数学(完整版)人教版七年级数学下册期末试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(完整版)人教版七年级数学下册期末试卷及答案
一、选择题
1.如图,∠1=∠2,则下列结论一定成立的是( )
A .A
B ∥CD B .AD ∥B
C C .∠B =∠
D D .∠1=∠2
2.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )
A .b =5a
B .b =4a
C .b =3a
D .b =a
3.下列运算正确的是 () A .()23
524a a -= B .()222a b a b -=- C .61213
a a +=+ D .325236a a a ⋅= 4.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( )
A .2cm
B .3cm
C .8cm
D .15cm
5.下列图形中,不能通过其中一个四边形平移得到的是( )
A .
B .
C .
D .
6.不等式3+2x>x+1的解集在数轴上表示正确的是( )
A .
B .
C .
D . 7.若25a =,23b =,则232a b -等于( )
A .2725
B .109
C .35
D .2527
8.△ABC 是直角三角形,则下列选项一定错误的是( )
A .∠A -∠B=∠C
B .∠A=60°,∠B=40°
C .∠A+∠B=∠C
D .∠A :∠B :∠C=1:1:2 9.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b
>的是( )
A .ac bc >
B .ma mb -<-
C .22ac bc >
D .22ac bc ->- 10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )
A .0个
B .1个
C .2个
D .3个
二、填空题
11.计算126x x ÷的结果为______.
12.如果62x y =⎧⎨=-⎩
是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.
13.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.
14.如图,根据长方形中的数据,计算阴影部分的面积为______ .
15.计算:23()a =____________.
16.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨
-=⎩
有整数解,则m 的值为_______. 17.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )
A .6
B .7
C .8
D .9
18.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.
19.已知:()
521x x ++=,则x =______________. 20.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a=
__________ . 三、解答题
21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.
22.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
(1)图2中的阴影部分的面积为 ;
(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ;
(3)根据(2)中的结论,若 6x y +=,114
x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()22
22252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚. 23.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.
24.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.
(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;
(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.
25.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考
的小铭在解方程组2534115x y x y +=⎧⎨+=⎩
时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.
把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩
. 请你解决以下问题:
(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩
. (2)已知x ,y 满足方程组22223212472836
x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 26.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠2.
(1)求证:AB ∥CD ;
(2)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D =112°,求∠1的度数.
27.已知:方程组2325
x y a x y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组. (1)求该方程组的解(用含a 的代数式表示);
(2)若方程组的解满足0x <,0y >,求a 的取值范围.
28.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .
(1)若50BAC ∠=︒,则BIC ∠= °;
(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由;
(3)若3D E ∠=∠,求BAC ∠的度数.
【参考答案】***试卷处理标记,请不要删除
1.A
解析:A
【解析】
【分析】
根据内错角相等,两直线平行即可得出结论.
【详解】
∵∠1=∠2,
∴AB ∥DC(内错角相等,两直线平行).
故选A .
【点睛】
考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.
2.A
解析:A
【分析】
分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.
【详解】
解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,
12S S S =-
2
25315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BC
a AB a BC AB
b BC AB b 2
2(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,
50a b
, 5b a .
故选:A .
【点睛】
本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.
3.D
解析:D
【解析】
A 选项:(﹣2a 3)2=4a 6,故是错误的;
B 选项:(a ﹣b )2=a 2-2ab+b 2,故是错误的;
C 选项:6123a a +=+13
,故是错误的;
4.C
解析:C
【解析】
【分析】
在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
【详解】
∵5+8=13,8-5=3
∴根据三角形三边关系,第三条边应在3cm~13cm之间(不包含3和13).
故选C
【点睛】
本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.
5.D
解析:D
【详解】
解:A、能通过其中一个四边形平移得到,不符合题意;
B、能通过其中一个四边形平移得到,不符合题意;
C、能通过其中一个四边形平移得到,不符合题意;
D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.
故选D.
6.A
解析:A
【分析】
先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】
解:移项,得2x-x>1-3,
合并同类项,得x>﹣2,
不等式的解集在数轴上表示为:
.
故选:A.
【点睛】
本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.
7.D
解析:D
【分析】
根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.
222233332(2)5252=2(2)327
a a a
b b b -=== 故选:D
【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,
(0m
m n
n a a a a
-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).
8.B 解析:B
【分析】
根据三角形内角和定理得出∠A +∠B +∠C =180°,和选项求出∠C (或∠B 或∠A )的度数,再判断即可.
【详解】
解:A 、∵∠A ﹣∠B =∠C ,
∴∠A =∠B +∠C ,
∵∠A +∠B +∠C =180°,
∴2∠A =180°,
∴∠A =90°,
∴△ABC 是直角三角形,故A 选项是正确的;
B 、∵∠A =60°,∠B =40°,
∴∠C =180°﹣∠A ﹣∠B
=180°﹣60°﹣40°
=80°,
∴△ABC 是锐角三角形,故B 选项是错误的;
C 、∵∠A +∠B =∠C ,∠A +∠B +∠C =180°,
∴2∠C =180°,
∴∠C =90°,
∴△ABC 是直角三角形,故C 选项是正确的;
D 、∵∠A :∠B :∠C =1:1:2,
∴∠A +∠B =∠C ,
∵∠A +∠B +∠C =180°,
∴2∠C =180°,
∴∠C =90°,
∴△ABC 是直角三角形,故D 选项是正确的;
故选:B .
【点睛】
本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.
解析:C
【分析】
根据不等式的性质逐项判断即可.
【详解】
解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;
B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;
C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;
D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.
故选:C
【点睛】
本题考查了不等式的性质,熟知不等式的性质是解题关键.
10.B
解析:B
【分析】
观察图象,明确每一段行驶的路程、时间,即可做出判断.
【详解】
由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确; 从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),
在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;
在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确, 故选:B .
【点睛】
此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.
二、填空题
11.【分析】
根据同底数幂的除法公式即可求解.
【详解】
=
故答案为:.
【点睛】
此题主要考查幂的运算,解题的关键是熟知同底数幂的除法公式. 解析:6x
【分析】
根据同底数幂的除法公式即可求解.
【详解】
126
x x
÷=6x
故答案为:6x.
【点睛】
此题主要考查幂的运算,解题的关键是熟知同底数幂的除法公式.
12.【分析】
把x、y的值代入方程计算即可求出m的值.
【详解】
解:把代入方程得:6m-10=﹣6,
解得:m=
故答案为:
【点睛】
本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右
解析:2 3
【分析】
把x、y的值代入方程计算即可求出m的值.【详解】
解:把
6
2
x
y
=
⎧
⎨
=-
⎩
代入方程得:6m-10=﹣6,
解得:m=2 3
故答案为:2 3
【点睛】
本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.13.4
【分析】
设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.
【详解】
解:设购买x个A品牌足球,
解析:4
【分析】
设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的
二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】
解:设购买x个A品牌足球,y个B品牌足球,
依题意,得:60x+75y=1500,
解得:y=20−4
5 x.
∵x,y均为正整数,∴x是5的倍数,
∴
5
16
x
y
=
⎧
⎨
=
⎩
,
10
12
x
y
=
⎧
⎨
=
⎩
,
15
8
x
y
=
⎧
⎨
=
⎩
,
20
4
x
y
=
⎧
⎨
=
⎩
∴共有4种购买方案.
故答案为:4.
【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.14.104
【解析】
两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积
13×8=104,故答案为104.
解析:104
【解析】
两个阴影图形可以平移组成一个长方形,长为15213
-=,宽为8,故阴影部分的面积13×8=104,故答案为104.
15..
【分析】
直接根据积的乘方运算法则进行计算即可.
【详解】
.
故答案为:.
【点睛】
此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.
解析:6a
-.
【分析】
直接根据积的乘方运算法则进行计算即可.
【详解】
233236
()=(1)()
a a a.
故答案为:6a
-.
【点睛】
此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.
16.【分析】
先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;
【详解】
解:,
把①②式相加得到:,
即: ,
要二元一次方程组有整数解,
即为整数,
又∵为正整数,
故
解析:2
【分析】
先把二元一次方程组210320mx y x y +=⎧⎨-=⎩
求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;
【详解】
解:210320mx y x y +=⎧⎨-=⎩
①②, 把①②式相加得到:310+=mx x , 即:103
x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩
有整数解, 即103
x m =+为整数, 又∵m 为正整数,
故m=2, 此时10223
x ==+,3y = , 故,x y 均为整数,
故答案为:2;
【点睛】
本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;
17.B
【解析】
连接OC,OB,OA,OD,
∵E、F、G、H依次是各边中点,
∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,
同理可证,S△OBF=S△OCF,S△ODG=S△OCG,
解析:B
【解析】
连接OC,OB,OA,OD,
∵E、F、G、H依次是各边中点,
∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,
同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,
∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,
∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,
∴6+8=7+S四边形DHOG,
解得S四边形DHOG=7.
故答案为7.
点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.
18.内错角相等,两直线平行
【分析】
利用平行线的判定方法即可解决问题.
【详解】
解:由题意:,
(内错角相等,两直线平行)
故答案为:内错角相等,两直线平行.
【点睛】
本题考查平行线的判定,解题的
解析:内错角相等,两直线平行
【分析】
利用平行线的判定方法即可解决问题.
【详解】
∠=∠,
解:由题意:ABD CDB
(内错角相等,两直线平行)
AB CD
//
故答案为:内错角相等,两直线平行.
【点睛】
本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.
19.-5或-1或-3
【分析】
根据零指数幂和1的任何次幂都等于1分情况讨论求解.
【详解】
解:根据0指数的意义,得:
当x+2≠0时,x+5=0,解得:x=﹣5.
当x+2=1时,x=﹣1,当x+2
解析:-5或-1或-3
【分析】
根据零指数幂和1的任何次幂都等于1分情况讨论求解.
【详解】
解:根据0指数的意义,得:
当x+2≠0时,x+5=0,解得:x=﹣5.
当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.
故答案为:﹣5或﹣1或﹣3.
【点睛】
本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.
20.4
【分析】
向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.
【详解】
解:由题意得:3a-9-3=0,
解得:a=4.
故答案为4.
【点睛】
本题考查了坐标与
解析:4
【分析】
向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.
【详解】
解:由题意得:3a-9-3=0,
解得:a=4.
故答案为4.
【点睛】
本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y 轴上的点的坐标特征.
三、解答题
21.70°
【分析】
由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出
∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.
【详解】
解:∵CD ⊥AB ,EF ⊥AB ,
∴∠CDF =∠EFB =90°,
∴CD ∥EF ,
∴∠DCB =∠1.
∵∠1=∠2,
∴∠DCB =∠2,
∴DG ∥BC ,
∴∠ADG =∠B =45°.
又∵在△ADG 中,∠A =65°,∠ADG =45°,
∴∠AGD =180°﹣∠A ﹣∠ADG =70°
【点睛】
本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.
22.(1)2()b a -;(2)22
()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】
(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;
(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;
(4)由已知的恒等式,画出相应的图形,如图所示.
【详解】
解:(1)阴影部分为一个正方形,其边长为b -a ,
∴其面积为:2
()b a -,
故答案为:2()b a -;
(2)大正方形面积为:()2
a b +
小正方形面积为:2()b a -=2()a b -,
四周四个长方形的面积为:4ab ,
∴22()()4a b a b ab +=-+,
故答案为:22()()4a b a b ab +=-+;
(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454
±-⨯
=±, 故答案为:±5; (4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,
【点睛】
本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.
23.73x +;-11
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:22222511x
x x x x 222445521x x x x x
73x
当2x =-时,原式
14311.
【点睛】 本题考查整式化简求值,熟练运用运算法则是解题的关键.
24.(1)见解析;(2)(2,6);(3)
192
【分析】
(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1,从而得到△A 1B 1C 1; (2)利用A 点坐标画出直角坐标系,再写出A 1坐标即可;
(3)利用分割法求出坐标即可.
【详解】
解:(1)画出平移后的△A1B1C1如下图;
;
(2)如上图建立平面直角坐标系,使得点A的坐标为(-4,3),由图可知:点A1的坐标为(2,6);
(3)由(2)中的图可知:A(-4,3),B(5,-1),C(0,0),
∴S△ABC=11119 (45)43451
2222 +⨯-⨯⨯-⨯⨯=.
【点睛】
本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
25.(1)
3
2
x
y
=
⎧
⎨
=
⎩
;(2)15
【分析】
(1)把9x﹣4y=19变形为3x+2(3x﹣2y)=19,再用整体代换的方法解题;
(2)将原方程组变形为
22
22
3(4)247
2(4)36
x y xy
x y xy
⎧+-=
⎨
++=
⎩
①
②
这样的形式,再利用整体代换的方法
解决.【详解】
解:(1)解方程组
325 9419 x y
x y
-=
⎧
⎨
-=
⎩
①
②
把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,
∴3x+10=19,
∴x=3,
把x=3代入3x﹣2y=5得y=2,
即方程组的解为
3
2 x
y
=
⎧
⎨
=
⎩
;
(2)原方程组变形为
22
22
3(4)247 2(4)36
x y xy
x y xy
⎧+-=
⎨
++=
⎩
①
②
①+②×2得,7(x2+4y2)=119,
∴x2+4y2=17,
把x2+4y2=17代入②得xy=2
∴x2+4y2﹣xy=17﹣2=15
答:x2+4y2﹣xy的值是15.
【点睛】
本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.
26.(1)见解析;(2)56°
【分析】
(1)先证∠1=∠CGF即可,然后根据平行线的判定定理证明即可;
(2)先根据平行线的性质、角平分线的性质以及垂直的性质得到∠1+∠4=90°,再求出∠4即可.
【详解】
(1)证明:∵FG∥AE,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠3,
∴AB∥CD.
(2)解:∵AB∥CD,
∴∠ABD+∠D=180°,
∵∠D=112°,
∴∠ABD=180°﹣∠D=68°,
∵BC平分∠ABD,
∴∠
4=1
2
∠ABD=34°,
∵FG⊥BC,
∴∠1+∠4=90°,
∴∠1=90°﹣34°=56°.
【点睛】
本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是熟练应用相关性质和定理.
27.(1)1213x a y a
=+⎧⎨=-⎩;(2)12a <- 【分析】
(1)利用加减消元法求解可得;
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
(1)①2⨯,得
2242x y a +=-.③
②-③,得12x a =+
把12x a =+代入①,得13y a =-
所以原方程组的解是1213x a y a =+⎧⎨
=-⎩
(2)根据题意,得 120130a a +<⎧⎨->⎩
解不等式组,得,12
a <- 所以a 的取值范围是:12a <-
. 【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
28.(1)115;(2)180-2x ,理由见解析;(3)45°.
【分析】
(1)已知点I 是两角∠ABC 、∠ACB 平分线的交点,故
()()()11118018018018090222BIC IBC ICB ABC ACB A BAC ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=+∠ ,由此可求∠BIC ;
(2)当CE ∥AB 时, ∠ACE=∠A=x °,根据∠ACE=∠A=x °,根据CE 是∠ACG 的角平分线,推出∠ACG=2x °,∠ABC=∠BAC=x °,即可求出ACB ∠的度数.
(3)由题意知:△BDE 是直角三角形∠D+∠E=90°,可求出若∠D=3∠E 时,
∠BEC=22.5°,再推理出12
BEC BAC ∠=
∠,即可求出BAC ∠的度数. 【详解】
(1)∵点I 是两角∠ABC 、∠ACB 平分线的交点,
∴()180BIC IBC ICB ∠=︒-∠+∠
()11802
ABC ACB =-∠+∠︒ ()11801802
A =-︒︒-∠ 1901152
BAC =+∠=︒; 故答案为:115.
(2)当∠ACB 等于(180-2x )°时,CE ∥AB .理由如下:
∵CE ∥AB ,
∴∠ACE=∠A=x °,
∵∠ACE=∠A=x °,CE 是∠ACG 的角平分线,
∴∠ACG=2∠ACE=2x °,
∴∠ABC=∠ACG-∠BAC=2x °-x °=x °,
∴∠ACB=180°-∠BAC-∠ABC=(180-2x )°;
(3)由题意知:△BDE 是直角三角形∠D+∠E=90°
若∠D=3∠E 时∠BEC=22.5°,
∵90BEC BDC ∠=︒-∠
190902BAC ⎛⎫=︒-︒-∠ ⎪⎝⎭ 12
BAC =∠, ∴45BAC ∠=︒.
【点睛】
本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.。