÀAY iþtþ1þZ iþtþ1BÞB T QÀQðFÀCY iþtþ1þZ iþtþ1DÞD T Q2þk R iþtþ1k2k R iþt kV iþt#TV i1A¼tr U TiA T EÀAY iþtþ1þZ iþtþ1BðÞþC TðFÀCY iþtþ1þZ iþtþ1DÞÂÃþV TiÀðEÀAY iþtþ1þZ iþtþ1BÞB TÂÀÀðFÀCY iþtþ1þZ iþtþ1DÞD T ÃÁþk R iþtþ1k2k R iþt k2tr U TiþtU iÀÁþtr V TiþtV iÀÁÀÁ¼trðEÀAY iþtþ1þZ iþtþ1BÞT AU iþðFÀCY iþtþ1þZ iþtþ1DÞT CU iÀðEÀAY iþtþ1þZ iþtþ1BÞT V i BÀðFÀCY iþtþ1þZ iþtþ1DÞT V i Dþk R iþtþ1k2k R iþt k2tr U TiþtU iÀÁþtr V TiþtV iÀÁÀÁ¼tr ðEÀAY iþtþ1þZ iþtþ1BÞT00ðFÀCY iþtþ1þZ iþtþ1DÞT!AU iÀV i B00CU iÀV i D!!þk R iþtþ1k2k R iþt k2tr U TiþtU iÀÁþtr V TiþtV iÀÁÀÁ¼k U i k2þk V i k2k R i k2tr R Tiþtþ1R iÀR iþ1ðÞÀÁþk R iþtþ1k2k R iþt k2tr U TiþtU iÀÁþtr V TiþtV iÀÁÀÁ¼0:ð13ÞBy steps1and2,the conclusion(5)holds by the principal of induction.hLemma2.Suppose that the matrix equations(1)are consistent over reflexive matrices,and½YÃ;Zà is an arbi-trary reflexive solution pair of the matrix equations(1).Then,for any initial reflexive matrix pair½Y1;Z1 trððYÃÀY iÞT U iþðZÃÀZ iÞT V iÞ¼k R i k2ð14Þfor i¼1;2;...,where the sequences f Y i g,f Z i g,f U i g,f V i g and f R i g are generated by Algorithm1.578M.Dehghan,M.Hajarian/Applied Mathematics and Computation202(2008)571–588Proof.We prove the conclusion (14)by induction.If i ¼1,we havetr ðY ÃÀY 1ÞT U 1þðZ ÃÀZ 1ÞTV 1¼tr Y ÃÀY 1ðÞT A T ðE ÀAY 1þZ 1B ÞþC TðF ÀCY 1þZ 1D Þ2þPA T ðE ÀAY 1þZ 1B ÞP þPC T ðF ÀCY 1þZ 1D ÞP 2!þðZ ÃÀZ 1ÞT ÀðE ÀAY 1þZ 1B ÞB T ÀðF ÀCY 1þZ 1D ÞD T 2þÀQ ðE ÀAY 1þZ 1B ÞB T Q ÀQ ðF ÀCY 1þZ 1D ÞD T Q 2!¼tr ðY ÃÀY 1ÞT A T ðE ÀAY 1þZ 1B ÞþC TðF ÀCY 1þZ 1D Þ2þA T ðE ÀAY 1þZ 1B ÞþC T ðF ÀCY 1þZ 1D ÞÀPA T ðE ÀAY 1þZ 1B ÞP þPC T ðF ÀCY 1þZ 1D ÞP þPA T ðE ÀAY 1þZ 1B ÞP þPC TðF ÀCY 1þZ 1D ÞP 2!þðZ ÃÀZ 1ÞT ÀðE ÀAY 1þZ 1B ÞB T ÀðF ÀCY 1þZ 1D ÞD T 2 þÀðE ÀAY 1þZ 1B ÞB T ÀðF ÀCY 1þZ 1D ÞD T 2ÀÀQ ðE ÀAY 1þZ 1B ÞB T Q ÀQ ðF ÀCY 1þZ 1D ÞD T Q2þÀQ ðE ÀAY 1þZ 1B ÞB T Q ÀQ ðF ÀCY 1þZ 1D ÞD T Q2! ¼tr Y ÃÀY 1ðÞT A T ðE ÀAY 1þZ 1B ÞþC T ðF ÀCY 1þZ 1D ÞÂÃþðZ ÃÀZ 1ÞT ÀðE ÀAY 1þZ 1B ÞB TÂÀðF ÀCY 1þZ 1D ÞD TÃÁ¼tr ðE ÀAY 1þZ 1B ÞT A ðY ÃÀY 1ÞþðF ÀCY 1þZ 1D ÞTC ðY ÃÀY 1ÞÀðE ÀAY 1þZ 1B ÞT ðZ ÃÀZ 1ÞB ÀðF ÀCY 1þZ 1D ÞT ðZ ÃÀZ 1ÞD¼tr ðE ÀAY 1þZ 1B ÞT0ðF ÀCY 1þZ 1D ÞT!ÂA ðY ÃÀY 1ÞÀðZ ÃÀZ 1ÞB00C ðY ÃÀY 1ÞÀðZ ÃÀZ 1ÞD0B @1C A 1C A¼trE ÀAY 1þZ 1B 00F ÀCY 1þZ 1D T E ÀAY 1þZ 1B 00F ÀCY 1þZ 1D!¼k R 1k 2:ð15ÞNow suppose the conclusion (14)holds for 16i 6d .Similar to the proof of (15),for i ¼d þ1we can obtaintr ðY ÃÀY d þ1ÞT U d þ1þðZ ÃÀZ d þ1ÞT V d þ1¼tr ðY ÃÀY d þ1ÞT A TðE ÀAY d þ1þZ d þ1B ÞþC T ðF ÀCY d þ1þZ d þ1D Þ2þPA T ðE ÀAY d þ1þZ d þ1B ÞP þPC TðF ÀCY d þ1þZ d þ1D ÞP 2þk R d þ1k2k R d k 2U d#M.Dehghan,M.Hajarian /Applied Mathematics and Computation 202(2008)571–588579。

屈原《九歌》拼音版带原文带译文

屈原《九歌》拼音版带原文带译文

《九(ji歌)(g》屈(q 口原(yu a n)一(y 1 )九(ji 歌)ge东• o n 皇(hu ag 太(t a一(y 吉))日(r)兮(x 辰)ch? n)良(li g n穆(m u将(ji d愉gy)(兮(x it)(sh ag皇(hu a g ;抚(f 1长(ch a g 剑(ji a兮)(x 玉(y 0珥(e ,)璆(qi 1锵(qi a n g(m n g 兮(x 琳(In)琅(l ag;瑶(y a 席(x)兮(x 玉)y (瑱(ti a,)盍(h?)将(ji a n®(b a兮(x 琼)(qi?i g芳(f a n;g)蕙(hu)肴(y a 蒸(zh e n兮Xx 兰(I a藉(jia),奠(di a桂(g u酒)i 兮Xx 椒(ji 浆()i a n g)援(yu a 玉(y u枹(f(兮(x 击)鸣(m n g鼓(gl)疏(sh(缓(hu a r节(ji?)兮(x i)安(ar歌(ge)陈(ch?n)竽(y u瑟(sa)兮(x 浩)h a 0倡(ch ag ;灵(I ni g偃(y a 蹇(ji a兮Xx 姣)i 胡0(f U)芳(f a n菲(f e菲(f e兮(x 满(m a n)堂(t ag;五(w u 音(y i 兮(x 繁(f a会)(hu),君(j 口欣(x i 岡(x i 兮(x 乐(la )康(k a n g)二(ar)、九(ji 歌)ge云(y u 中(zh o n 君)口浴(y (兰(I a 汤(d ag 兮(x 沐(m u芳(f a n,g华(hu □采(c a衣(y 兮(x 若)ru?英(y i n g)灵(In igj)(li 0蜷(qu a n兮(x 既(j)留(li U 烂(I a 昭(zh a 昭(zh a 兮(x 未(wai)央(y a n;g)謇(ji 出将ji a n憺(d a r兮(x 寿(sh?j)宫(go n,g 与(y u日(r )月(yua)兮(x 齐)q )i光(g u a n;g)龙(m g驾(ji 兮)帝(d)服(f U)聊(Ii a翱x a游(y?i)兮(x 周)(zh o 章(zh a n;g)灵(In ig皇(hu dg>(hu dig 兮(x 既))降(ji 切n 猋(bi d远(yu a 举(j 兮(x 1)云(y u n中(zh o n g)览(I a冀(j)洲(zh o t兮(x 有(y o i余(y U,横(h?门9四点)海(h a兮(x 焉(y a 穷(qi?n g;)思(s 夫)i君(j 口兮(x 太(t a息(x ,极(j)劳(I d 心)(x 1旬(x 忡(ch o n 忡)(ch o n;g)三(s a n)九(ji Wge湘(xi a n君)i n)君(j u 不(b U 行仪呵兮仪夷)©)犹(yH),蹇(ji a谁Xshu)留(li 兮)(x 中)zh o n g)洲(zh o u)美(m e i要(y a 眇(mi a (兮(x 宜(y)修(xi ,沛(pai)吾(w u乘(ch?n g 兮(x 桂)(g u舟(zh o ;令(l ni g沅(yu d n湘(xi a n兮)无(w u波(b o,使(sh tQ(ji a n水($hu 兮(x 安(a 流(li ;)望(w a ng夫(f i君(j u兮(x 未(wai)来(l d,i)吹(chu 参(c e 差(c 兮(x 谁(shu)i 思(s ;)驾(ji 飞)e龙(l? g兮(x 北(b e征(zh e n g 邅(zh a 吾(w U道(d a (兮(x 洞(d?i g 庭(tni g;薜(b)荔(l)柏(b a 兮(x 蕙(hu)绸(ch?j),荪(s u 桡(r d 兮(x 兰(I d旌(j 1 n g)望(w a ngW(c?n)阳(y d g兮(x 极(j)浦(p U,横(h?门§大9 a江(ji a r兮(x 扬(y dg灵(l ni g ;扬(y d g 灵(l n ig 兮(x 未(wai)极(j)j 女(n。

全部音节码

全部音节码
嘎嘎#GA:GA#
咖啡#XBGA:XBUE#
大卡#DA:XBGA#
哈气#XGA:XGI#
哈哈#XGA:XGA#
剥夺#BO:DO#
批驳#BGI:BO#
泼墨#BGO:XBO#
击破#GI:BGO#
抹煞#XBO:XZA#
寂寞#GI:XBO#
佛门#XBUO:XBN#
是佛#XZ:XBUO#
余额#IU:E#
甚至#XZN:Z#
怎的#DZN:D#
折合#ZE:XG#
记者#GI:ZE#
撤离#BZE:XDI#
出车#BZU:BZE#
舍弃#XZE:XGI#
取舍#XGIU:XZE#
惹事#XBZE:XZ#
炽热#BZ:XBZE#
责任#DZE:XBZN#
斥责#BZ:DZE#
侧目#BDZE:XB#
兜捕#DEO:B#
搏斗#BO:DEO#
偷盗#BDEO:DAO#
摸透#XBO:BDEO#
陋习#XDEO:XI#
走漏#DZEO:XDEO#
周密#ZEO:XBI#
非洲#XBUE:ZEO#
仇杀#BZEO:XZA#
报酬#BAO:BZEO#
收购#XZEO:GEO#
出售#BZU:XZEO#
蛮横#XBNA:XGNE#
自满#DZ:XBNA#
凡是#XBUNA:XZ#
超凡#BZAO:XBUNA#
担任#DNA:XBZN#
负担#XBU:DNA#
贪污#BDNA:U#
漫步#XBNA:B#
难办#XBDNA:BNA#
河南#XG:XBDNA#

0 汉语拼音YT01HP1A2014 表 OK

0 汉语拼音YT01HP1A2014  表 OK
这张拼音词表,在编辑时参照早期的拼音,如 BPMF ,DTNL 等等并列。再如 B 与 P 的发音 近似,就并列一起,可以对应横向查找,如“波”字拼音,因‘PO’或‘BO’的拼音字首不易 选对,因两者是并排的。可以很快查到正确的拼音是‘BO’。拼音的每列的后续字母,又以拼 音字母的常规程序排列,即由 a,b,c 开始到 u 结束。汉语拼音有“平、上、去、入”之分, 表中未作区别。
gao 高告稿搞膏糕镐锆皋郜 ke 可科克客课苛棵磕颗壳 hao 号好耗壕毫浩蒿镐昊郝 ze 则责择泽仄啧迮侧
ge 个各格革歌搁戈鸽哥割 kei 刻咳
he 和合河核何喝荷菏∑嗬 zei 贼鱡
gei 给
ken 肯啃垦恳裉龈
禾盒貉赫褐贺诃吓颌&鹤 zen 怎谮
gen 根跟亘茛艮
keng 坑吭铿
geng 梗更耕庚埂耿哽颈羹 kong 控空恐孔倥
fei 费非飞肥废菲诽吠肺
mei 美每没煤枚梅霉眉媒镁 沸芾悱淝妃榧扉
昧妹莓嵋湄糜谜媚寐
fen 分纷粉芬酚吩氛焚
men 们门闷扪焖钔
feng 风丰封枫蜂峰锋疯烽
meng 萌蒙盟锰梦孟朦氓懵 逢冯缝讽奉凤俸葑唪沣 mi 米密醚靡糜迷弥秘觅泌 fo 佛 fou 否缶
蜜幂咪宓祢糸麋泌
fu 福服府复符负幅副富祓
D ( 的 ) de
da 大达打搭答靼鞑塔耷 dai 代带待贷怠呆歹傣殆 戴袋逮甙岱玳黛大玳 dan 担单但耽丹郸掸胆啖 旦氮淡诞弹蛋眈疸石亻 dang 当党档挡荡铛裆砀 dao 到道导刀捣蹈盗氘稻
de 的得德锝底地 deng 等灯登瞪凳邓噔澄 di 地第低抵底滴迪敌笛 涤帝递缔诋棣的提 dia 嗲 dian 电点典店颠掂滇·碘 靛垫佃甸淀殿坫巅丶玷癫 diao 调碉叼雕刁掉吊钓貂 die 跌爹碟蝶迭谍叠垤

幼儿园拼音拼读打卡练习(上)

幼儿园拼音拼读打卡练习(上)

声母b音节拼读练习(1)b-ā→bā (巴西) b-á→bá(拔牙)b-ǎ→bǎ(把守) b-à→bà(爸爸)b-ō→bō(广播) b-ó→bó(拼搏)b-ǒ→bǒ(跛脚) b-ò→bò(薄荷)b-ī→bī(逼迫) b-í→bí(鼻子)b-ǐ→bǐ(铅笔) b-ì→bì(硬币)b-ū→bū(逋逃) b-ú→bú(白醭)b-ǔ→bǔ(补充) b-ù→bù(桌布)声母p音节拼读练习(2)p-ā→pā (趴下) p-á→pá(攀爬)p-à→pà(害怕)p-ō→pō(上坡) p-ó→pó(婆婆)p-ǒ→pǒ(叵测) p-ò→pò(被迫) p-ī→pī(劈柴) p-í→pí(调皮) p-ǐ→pǐ(马匹) p-ì→pì(屁股)p-ū→pū(铺垫) p-ú→pú(葡萄)p-ǔ→pǔ(菜圃) p-ù→pù(瀑布)声母m音节拼读练习(3)m-ā→mā (妈妈) m-á→má(麻花)m-ǎ→mǎ (小马) m-à→mà (骂人) m-ō→mō(触摸) m-ó→mó(摩擦)m-ǒ→mǒ(抹茶) m-ò→mò(寂寞)m-ī→mī(眯眼) m-í→mí(着迷)m-ǐ→mǐ(大米) m-ì→mì(蜂蜜)m-ú→mú(模样) m-ǔ→mǔ(母亲)m-ù→mù(木头)声母f音节拼读练习(4)f-ā→fā (发现) f-á→fá(惩罚)f-ǎ→fǎ (方法) f-à→fà(头发)f-ó→fó(佛像)f-ū→fū(皮肤) f-ú→fú(扶贫)f-ǔ→fǔ(斧头) f-ù→fù(回复)声母d音节拼读练习(5)d-ā→dā (搭建) d-á→dá(达成)d-ǎ→dǎ (打架) d-à→dà (大小)d-ī→dī(低头) d-í→dí(敌人)d-ǐ→dǐ(抵达) d-ì→dì(地面)d-ū→dū(嘟嘴) d-ú→dú(读书)d-ǔ→dǔ(堵车) d-ù→dù(度过)d-ē→dē(好的) d-é→dé(得到)d-è→dè(嘚瑟)声母t音节拼读练习(6)t-ā→tā (塌陷) t-ǎ→bǎ(宝塔)t-à→tà(踏步) t-è→tè(特殊)t-ī→tī(楼梯) t-í→tí(题目)t-ǐ→tǐ(体操) t-ì→tì(替换)t-ū→tū(突然) t-ú→tú(图书)t-ǔ→tǔ(吐司) t-ù→tù(兔子)声母n音节拼读练习(7)n-á→ná(推拿) n-ǎ→nǎ(哪些)n-à→nà(纳税) n-è→nè(木讷)n-ī→nī(妮子)n-í→ní(泥鳅)n-ǐ→nǐ(你好) n-ì→nì(逆行)n-ú→nú(奴隶) n-ǔ→nǔ(努力)n-ù→nù(发怒)n-ǚ→nǚ(女孩)声母l音节拼读练习(8)l-ā→Iā (拉车) l-á→lá (旮旯)l-ǎ→lǎ (喇叭) l-à→là (辣椒)I-è→Iè (快乐)I-ī→Iī(哩啦) I-í→Ií(梨子)l-ǐ→lǐ (礼物) l-ì→lì(站立)l-ū→lū(撸串) l-ú→lú(火炉)l-ǔ→lǔ(鲁班) l-ù→lù(公路)l-ǘ→lǘ(毛驴) l-ǚ→lǚ(旅游)l-ǜ→lǜ(绿色)声母ɡ音节拼读练习(9)ɡ-ā→ɡā (嘎吱)ɡ-á→ɡá(噶厦)ɡ-à→ɡà(尴尬)ɡ-ē→ɡē(鸽子)ɡ-é→ɡé(打嗝)ɡ-è→ɡè(各自)ɡ-ū→ɡū(孤独)ɡ-ǔ→ɡǔ(古怪)ɡ-ù→ɡù(故事)声母k音节拼读练习(10)k-ā→kā (咖啡) k-ǎ→kǎ (卡片)k-ē→kē(科学) k-é→ké(蛋壳)k-ě→kě(渴望) k-è→kè(课文)k-ū→kū(枯萎) k-ǔ→kǔ(苦恼)k-ù→kù(裤子)声母h音节拼读练习(11)h-ā→hā (笑哈哈) h-á→há(蛤蟆)h-ǎ→hǎ(哈达)h-ē→hē(喝水) h-é→hé(荷叶)h-è→hè(贺卡)h-ū→hū(呼噜) h-ú→hú(葫芦)h-ǔ→hǔ(老虎) h-ù→hù(相互)声母j音节拼读练习(12)j-ī→jī(小鸡) j-í→jí(集中)j-ǐ→jǐ(拥挤) j-ì→jì(足迹)j-ū→jū(居住) j-ú→jú(菊花)j-ǔ→jǔ(举手) j-ù→jù(巨大)声母q音节拼读练习(13)q-ī→qī(油漆) q-í→qí(旗子)q-ǐ→qǐ(起来) q-ì→qì(生气)q-ū→qū(趋势) q-ú→qú(渠道)q-ǔ→qǔ(取消) q-ù→qù(有趣)声母x音节拼读练习(14)x-ī→xī(希望) x-í→xí(学习)x-ǐ→xǐ(喜欢) x-ì→xì(仔细)x-ū→xū(需要) x-ú→xú(清风徐来)x-ǔ→xǔ(许愿) x-ù→xù(顺序)声母zh音节拼读练习(15)zh-ā→zhā(扎针) zh-á→zhá(闸门)zh-ǎ→zhǎ(眨眼) zh-à→zhà(爆炸)zh-ē→zhē(遮挡) zh-é→zhé(打折)zh-ě→zhě(读者) zh-è→zhè(浙江)zh-ī→zhī(芝麻) zh-í→zhí(直线)zh-ǐ→zhǐ(地址) zh-ì→zhì(制订)zh-ū→zhū(猪头) zh-ú→zhú(竹子)zh-ǔ→zhǔ(公主) zh-ù→zhù(助理)声母ch音节拼读练习(16)ch-ā→chā(刀叉) ch-á→chá(喝茶)ch-ǎ→chǎ(裤衩) ch-à→chà(打岔)ch-ē→chē(火车) ch-ě→chě(拉扯)ch-è→chè(撤退) ch-ū→chū(出发)ch-ú→chú(锄草) ch-ǔ→chǔ(楚源)ch-ù→chù(触摸)声母sh音节拼读练习(17)sh-ā→shā(纱窗) sh-ǎ→shǎ(傻笑)sh-à→shà(大厦) sh-é→shé(小蛇)sh-è→shè(射箭) sh-ū→shū(梳子)sh-ú→shú(熟食) sh-ǔ→shǔ(红薯)sh-ù→shù(大树)声r母音节拼读练习(18)r-ě→rě(惹祸) r-è→rè(炎热)r-ú→rú(如果) r-ǔ→rǔ(母乳)r-ù→rù(入口)声母z音节拼读练习(19)z-ā→zā(咂嘴) z-á→zá(杂技)z-ǎ→zǎ(咋办) z-é→zé(责任)z-ū→zū(出租) z-ǔ→zǔ(小组)声母c音节拼读练习(20)c-è→cè(侧面) c-ù→cù(促进)声母s音节拼读练习(21)s-ā→sā(撒手) s-ǎ→sǎ(洒水)s-à→sà(飒爽) s-è→sè(颜色)s-ū→sū(酥糖) s-ú→sú(俗气)s-ù→sù(加速)声母y音节拼读练习(22)y-ā→yā(烤鸭) y-á→yá(发芽)y-ǎ→yǎ(哑巴) y-à→yà(亚军)w-ā→wā(青蛙) w-á→wá(娃娃)w-ǎ→wǎ(瓦房) w-à→wà(袜子)声母w音节拼读练习(23)w-ō→wō(蜗牛) w-ǒ→wǒ(自我)w-ò→wò(握手)整体认读音节(24)zhī(知识) zhí(值日)zhǐ(纸巾) zhì(志气)chī(吃饭) chí(水池)chǐ(尺子) chì(鸡翅)shī(狮子) shí(食品)shǐ(使用) shì(士兵)zī(姿势) zǐ(紫色)zì(写字) cī(刺啦)cí(词语) cǐ(此时)cì(一次) sī(丝瓜)sǐ(生死) sì(四月)yī(衣柜) yí(阿姨)yǐ(蚂蚁) yì(艺术)wū(乌云) wú(梧桐)wǔ(午饭) wù(物品)yū(迂回) yú(鱼刺)yǔ(羽毛) yù(玉佩)yē(椰子) yé(爷爷) yě(野花) yè(夜晚)。

中文简繁拼音对照表

中文简繁拼音对照表
0311 权 權 quan
0312 吓 嚇 null
0313 讥 譏 null
0314 认 認 ren
0315 骗 騙 pian
0316 埔 埔 pu
0317 骑 騎 qi
0318 计 計 ji
0319 疲 疲 pi
0320 讣 訃 null
0321 订 訂 ding
0322 域 域 yu
0073 啮 嚙 null
0074 显 顯 xian
0075 省 省 sheng
0076 啥 啥 sha
0077 啤 啤 pi
0078 明 明 ming
0079 昌 昌 chang
0080 眼 眼 yan
0081 昂 昂 ang
0082 昆 昆 kun
0083 啊 啊 a
0084 星 星 xing
0370 骡 騾 null
0371 疏 疏 shu
0372 骨 骨 gu
0373 诡 詭 null
0374 垒 壘 null
0375 诣 詣 null
0376 询 詢 xun
0239 板 板 ban
0240 启 啟 qi
0241 饭 飯 fan
0242 松 松 song
0243 饯 餞 null
0244 癌 癌 ai
0245 听 聽 ting
0246 饮 飲 yin
0247 含 含 han
0248 吨 噸 dun
0249 吧 吧 ba
0250 饥 饑 null
0061 喊 喊 han
0062 矫 矯 null
0063 昨 昨 zuo

普通话异读字审音表

普通话异读字审音表

普通话异读字审音表A阿(一)ā~訇~罗汉~木林~姨(二)ē~谀~附~胶~弥陀佛挨(一)āi~个~近(二)ái~打~说癌ái (统读)霭ǎi (统读)蔼ǎi (统读)隘ài (统读)谙ān (统读)埯ǎn (统读)昂áng (统读)凹āo (统读)拗(一)ào~口(二)niù执~脾气很~坳ào (统读)B拔bá(统读)把bà印~子白bái (统读)膀bǎng翅~蚌(一)bàng蛤~(二)bèng~埠傍bàng(统读)磅bàng过~龅bāo (统读)胞bāo (统读)薄(一)báo(语)常单用,如“纸很~”。

(二)bó(文)多用于复音词。

~弱稀~淡~尖嘴~舌单~厚~堡(一)bǎo碉~~垒(二)bǔ~子吴~瓦窑柴沟~(三)pù十里~暴(一)bào~露(二)pù一~(曝)十寒爆bào (统读)焙bèi (统读)惫bèi (统读)背bèi~脊~静鄙bǐ (统读)俾bǐ (统读)笔bǐ (统读)比bǐ (统读)臂(一)bì手~~膀(二)bei胳~庇bì(统读)髀bì(统读)避bì(统读)辟bì复~裨bì~补~益婢bì(统读)痹bì(统读)壁bì(统读)蝙biān (统读)遍biàn (统读)骠(一)biāo黄~马(二)piào~骑~勇傧bīn (统读)缤bīn (统读)濒bīn (统读)髌bìn (统读)屏(一)bǐng~除~弃~气~息(二)píng~藩~风柄bǐng (统读)波bō (统读)播bō (统读)菠bō (统读)剥(一)bō(文)~削(二)bāo(语)泊(一)bó淡~飘~停~(二)pō湖~血~帛bó(统读)勃bó(统读)钹bó(统读)伯(一)bó~~(bo)老~大~子(丈夫的哥哥)箔bó(统读)簸(一)bǒ颠~(二)bò~箕膊bo胳~卜bo萝~醭bú(统读)哺bǔ(统读)捕bǔ(统读)鵏bǔ (统读)埠bù(统读)C残cán(统读)惭cán(统读)灿càn(统读)藏(一)cáng矿~宝~糙cāo(统读)嘈cáo(统读)螬cáo(统读)厕cè(统读)岑cén(统读)差(一)chā(文)不~累黍不~什么偏~色~~别视~误~电势~一念之~~池~错言~语错一~二错阴错阳~~等~额~价~强人意~数~异(二)chà(语)~不多~不离~点儿(三)cī参~猹chá(统读)搽chá(统读)阐chǎn(统读)颤(一)chàn~动发~(二)zhàn~栗(战栗)打~(打战)韂chàn (统读)伥chāng (统读)场(一)chǎng~合~所冷~捧~(二)cháng外~圩~~院一~雨(三)chang排~钞chāo (统读)巢cháo (统读)嘲cháo~讽~骂~笑耖chào (统读)车(一)chē安步当~杯水~薪闭门造~螳臂当~(二)jū(象棋棋子名称)称1. 读chen第四声时,作合适相当解:称心、对称、匀称、称职,~意~职相~2.读cheng第一声时,作叫、叫做解,人称××、自称××、称霸、称便、称病、称臣、称呼、称颂、称谓、称为、称赞……3.读cheng第四声时,作“秤”字解。

普通话异读词审音表

普通话异读词审音表

普通话异读词审音表(二)箕ji簸~----------------------------辑ji逻~----------------------------茄jiā雪~----------------------------夹jiā~带藏掖~道儿~攻~棍~生~杂~竹桃~注----------------------------浃jiā(统读)----------------------------甲jiǎ(统读)----------------------------歼jiān(统读)----------------------------鞯jiān(统读)----------------------------间(一)jiān~不容发中~(二)jiàn中~儿~道~谍~断~或~接~距~隙~续~阻~作挑拨离~----------------------------趼jiǎn(统读)----------------------------俭jiǎn(统读)----------------------------缰jiāng(统读)----------------------------膙jiǎng(统读)----------------------------嚼(一)jiáo(语)味同~蜡咬文~字(二)jué(文)咀~过屠门而大~(三)jiào倒~(倒噍)----------------------------侥jiǎo~幸----------------------------角(一)jiǎo八~(大茴香)~落独~戏~膜~度~儿(犄~)~楼勾心斗~号~口~(嘴~)鹿~菜头~(二)jué~斗~儿(脚色)口~(吵嘴)主~儿配~儿~力捧~儿----------------------------脚(一)jiǎo根~(二)jué~儿(也作“角儿”,脚色)----------------------------剿(一)jiǎo围~(二)chāo~说~袭----------------------------校jiào~勘~样~正----------------------------较jiào(统读)----------------------------酵jiào(统读)--------------------------------------------------------疖jiē(统读)----------------------------结(除“~了个果子”、“开花~果”、“~巴”、“~实”念jiē之外,其他都念jié)----------------------------睫jié(统读)----------------------------芥(一)jiè~菜(一般的芥菜)~末(二)gài~菜(也作“盖菜”)~蓝菜----------------------------矜jīn~持自~~怜----------------------------仅jǐn~~绝无~有----------------------------馑jǐn(统读)----------------------------觐jìn(统读)--------------------------------------------------------斤jin千~(起重的工具)----------------------------茎jīng(统读)----------------------------粳jīng(统读)----------------------------鲸jīng(统读)----------------------------境jìng(统读)----------------------------痉jìng(统读)----------------------------劲jìng刚~----------------------------窘jiǒng(统读)----------------------------究jiū(统读)----------------------------纠jiū(统读)----------------------------鞠jū(统读)--------------------------------------------------------掬jū(统读)----------------------------苴jū(统读)----------------------------咀jǔ~嚼----------------------------矩(一)jǔ~形(二)ju规~----------------------------俱jù(统读)----------------------------龟jūn~裂(也作“皲裂”)----------------------------菌(一)jūn细~病~杆~霉~(二)jùn香~~子----------------------------俊jùn(统读)K卡(一)kǎ~宾枪~车~介苗~片~通(二)qiǎ~子关~----------------------------揩kāi(统读)----------------------------慨kǎi(统读)----------------------------忾kài(统读)----------------------------勘kān(统读)----------------------------看kān~管~护~守----------------------------慷kāng(统读)----------------------------拷kǎo(统读)----------------------------坷kē~拉(垃)----------------------------疴kē(统读)----------------------------壳(一)ké(语)~儿贝~儿脑~驳~枪(二)qiào(文)地~甲~躯~----------------------------可(一)kě~~儿的(二)kè~汗----------------------------恪kè(统读)----------------------------刻kè(统读)----------------------------克kè~扣----------------------------空(一)kōng~心砖~城计(二)kòng~心吃药----------------------------眍kōu(统读)----------------------------矻kū(统读)----------------------------酷kù(统读)----------------------------框kuàng(统读)----------------------------矿kuàng(统读)----------------------------傀kuǐ(统读)----------------------------溃(一)kuì~烂(二)huì~脓----------------------------篑kuì(统读)----------------------------括kuò(统读)L 垃lā(统读)----------------------------邋lā(统读)----------------------------罱lǎn(统读)----------------------------缆lǎn(统读)----------------------------蓝lan苤~----------------------------琅láng(统读)----------------------------捞lāo(统读)----------------------------劳láo(统读)----------------------------醪láo(统读)----------------------------烙(一)lào~印~铁~饼(二)luò炮~(古酷刑)----------------------------勒(一)lè(文)~逼~令~派~索悬崖~马(二)lēi(语)多单用。

一年级下册看拼音写词语

一年级下册看拼音写词语

(春ch ūn 日r ì)(春ch ūn 节j i é)(立l ì 春ch ūn)(春ch ūn天ti ān)(大d à风f ēng)(风f ēng雨y ǔ) (风f ēng衣y ī)(风f ēng车c h ē) (冬d ōng天ti ān)(立l ì冬d ōng)(冬d ōng月y u è)(冬d ōng日r ì)(雪x u ě花h u ā)(雨y ǔ雪x u ě)(风f ēng雪x u ě)(雪x u ě人r én)(花h u ā草c ǎo)(花h u ā朵d u ǒ) (花h u ā生sh ēng)(开k āi花h u ā) (飞f ēi虫ch óng)(飞f ēi机j ī)(飞f ēi走z ǒu)(飞f ēi天ti ān)(加j i ā入r ù)(出c h ū入r ù)(入r ù门m én)(入r ù口k ǒu)(姓x ìng名m íng)(百b ǎi姓x ìng)(同t óng姓x ìng)(什sh én么m e)(为w èi 什sh én 么m e )(什sh én 么m e )(这z h è 么m e)(多d u ō么m e)(要y ào么m e)(双shu āng人r én)(双shu āng手sh ǒu)(双shu āng方f āng)(双shu āng飞f ēi)(中zh ōng国g u ó)(国g u ó人r én)(国g u ó王w áng)(国g u ó土t ǔ)(王w áng子z ǐ)(王w áng后h òu)(国g u ó王w áng)(女n ǚ王w áng)(大d à方f āng)(双shu āng方f āng)(对d u ì方f āng)(四s ì方f āng)(青q īng蛙w ā)(青q īng天ti ān)(青q īng草c ǎo)(青q īng春ch ūn)(清q īng明m íng)(清q īng早z ǎo) (清q īng白b ái)(一y ì清q īng二èr白b ái)(天ti ān气q ì)(力l ì 气q i )(和h é 气q i )(正zh èng 气q ì)(晴q íng天ti ān)(晴q íng日r ì)(晴q íng空k ōng)(雨y ǔ过g u ò天ti ān晴q íng)(友y ǒu情q íng)(同t óng情q íng)(心x īn情q íng)(人r én情q íng)(请q ǐng问w èn)(请q ǐng安ān)(回h u í请q ǐng)(请q ǐng求q i ú)(学x u é生sh ēng)(花h u ā生sh ēng)(生sh ēng气q ì)(出c h ū生sh ēng)(生sh ēng字z ì)(字z ì画h u à)(名m íng字z ì)(文w én字z ì)(左z u ǒ右y òu)(左z u ǒ手sh ǒu)(左z u ǒ耳ěr)(左z u ǒ边bian)(右y òu手sh ǒu)(右y òu耳ěr)(左z u ǒ右y òu)(右y òu边bian)(红h óng 花h u ā)(火h u ǒ 红h óng )(口k ǒu 红h óng )(红h óng木m ù)(小xi ǎo时s h í)(时s h í间ji ān)(有y ǒu时s h í)(午w ǔ时s h í)(生sh ēng动d òng)(开k āi动d òng)(动d òng手sh ǒu)(动d òng车c h ē)(万w àn里l ǐ)(千qi ān万w àn)(万w àn年ni án) (十s h í万w àn) (吃c h ī力l ì)(吃c h ī苦k ǔ)(口k ǒu吃c h ī)(小xi ǎo吃c h ī)(大d à叫ji ào)(叫ji ào好h ǎo)(尖ji ān叫ji ào)(叫ji ào门m én)(公g ōng主z h ǔ)(主z h ǔ人r én)(主z h ǔ力l ì)(户h ù主z h ǔ)(长ch áng 江ji āng )(江ji āng 水shu ǐ)(江ji āng 河h é)(过g u ò江ji āng)(住z h ù口k ǒu)(住z h ù户h ù)(住z h ù手sh ǒu)(居j ū住z h ù)没m éi (没m éi门m én)(没m éi有y ǒu)(没m éi 人r én)(没m éi空k ōng)m ò(吞t ūn没m ò)(出c h ū没m ò) (以y ǐ后h òu)(以y ǐ前qi án)(可k ě以y ǐ)(以y ǐ上sh àng)(大d à会h u ì)(开k āi会h u ì)(不b ú会h u ì)(工g ōng会h u ì)(走z ǒu火h u ǒ) (走z ǒu开k āi)(走z ǒu动d òng)(出c h ū走z ǒu)(北b ěi 边bi ān )(北b ěi 方f āng )(北b ěi 斗d ǒu)(东d ōng北b ěi)(北b ěi京j īng)(京j īng华h u á)(上sh àng京j īng)(开k āi门m én)(门m én口k ǒu)(门m én牙y á)(大d à门m én)(广gu ǎng大d à)(广gu ǎng义y ì)(广gu ǎng告g ào)(广gu ǎng东d ōng)(过g u ò关gu ān)(过g u ò去q ù)(过g u ò火h u ǒ)(过g u ò节j i é)(各g è地d ì)(各g è种zh ǒng)(各g è个g è)(各g è别b i é)种zh ǒng (种zh ǒng子z i)(白b ái种zh ǒng)(火h u ǒ种zh ǒng) zh òng (种zh òng田ti án) (种zh òng地d ì)(样y àng 本b ěn )(样y àng 子z i )(样y àng 品p ǐn)(花h u ā样y àng)(伙h u ǒ伴b àn)(伙h u ǒ计j i)(同t óng伙h u ǒ)(大d à伙h u ǒ)(玩w án伴b àn)(伙h u ǒ伴b àn)(同t óng伴b àn)(这z h è次c ì)(这z h è样y àng)(这z h è边bi ān)(这z h è么m e)(太t ài后h òu)(太t ài子z ǐ)(太t ài阳y áng)(太t ài平p íng)(阳y áng光gu āng)(阳y áng台t ái)(太t ài阳y áng)(夕x ī阳y áng)(校xi ào长zh ǎng)(学x u é校xi ào)(校xi ào门m én)(母m ǔ校xi ào)(金j īn鱼y ú)(五w ǔ 金j īn )(金j īn 子z i )(金j īn 山sh ān)(秋q i ū天ti ān)(秋q i ū千qi ān)(秋q i ū风f ēng)(秋q i ū水shu ǐ)(主z h ǔ因y īn)(因y īn为w éi)(因y īn果g u ǒ)(原yu án因y īn) 为w éi (为w éi人r én)( 以y ǐ为w éi)(认r èn为w éi) w èi (为w èi何h é)(为w èi了l e)(因y īn为w èi)(为w èi什sh én么m e) (他t ā们m e n)(他t ā日r ì)(他t ā乡xi āng) (他t ā人r én) (山sh ān河h é)(河h é水shu ǐ)(江ji āng河h é)(长ch áng河h é)(小xi ǎo说shu ō)(说shu ō法f ǎ)(说shu ō话h u à)(说shu ō明m íng)(也y ě 许x ǔ)(也y ě 是s h ì)(也y ě 好h ǎo)(空k ōng空k ōng如r ú也y ě)地d ì(土t ǔ地d ì) (大d à地d ì)(地d ì下x i à)(地d ì方f āng)de (高g āo兴x ìng地d ì说shu ō) (听t īng话h u à)(听t īng力l ì)(听t īng说shu ō)(听t īng见ji àn)(大d à哥g ē)(二èr哥g ē)(哥g ē哥g e)(哥g ē们m e n)(单d ān人r én)(单d ān手sh ǒu)(单d ān元yu án)(书s h ū单d ān)(居j ū多d u ō)(居j ū民m ín)(居j ū中zh ōng)(居j ū住z h ù)(招zh āo手sh ǒu)(招zh āo工g ōng) (招zh āo呼h u)(招zh āo风f ēng)(高g āo呼h ū)(欢hu ān呼h ū)(呼h ū声sh ēng)(呼h ū叫ji ào)(快ku ài 乐l è)(快ku ài 门m én)(快ku ài车c h ē) (飞f ēi快ku ài) (好h ǎo玩w án)(玩w án乐l è)(玩w án火h u ǒ)(玩w án水shu ǐ)(很h ěn好h ǎo)(很h ěn多d u ō)(很h ěn大d à)(很h ěn长ch áng)当d āng (当d āng心x īn) (当d āng时s h í)(当d āng天ti ān)d àng (上sh àng当d àng) (音y īn乐y u è)(口k ǒu音y īn)(拼p īn音y īn)(注z h ù音y īn)(讲ji ǎng课k è)(听t īng讲ji ǎng)(主z h ǔ讲ji ǎng)(开k āi讲ji ǎng)行x íng (不b ù行x íng)(行x íng人r én)(行x íng动d òng)(行x íng走z ǒu)h áng (银y ín行h áng)(行h áng业y è)(许x ǔ 多d u ō)(也y ě 许x ǔ)(少sh ǎo 许x ǔ)(不b ù许x ǔ)(思s ī想xi ǎng)(心x īn思s i)(秋q i ū思s ī)(三s ān思s ī)(木m ù床chu áng)(床chu áng头t óu)(大d à床chu áng)(双shu āng人r én床chu áng)(前qi án后h òu)(以y ǐ前qi án)(从c óng前qi án)(前qi án天ti ān)(月y u è光gu āng)(阳y áng光gu āng)(光gu āng头t óu)(光gu āng明m íng)(低d ī头t óu)(低d ī音y īn)(高g āo低d ī)(低d ī三s ān 下x i à四s ì)(故g ù乡xi āng) (故g ù国g u ó)(故g ù人r én)(故g ù土t ǔ)(乡xi āng音y īn)(同t óng乡xi āng)(思s ī乡xi āng)(水shu ǐ乡xi āng)(山sh ān色s è)(天ti ān 色s è)(红h óng 色s è)(白b ái 色s è)(外w ài地d ì)(外w ài公g ōng)(外w ài人r én)(门m én外w ài)(看k àn见ji àn)(好h ǎo看k àn)(看k àn书s h ū)(看k àn台t ái)(爸b à爸b a)(晚w ǎn上shang)(早z ǎo晚w ǎn)(晚w ǎn会h u ì)(晚w ǎn安ān)(大d à笑xi ào)(可k ě笑xi ào)(玩w án笑xi ào)(好h ǎo笑xi ào)(再z ài见ji àn)(再z ài会h u ì)(再z ài三s ān)(再z ài来l ái)(上sh àng午w ǔ)(中zh ōng午w ǔ)(下x i à午w ǔ)(午w ǔ后h òu)(春ch ūn 节j i é)(过g u ò 节j i é)(节j i é 日r ì)(节j i é目m ù)(红h óng叶y è)(竹z h ú叶y è)(叶y è子z i)(树s h ù叶y è)(大d à米m ǐ)(小xi ǎo米m ǐ)(玉y ù米m ǐ)(米m ǐ尺c h ǐ)(认r èn真zh ēn)(真zh ēn正zh èng)(天ti ān真zh ēn)(真zh ēn心x īn)分f ēn (分f ēn开k āi)(分f ēn手sh ǒu)(春ch ūn分f ēn) f èn (过g u ò分f èn)(本b ěn分f èn) (豆d òu子z i)(红h óng豆d òu)(土t ǔ豆d òu)(大d à豆d òu)(那n à样y àng)(那n à里l ǐ)(那n èi个g è)(那n à么m e)着zhe (看k àn 着z h e )(笑xi ào 着z h e )(玩w án 着z h e) zhu ó(穿chu ān着z h e) zh áo (着zh áo火h u ǒ)(来l ái到d ào)(看k àn到d ào)(到d ào来l ái)(到d ào处c h ù)(高g āo山sh ān)(高g āo大d à)(高g āo中zh ōng)(高g āo手sh ǒu)兴 x īng (兴x īng奋f èn) (兴x īng办b àn) x ìng (高g āo兴x ìng)(扫s ǎo兴x ìng)(兴x ìng头t o u)(高g āo高g āo兴x ìng兴x ìng) (秋q i ū千qi ān)(千qi ān米m ǐ)(千qi ān万w àn)(万w àn水shu ǐ千qi ān山sh ān)(成ch éng人r én)(成ch éng长zh ǎng)(成ch éng 果g u ǒ)(成ch éng 天ti ān )(成ch éng 立l ì)(房f áng间ji ān)(中zh ōng间ji ān)(人r én间ji ān)(乡xi āng间ji ān)(入r ù迷m í)(迷m í人r én)(书s h ū迷m í)(迷m í宫g ōng)(造z ào句j ù)(人r én造z ào)(打d ǎ造z ào)(仿f ǎng造z ào)(运y ùn动d òng)(运y ùn气q ì) (运y ùn用y òng)(走z ǒu运y ùn)(小xi ǎo池c h í) (水shu ǐ池c h í)(池c h í子z i)(电di àn池c h í)(欢hu ān乐l è)(欢hu ān快ku ài)(欢hu ān笑xi ào)(欢hu ān呼h ū)(上sh àng网w ǎng) (网w ǎng吧b ā)(电di àn网w ǎng)( 天ti ān罗l u ó地d ì网w ǎng)(古g ǔ 今j īn )(千qi ān 古g ǔ)(古g ǔ 文w én)(古g ǔ书s h ū)(凉li áng快ku ài)(清q īng凉li áng)(凉li áng风f ēng)(凉li áng水shu ǐ)(细x ì小xi ǎo)(细x ì雨y ǔ)(细x ì长ch áng)(细x ì叶y è)(夕x ī阳y áng)(前qi án夕x ī)(七q ī夕x ī)(旦d àn夕x ī)(李l ǐ子z i)(桃t áo李l ǐ)(行x íng李l i)(瓜g u ā田ti án李l ǐ下x i à)(语y ǔ文w én)(成ch éng语y ǔ)(外w ài语y ǔ)(语y ǔ气q ì)(香xi āng水shu ǐ)(香xi āng气q ì)(清q īng 香xi āng )(香xi āng 火h u ǒ)(打d ǎ 工g ōng)(打d ǎ开k āi)(单d ān打d ǎ)(双shu āng打d ǎ)(拍p āi手sh ǒu)(拍p āi打d ǎ)(节j i é拍p āi)(打d ǎ拍p āi子z i)(长ch áng跑p ǎo)(起q ǐ跑p ǎo)(小xi ǎo跑p ǎo)(跑p ǎo车c h ē)(双shu āng足z ú)(手sh ǒu足z ú)(不b ù足z ú)(立l ì足z ú)(声sh ēng音y īn)(风f ēng声sh ēng)(无w ú声sh ēng)(回h u í声sh ēng)(身sh ēn后h òu)(全qu án身sh ēn)(本b ěn身sh ēn)(身sh ēn心x īn)(身sh ēn体t ǐ) (字z ì体t ǐ)(全qu án体t ǐ)(体t ǐ会h u ì)(之z h ī前qi án)(之z h ī 后h òu )(之z h ī 间ji ān )(总z ǒng 之z h ī)(相xi āng见ji àn)(相xi āng对d u ì)(相xi āng反f ǎn)(相xi āng同t óng)(近j ìn日r ì)(近j ìn来l ái)(近j ìn年ni án)(亲q īn近j ìn)(学x u é习x í)(自z ì习x í)(习x í字z ì)(习x í气q ì)(远yu ǎn方f āng)(远yu ǎn古g ǔ)(远yu ǎn大d à)(长ch áng远yu ǎn)(玉y ù石s h í)(玉y ù米m ǐ)(宝b ǎo玉y ù)(白b ái玉y ù)(同t óng义y ì)(近j ìn义y ì)(义y ì工g ōng)(正zh èng义y ì)(首sh ǒu次c ì)(首sh ǒu 先xi ān )(元yu án 首sh ǒu )(首sh ǒu 相xi àng)(文w én采c ǎi)(风f ēng采c ǎi)(神sh én采c ǎi)(采c ǎi用y òng)(无w ú人r én)(无w ú力l ì)(无w ú心x īn)(无w ú双shu āng)(果g u ǒ树s h ù)(树s h ù木m ù)(树s h ù叶y è)(树s h ù干g àn)(关gu ān爱ài)(可k ě爱ài)(心x īn爱ài)(爱ài好h ào)(尖ji ān子z i)(尖ji ān刀d āo)(尖ji ān叫ji ào)(心x īn尖ji ān) 角ji ǎo (牛n i ú角ji ǎo) (羊y áng角ji ǎo)(三s ān角ji ǎo形x íng)ju é(角j u é色s è) (主z h ǔ角j u é)(月y u è 亮li àng )(明m íng 亮li àng )(亮li àng 光gu āng)(闪sh ǎn亮li àng)(飞f ēi机j ī)(机j ī关gu ān)(机j ī会h u ì)(司s ī机j ī)(台t ái风f ēng)(台t ái灯d ēng)(阳y áng台t ái)(后h òu台t ái)(放f àng大d à)(放f àng学x u é)(放f àng羊y áng)(放f àng手sh ǒu)(小xi ǎo鱼y ú)(鱼y ú头t óu)(木m ù鱼y ú)(打d ǎ鱼y ú)(花h u ā朵d u ǒ)(云y ún朵d u ǒ)(一y ī朵d u ǒ花h u ā) (美m ěi丽l ì)(美m ěi好h ǎo)(美m ěi工g ōng)(美m ěi术s h ù)(一y ì直z h í)(直z h í角ji ǎo)(正zh èng直z h í)(笔b ǐ直z h í)(哎āi呀y ā)(无w ú边bi ān)(东d ōng边bian)(花h u ā边bi ān)(边bi ān 关gu ān)呢n ene (花h u ā呢n e) (人r én呢n e) 呢n en í (呢n í子z i) (毛m áo呢n í) (在z ài吗m a)(好h ǎo吗m a)(行h áng吗m a)(好h ǎo吧b a)(吧b a台t ái)(加j i ā法f ǎ)(加j i ā上shang)(加j i ā入r ù)(加j i ā工g ōng)(语y ǔ文w én)(文w én字z ì)(文w én学x u é)(文w én化h u à)(下x i à次c ì)(多d u ō次c ì)(名m íng次c ì)(主z h ǔ次c ì)(自z ì找zh ǎo)(找zh ǎo出c h ū)(寻x ún找zh ǎo)(找zh ǎo 齐q í)(平p íng 安ān )(平p íng 日r ì)(平p íng时s h í)(平p íng分f ēn)(办b àn法f ǎ)(办b àn公g ōng)(开k āi办b àn)(主z h ǔ办b àn)(让r àng开k āi)(不b ù让r àng)(让r àng位w èi)(礼l ǐ让r àng)(包b āo子z i)(书s h ū包b āo)(打d ǎ包b āo)(沙s h ā包b āo)(时s h í钟zh ōng)(钟zh ōng点di ǎn)(钟zh ōng头t óu)(闹n ào钟zh ōng)(元yu án月y u è)(元yu án旦d àn)(单d ān元yu án)(公g ōng元yu án)(洗x ǐ手sh ǒu)(水shu ǐ洗x ǐ)(干g ān洗x ǐ)(冲ch ōng 洗x ǐ)(一y í 共g òng )(总z ǒng 共g òng)(共g òng同t óng)(公g ōng共g òng)(已y ǐ经j īng)(而ér已y ǐ)(已y ǐ故g ù)(早z ǎo已y ǐ)(经j īng过g u ò)(经j īng书s h ū)(经j īng手sh ǒu)(正zh èng经j īng)(坐z u ò下x i à)(坐z u ò车c h ē) (打d ǎ坐z u ò)(坐z u ò飞f ēi机j ī) 要y āo (要y āo求q i ú)y ào (不b ú要y ào) (只z h ǐ要y ào)(主z h ǔ要y ào)(要y ào好h ǎo) (连li án长zh ǎng)(连li án日r ì)(连li án忙m áng)(连li án队d u ì)(百b ǎi万w àn)(百b ǎi合h é)(百b ǎi草c ǎo)(百b ǎi叶y è)还 hu án (归g u ī还hu án) (还hu án手sh ǒu)h ái (还h ái 有y ǒu )(还h ái 好h ǎo)(还h ái行h áng)(还h ái在z ài)(舌s h é头t o u)(长ch áng舌s h é)(学x u é舌s h é)(口k ǒu舌s h é)(早z ǎo点di ǎn)(雨y ǔ点di ǎn)(点di ǎn心x īn)(点di ǎn子z i)(石s h í块ku ài)(土t ǔ块ku ài)(块ku ài头t óu)(方f āng块ku ài)(非f ēi分f èn)(非f ēi常ch áng) (无w ú非f ēi)(是s h ì非f ēi)(平p íng常ch áng)(常ch áng年ni án)(平p íng常ch áng)(日r ì常ch áng)(往w ǎng日r ì)(往w ǎng常ch áng)(过g u ò往w ǎng)(交ji āo往w ǎng)(西x ī 瓜g u ā)(地d ì 瓜g u ā)(瓜g u ā 子z ǐ)(南n án瓜g u ā)(进j ìn出c h ū)(进j ìn化h u à)(进j ìn口k ǒu)(进j ìn入r ù)(长zh ǎng进j ìn)(上sh àng进j ìn) 空k ōng (天ti ān空k ōng)(空k ōng中zh ōng)(空k ōng气q ì)(时s h í空k ōng)k òng (空k òng 白b ái) (空k òng地d ì) (有y ǒu空k òng) (看k àn病b ìng)(病b ìng人r én)(生sh ēng病b ìng)(心x īn病b ìng)(医y ī生sh ēng)(中zh ōng医y ī)(医y ī学x u é)(太t ài医y ī)(个g è别b i é)(分f ēn别b i é)(别b i é人r én)(告g ào别b i é)干g ān (干g ān净j ìng)(干g ān果g u ǒ)(干g ān贝b èi)(风f ēng干g ān)g àn (实s h í 干g àn )(干g àn 部b ù) (好h ào奇q í)(出c h ū奇q í)(奇q í怪gu ài)(奇q í才c ái)(七q ī日r ì)(七q ī月y u è)(七q ī天ti ān)(七q ī上sh àng八b ā下x i à)(星x īng火h u ǒ)(星x īng云y ún)(星x īng星x īng)(火h u ǒ星x īng) 吓xi à(惊j īng吓x i à) (吓x i à人r én)(吓x i à一y í跳ti ào ) h è (恐k ǒng吓h è)(不b ú怕p à)(可k ě怕p à)(怕p à人r én)(生sh ēng怕p à)(跟g ēn头t o u)(跟g ēn上sh àng)(跟g ēn斗d o u)(跟g ēn从c óng)(大d à 家j i ā)(家j i ā 长zh ǎng )(家j i ā 乡xi āng)(家j i ā门m én) (小xi ǎo羊y áng)(山sh ān羊y áng) (羊y áng角ji ǎo) (牛n i ú羊y áng) (大d à象xi àng)(气q ì象xi àng)(万w àn象xi àng)(象xi àng牙y á)都 d ū (首sh ǒu都d ū) (古g ǔ都d ū) d ōu(都d ōu是s h ì) (都d ōu有y ǒu) (都d ōu好h ǎo) (捉zhu ō虫ch óng)(活h u ó捉zhu ō)(捉zhu ō住z h ù)(捉zhu ō拿n á)(面mi àn条ti áo)(金j īn条ti áo)(字z ì条ti áo)(条ti áo件ji àn)(爬p á行x íng)(爬p á树s h ù)(爬p á山sh ān)(爬p á虫ch óng)(大dà姐j iě)(姐j iě姐j iě)(空kōng姐j iě)(姐j iě妹mèi)(您nín早zǎo)(您nín好hǎo)(花h uā草cǎo)(水shuǐ草cǎo)(小xiǎo草cǎo)(草cǎo木mù)(房fáng子z i)(书s hū房fáng)(门mén房fáng)(房fáng间jiān)。

普通话异读词审音表

普通话异读词审音表

普通话异读词审音表A阿(一)ü~訇~罗汉~木林 ~姨(二)ý~谀~附~胶~弥陀佛挨(一)üi~个~近(二)ái ~打~说 癌ái(统读)霭ǎi(统读)蔼ǎi(统读)隘ài(统读)谙ün(统读)埯ǎn(统读)昂áng(统读)凹üo(统读)拗(一)ào ~口(二)niù 执~脾气很~坳ào(统读)B拔bá(统读)把bà印~子白bái(统读)膀bǎng 翅~蚌(一)bàng 蛤~(二)bâng ~埠傍bàng(统读)磅bàng 过~龅büo(统读)胞büo(统读)薄(一)báo(语)常单用,如“纸很~”。

(二)bï (文)多用于复音词。

~弱稀~淡~尖嘴~舌 单~厚~堡(一)bǎo 碉~~垒 (二)bǔ ~子吴~瓦窑~柴沟~(三)pù 十里~暴(一)bào ~露(二)pù 一~(曝)十寒爆bào(统读)焙bâi(统读)惫bâi(统读)背bâi ~脊~静鄙bǐ(统读)俾bǐ(统读)笔bǐ(统读)比bǐ(统读)臂(一)bì 手~~膀(二)bei 胳~庇bì(统读)髀bì(统读)避bì(统读)辟bì 复~裨bì ~补~益婢bì(统读)痹bì(统读)壁bì(统读)蝙biün(统读)遍biàn(统读)骠(一)biüo 黄~马(二)piào ~骑~勇傧bÿn(统读)缤bÿn(统读)濒bÿn(统读)髌bìn(统读)屏(一)bǐng ~除~弃~气~息(二)píng ~藩~风柄bǐng(统读)波bō(统读)播bō(统读)菠bō(统读)剥(一)bō(文) ~削(二)büo(语)泊(一)bï 淡~飘~停~(二)pō 湖~血~帛bï(统读)勃bï(统读)钹bï(统读)伯(一)bï ~~(bo)老~(二)bǎi 大~子(丈夫的哥哥)箔bï(统读)簸(一)bǒ 颠~(二)bî ~箕膊 bo 胳~卜 bo 萝~醭bú(统读)哺bǔ(统读)捕bǔ(统读)鵏bǔ (统读)埠bù(统读)C残cán(统读)惭cán(统读)灿càn(统读)藏(一)cáng 矿~(二)zàng 宝~糙cüo(统读)嘈cáo(统读)螬cáo(统读)厕câ(统读)岑cãn(统读)差(一)chü(文)不~累黍不~什么偏~色~~别视~误~ 电势~一念之~ ~池~错言~语错一~二错阴错阳~~等~额~价~强人意~数~异(二)chà(语) ~不多~不离~点儿(三)cÿ 参~猹chá(统读)搽chá(统读)阐chǎn(统读)羼chàn(统读)颤(一)chàn ~动发~(二)zhàn ~栗(战栗)打~(打战)韂chàn(统读)伥chüng(统读)场(一)chǎng ~合~所冷~捧~(二)cháng 外~圩~~院一~雨(三)chang 排~钞chüo(统读)巢cháo(统读)嘲cháo ~讽~骂~笑耖chào(统读)车(一)chý 安步当~杯水~薪闭门造~螳臂当~(二)jū (象棋棋子名称)晨chãn(统读)称chân ~心~意~职对~相~撑chýng(统读)乘(动作义,念chãng) 包~制~便~风破浪~客~势~兴橙chãng(统读)惩chãng(统读)澄(一)chãng(文) ~清(如“~清混乱”、“~清问题”)(二)dâng(语) 单用,如“把水~清了”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

QYR:预测全球封闭式门铃收入将以每年1%至6%的增长率持续增长
对于行业结构分析,闭门器行业相对集中。

这些制造商的范围从大型跨国公司到小型私营企业在这个行业中竞争。

前五大生产商占收入市场的约60%。

全球闭门车市场2016年销售4471万辆,价值234798万美元,预计2022年销量将达到5540万辆,2016年至2022年复合年增长率为3.64%。

2016年中国的销售市场占有率为26.43%,其次是欧洲和北美,分别占全球整体行业的23.28%和21.99%。

其他地区的销售额较小。

该市场的全球领先企业是Allegi on,2016年收入达到6.02426亿美元,占总收入市场的25.74%。

闭门器主要用于商业和住宅领域。

Commercial的应用市场份额在2016年高达72.16%,预计2022年的份额将达到73.10%,随着闭门器应用的增加
对于价格趋势分析,闭门器制造商性能的一个关键变量是原材料成本,特别是任何增加可以传递给客户的速度。

对于预测,全球封闭式门铃收入将以每年1%至6%的增长率持续增长。

考虑到目前
闭门器的需求,我们倾向于认为这个行业仍然有着美好的未来。

For industry structure analysis, the door closer industry is relatively concentrated. These manufacturers range from large multinational corporations to small privately owned companies compete in this industry. The top five producers account for about 60 % of the revenue market. The global Door Closer market was 44.71 million units and worth $2347.89 million in 2016 and is expected to reach 55.4 million units in 2022, growing at a CAGR of 3.64% from 2016 to 2022.
China occupied 26.43% of the sales market in 2016. It is followed by Europe and North America, which respectively account for around 23.28% and 21.99% of the global total industry. Other regions have a smaller amount of sales. The global leading player in this market is Allegion, whose revenue is $ 604.26 million in 2016, accounts for 25.74% of total revenue market.
The Door Closer is mainly used in Commercial and Residential field. The application market share of Commercial is up to 72.16% in 2016 and it is forecasted that share will be 73.10% in 2022 with increased adoption of door closer
For price trend analysis, a key variable in the performance of door closer producers is raw material costs, specifically the speed at which any increase can be passed through to customers.
For forecast, the global door closer revenue would keep increasing with annual growth rate with 1~6%. We tend to believe that this industry still has a good future, considering the current demand of door closer.。

相关文档
最新文档