法拉第电磁感应定律习题一轮复习附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

法拉第电磁感应定律习题一轮复习附答案
一、高中物理解题方法:法拉第电磁感应定律
1.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。

线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:
(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v
Q R
=(3)43cd Blv U =
【解析】 【详解】
(1)线框离开磁场的过程中,则有:
2E B lv = E I R =
q It =
l t v
=
联立可得:2
2Bl q R
=
(2)线框中的产生的热量:
2Q I Rt
=
解得:234B l v
Q R
=
(3) cd 间的电压为:
23
cd U I
R = 解得:43
cd Blv
U =
2.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值
为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=
1
8
(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.
(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.
(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.
【答案】(1)11.5U B d (2)2
221934-mU mgL B d
;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】
(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:
1 1.52U
E U R U R
=+
⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:
111E B dv =
计算得出:111.5U
v B d
=
. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:
12
222B dv R U R R
⋅=+ 计算得出:213U
v B d
=
;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722
mg L mg L W mv mv μ︒︒⨯-⨯-=
-安 根据功能关系可得产生的总的焦耳热 :
=Q W 总安
根据焦耳定律可得定值电阻产生的焦耳热为:
122R
Q Q R R
=
+总 联立以上各式得出:
2
12211934mU Q mgL B d
=-
(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:
221sin 37cos3702B d v
mg mg R
μ︒

--=
计算得出:22
1mgR
v B d =
对cd 棒分析因为:
2sin372cos370mg mg μ︒︒-⋅>
故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:
1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫
-+⨯⨯⨯= ⎪⎝⎭
将22
1mgR
v B d =
代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为
11.5U
B d
; (2)定值电阻上产生的热量为2
2211934mU mgL B d
-; (3)2B 的大小为132B ,方向沿导轨平面向上.
3.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接
触,当两棒的速度稳定时,两棒距离x =
,两棒速度稳定之后,再经过一段时
间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:
(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?
(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =2
rh
x ∆= (3) 12Q mgr =
【解析】 【分析】 【详解】
(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:
2012
mgr mv =
解得a 棒沿圆弧轨道最低点M 时的速度02v gr =
从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:
012mv mv =
解得两棒以相同的速度做匀速运动的速度0
122gr v v =
=
(2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:
2222A B L x
I ILBt BL Rit R
∆Φ===
由动量定理:
21A I mv mv --=
解得22gr
v =
由平抛运动规律得,两棒落到地面后的距离(122h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳
热:220111
(2)22
Q mv m v =
- 解得:1
2
Q mgr =
4.如图所示足够长的光滑平行金属导轨MN 、PQ 组成的平面与水平面成37°放置,导轨宽度L=1m ,一匀强磁场垂直导轨平面向下,导轨上端M 与P 之间连接阻值R=0.3Ω的电阻,质量为m=0.4kg 、电阻r=0.1Ω的金属棒ab 始终紧贴在导轨上.现使金属导轨ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图像中的OA 段为曲线,AB 段为直线,导轨电阻不计.g=10m/s 2,忽略ab 棒在运动过程中对原磁场的影响.求:
(1)磁感应强度B 的大小;
(2)金属棒ab 在开始运动的2.0s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的2.0s 内,电阻R 产生的焦耳热. 【答案】(1)0.4B T = (2)6q C = (3) 5.4R Q J = 【解析】
(1)导体棒在沿斜面方向的重力分力与安培力平衡: 得sin mg BIL θ=
导体棒切割磁感线产生的电动势为:
E BLv =
由闭合电路欧姆定律知:
E
I R r
=
+ 3.66/0.6
x v m s t =
== 联立解得:0.4B T = (2)6()()()
E BsL
q It t t C R r t R r R r R r ∆Φ∆Φ==
====+∆+++ (3)由功能关系得:2
1sin 2
mgx mv Q θ=
+ 5.4R Q
Q R J R r
=
=+
综上所述本题答案是:(1)0.4T (2)6C (3)5.4J
点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.
5.如图所示,足够长的固定平行粗糙金属双轨MN 、PQ 相距d =0.5m ,导轨平面与水平面夹角α=30°,处于方向垂直导轨平面向上、磁感应强度大小B =0.5T 的匀强磁场中。

长也为d 的金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接触良好,棒的质量m =0.1kg ,电阻R =0.1Ω,与导轨之间的动摩擦因数3
6
μ=
,导轨上端连接电路如图所示。

已知电阻R 1与灯泡电阻R 2的阻值均为0.2Ω,导轨电阻不计,取重力加速度大小g =10 m/s 2。

(1)求棒由静止刚释放瞬间下滑的加速度大小a ;
(2)假若棒由静止释放并向下加速运动一段距离后,灯L 的发光亮度稳定,求此时灯L 的实际功率P 和棒的速率v 。

【答案】(1)a =2.5 m/s 2 (2) v =0.8m/s
【解析】(1)棒由静止刚释放的瞬间速度为零,不受安培力作用 根据牛顿第二定律有mg sin α-μmg cos α=ma 代入数据得a =2.5m/s 2
(2)由“灯L 的发光亮度稳定”知棒做匀速运动,受力平衡 有mg sin α-μmg cos α=BId 代入数据得棒中的电流I =1A
由于R 1=R 2,所以此时通过小灯泡的电流21
0.5A 2
I I =
= 2
220.05W P I R ==
此时感应电动势1212R R E Bdv I R R R ⎛⎫
==+ ⎪+⎝

得v =0.8 m/s
【点睛】本题考查导体棒切割磁感线的过程中的最大值问题,综合了共点力的平衡、牛顿第二定律的应用、闭合电路的电路知识、电磁感应知识等知识点的内容,要注意正确理清题目设置的情景,注意电磁感应的过程中的能量转化的关系与转化的方向。

6.如图所示,导体棒ab 质量m 1=0.1kg ,,电阻10.3R =Ω,长度L=0.4m ,横放在U 型金属框架上。

框架质量m 2=0.2kg ,,放在绝缘水平面上,与水平面间的动摩擦因数为0.2,MM'、NN'相互平行,相距0.4m ,电阻不计且足够长。

连接两导轨的金属杆MN 电阻
20.1R =Ω。

整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T 。

垂直于ab 施加
F=2N 的水平恒力,ab 从静止开始无摩擦地运动,始终与MM'、NN'保持良好接触。

当ab 运动到某处时,框架开始运动。

设框架与水平面间最大静摩擦力等于滑动摩擦力,
210/g m s =。

(1)求框架开始运动时ab 速度的大小;
(2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量量0.1Q J =,求该过程ab 位移x 的大小;
(3)从ab 开始运动到框架开始运动,共经历多少时间。

【答案】(1)6/m s (2)1.1m (3)0.355s
【解析】(1)由题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力为:
12)N f F m m g μμ==+(
ab 中的感应电动势为: E Blv =,MN 中电流为: 12
E
I R R =
+
MN 受到的安培力为: F IlB =安,框架开始运动时,有: F f =安 由上述各式代入数据,解得: 6/v m s =;
(2)导体棒ab 与MN 中感应电流时刻相等,由焦耳定律2Q I Rt =得知, Q R ∝ 则闭合回路中产生的总热量: 12
2
R R Q Q R +=总 由能量守恒定律,得: 211
2
Fx m v Q =+总 代入数据解得: 1.1x m =
(3)ab 加速过程中,有: 22112B l v
F m a R R -=+
取极短时间间隔t ∆, 22112B l v
F t t m a t R R ∆-∆=∆+
即: 22
112
B l F t x m v R R ∆-∆=∆+
对整过程求和可得: 22
1120
B l Ft x m v R R -=-+() 解得: ()22
112m v B l t x F R R F
=++
代入数据解得: 0.355t s =
点睛:ab向右做切割磁感线运动,产生感应电流,电流流过MN,MN受到向右的安培力,当安培力等于最大静摩擦力时,框架开始运动,根据安培力、欧姆定律和平衡条件等知识,求出速度,依据能量守恒求解位移,对加速过程由动量定理列式,可得出合外力的冲量与动量变化之间的关系;本题是电磁感应中的力学问题,考查电磁感应、焦耳定律、能量守恒定律定律等知识综合应用和分析能力,要注意正确选择物理规律列式求解。

7.53.如图所示,竖直平面内有一半径为r、内阻为R1,粗细均匀的光滑半圆形金属环,在M、N处于相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R.在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B.现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,且平行轨道中够长.已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2.
(1)求导体棒ab从A下落r/2时的加速度大小.
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2.
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式.
【答案】(1) (2)
【解析】试题分析:(1)以导体棒为研究对象,棒在磁场I中切割磁感线,棒中产生感应电动势,导体棒ab从A下落r/2时,导体棒在重力与安培力作用下做加速运动,由牛顿第二定律,得
式中由各式可得到
(2)当导体棒ab通过磁场II时,若安培力恰好等于重力,棒中电流大小始终不变,即
式中
解得
导体棒从MN到CD做加速度为g的匀加速直线运动,
有得
此时导体棒重力的功率为
根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即
所以,
(3)设导体棒ab进入磁场II后经过时间t的速度大小为,
此时安培力大小为
由于导体棒ab做匀加速直线运动,
有根据牛顿第二定律,有
即:
由以上各式解得
考点:电磁感应,牛顿第二定律,匀加速直线运动。

【名师点睛】本题考查了关于电磁感应的复杂问题,对于这类问题一定要做好电流、安培力、运动情况、功能关系这四个方面的问题分析;也就是说认真分析物理过程,搞清各个力之间的关系,根据牛顿定律列方程;分析各种能量之间的转化关系,根据能量守恒定律列出方程;力的观点和能量的观点是解答此类问题的两大方向.
视频
8.如图所示,一无限长的光滑金属平行导轨置于匀强磁场B中,磁场方向垂直导轨平面,导轨平面竖直且与地面绝缘,导轨上M、N间接一电阻R,P、Q端接一对沿水平方向的平行金属板,导体棒ab置于导轨上,其电阻为3R,导轨电阻不计,棒长为L,平行金属板间距为d.今导体棒通过定滑轮在一物块拉动下开始运动,稳定后棒的速度为v,不计一切摩擦阻力.此时有一带电量为q的液滴恰能在两板间做半径为r的匀速圆周运动,且速率也为v.求:
(1)速度v 的大小; (2)物块的质量m .
【答案】(1)2
gdr
L
,(222B l dLr
R g
【解析】 【详解】
(1)设平行金属板间电压为U .液滴在平行金属板间做匀速圆周运动,重力与电场力必定平衡,则有:
U
q
mg d
= 由2
v qvB m r
=
得mv r qB
=
联立解得gdrB
U v
=
则棒产生的感应电动势为: ·(3)4U gdrB B R R R v
=+= 由E BLv =棒, 得 4gdr
v vL
=
棒 (2)棒中电流为:U gdrB I R vR
=
= ab 棒匀速运动,外力与安培力平衡,则有 2
gdrLB F BIL vR ==
而外力等于物块的重力,即为 2
gdrLB mg vR
=
解得2
drLB m vR
=
9.如图所示,一个单匝矩形线圈水平放在桌面上,在线圈中心上方有一竖直的条形磁体,此时线圈内的磁通量为0.05Wb.在0.5s 的时间内,将该条形磁体从图示位置竖放到线圈内
的桌面上,此时线圈内的磁通量为0.10Wb ,试求此过程:
(1)线圈内磁通量的变化量;
(2)线圈中产生的感应电动势大小。

【答案】(1)0.05Wb (2)0.1V
【解析】
【详解】
(1)磁通量的变化为:
△Φ=Φ′-Φ=0.10-0.05=0.05Wb ;
(2)由法拉第电磁感应定律可得感应电动势为: 0.0510.1V 0.5
E n t ∆Φ==⨯=
10.如图甲所示的螺线管,匝数n =1500匝,横截面积S =20cm 2,方向向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化。


(1)2s 内穿过线圈的磁通量的变化量是多少?
(2)磁通量的变化率多大?
(3)线圈中感应电动势大小为多少?
【答案】(1)8×10-3Wb (2)4×10-3
Wb/s (3)6.0V
【解析】
【详解】
(1)磁通量的变化量是由磁感应强度的变化引起的,
则11B S Φ=,22B S Φ=,21∆Φ=Φ-Φ。

43(62)2010Wb 810Wb BS --∆Φ∆=-⨯⨯=⨯=
(2)磁通量的变化率为:
3
3810Wb/s 410Wb/s 2
t --∆Φ⨯==⨯∆ (3)根据法拉第电磁感应定律得感应电动势的大小:
31500410V 6.0V E n t
-==⨯⨯=∆Φ∆ 答:(1)2s 内穿过线圈的磁通量的变化量8×
10-3Wb (2)磁通量的变化率为4×
10-3Wb/s (3)线圈中感应电动势大小为6.0V。

相关文档
最新文档