八年级数学上册 轴对称填空选择单元测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册轴对称填空选择单元测试卷(含答案解析)
一、八年级数学全等三角形填空题(难)
1.如图,已知点I是△ABC的角平分线的交点.若AB+BI=AC,设∠BAC=α,则∠AIB=______(用含α的式子表示)
【答案】120
6
α
︒-
【解析】
【分析】
在AC上截取AD=AB,易证△ABI≌△ADI,所以BI=DI,由AB+BI=AC,可得DI=DC,
设∠DCI=β,则∠ADI=∠ABI=2β,然后用三角形内角和可推出β与α的关系,进而求得∠AIB.
【详解】
解:如图所示,在AC上截取AD=AB,连接DI,
点I是△ABC的角平分线的交点
所以有∠BAI=∠DAI,∠ABI=∠CBI,∠ACI=∠BCI,
在△ABI和△ADI中,
AB=AD
BAI=DAI
AI=AI
⎧
⎪
∠∠
⎨
⎪
⎩
∴△ABI≌△ADI(SAS)
∴DI=BI
又∵AB+BI=AC,AB+DC=AC
∴DI=DC
∴∠DCI=∠DIC
设∠DCI=∠DIC=β
则∠ABI=∠ADI=2∠DCI=2β
在△ABC 中, ∠BAC+2∠ABI+2∠DCI=180°,即42180ββ︒++=a ,
∴180=3066
β︒︒=--a a 在△ABI 中,180︒∠=-∠-∠AIB BAI ABI
121802
αβ︒=-- 1=23160028αα︒︒⎛⎫--- ⎪⎝
⎭ =1206α
︒-
【点睛】
本题考查全等三角形的判定和性质,以及三角形角度计算,利用截长补短构造全等三角形是解题的关键.
2.如图,10AB =,45A B ∠=∠=︒,32AC BD ==.点E ,F 为线段AB 上两点.现存在以下条件:①4CE DF ==;②AF BE =;③CEB DFA ∠=∠;
④5CE DF ==.请在以上条件中选择一个条件,使得ACE △一定..
和BDF 全等,则这个条件可以为________.(请写出所有正确的答案)
【答案】②③④
【解析】
【分析】
根据三角形全等的判定定理逐个判断即可.
【详解】
①如图1,过点C 作CM AB ⊥,过点D 作DN AB ⊥
32,45A B AC BD ∠=∠===︒
3CM AM DN BN ∴====
4CE DF ==
由勾股定理得:22227,7ME CE CM NF DF DN =-==-=37,37AE AM ME BF BN NF ∴=-=-=+=+AE BF ≠
此时,ACE ∆和BDF ∆不全等
②AF BE
=
AF EF BE EF
∴+=+,即AE BF
=
又452
,3
AC D
A B B
∠=∠=︒==
则由SAS定理可得,ACE BDF
∆≅∆
③
CEB DFA
CEB C A
DFA D B
∠=∠
⎧
⎪
∠=∠+∠
⎨
⎪∠=∠+∠
⎩
C A
D B
∴∠+∠=∠+∠
又A B
∠=∠
C D
∴∠=∠
32
AC BD
==
则由ASA定理可得,ACE BDF
∆≅∆
④由(1)知,当5
CE DF
==时,2222
4,4
ME CE CM NF DF DN
=-==-=
此时,
,
,
CE CA DF BD
ME AM NF BN
>>
⎧
⎨
>>
⎩
则点E在点M的右侧,点F在点N的左侧
又10
AM BN ME AM BN NF AB
++=++==
则点E与点N重合,点F与点M重合,如图2所示
因此必有347
AE BF
==+=
由SSS定理可得,ACE BDF
∆≅∆
故答案为:②③④.
【点睛】
本题考查了三角形全等的判定定理,熟记各判定定理是解题关键.
3.如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,
当点P运动_______秒时,△BCA与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)
【答案】0;4;8;12
【解析】
【分析】
此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP 或AC=BN进行计算即可.
【详解】
解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,
∵AC=2,
∴BP=2,
∴CP=6−2=4,
∴点P的运动时间为4÷1=4(秒);
②当P在线段BC上,AC=BN时,△ACB≌△NBP,
这时BC=PN=6,CP=0,因此时间为0秒;
③当P在BQ上,AC=BP时,△ACB≌△PBN,
∵AC=2,
∴BP=2,
∴CP=2+6=8,
∴点P的运动时间为8÷1=8(秒);
④当P在BQ上,AC=NB时,△ACB≌△NBP,
∵BC=6,
∴BP=6,
∴CP=6+6=12,
点P的运动时间为12÷1=12(秒),
故答案为:0或4或8或12.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
4.如图,C为线段AE上一动点(不与A. E重合),在AE同侧分别作等边△ABC和等边
△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:
①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)
【答案】①②③⑤
【解析】
【分析】
①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.
③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;
②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.
④没有条件证出BO=OE,得出④错误;
⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.
【详解】
解:∵△ABC和△CDE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
AC BC
ACD BCE
CD CE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ACD≌△BCE(SAS),
∴AD=BE,结论①正确.
∵△ACD≌△BCE,
∴∠CAD=∠CBE,
又∵∠ACB=∠DCE=60°,
∴∠BCD=180°-60°-60°=60°,
∴∠ACP=∠BCQ=60°,
在△ACP和△BCQ中,
ACP BCQ
CAP CBQ AC BC
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ACP≌△BCQ(AAS),
∴CP=CQ,结论③正确;
又∵∠PCQ=60°,
∴△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,结论②正确.
∵△ACD≌△BCE,
∴∠ADC=∠AEO,
∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,
∴结论⑤正确.没有条件证出BO=OE,④错误;
综上,可得正确的结论有4个:①②③⑤.
故答案是:①②③⑤.
【点睛】
此题是三角形综合题目,考查了全等三角形的判定和性质的应用、等边三角形的性质和应用、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.
5.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限内有一点P(a,2a-3),若使△ACP是以AC斜边的等腰直角三角形,则点P的坐标为
_______________.
【答案】(10
3
,
11
3
).
【解析】
【详解】
解:∵点P的坐标为(a,2a-3),
∴点P在直线y=2x-3上,
如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,
则∠E=∠ADP=90°,
∵△ACP 是以AC 为斜边的等腰直角三角形,
∴AP=PC ,∠APD=∠PCE ,
∴△APD ≌△PCE ,
∴PE=AD ,
又∵OD=2a-3,AO=3,
∴AD=2a-6=PE ,
∵DE=OB=4,DP=a ,
又∵DP+PE=DE ,
∴a+(2a-6)=4, 解得a=
103 ∴2a-3=
113, ∴P (103,113
); 当点P 在AC 下方时,过P 作y 轴的垂线,垂足为D ,交BC 于E ,
a=2,
此时,CE=2,BE=2,
即BC=2+2=4>AO ,不合题意;
综上所述,点P 的坐标为P (
103,113) 故答案为P (103,113
).
6.如图,已知ABC △是等边三角形,点D 在边BC 上,以AD 为边向左作等边ADE ,连结BE ,作BF AE ∥交AC 于点F ,若2AF =,4CF =,则
AE =________.
【答案】27 【解析】
【分析】
证明△BAE ≌△CAD 得到ABE BAC ∠=∠,从而证得BE
AF ,再得到AEBF 是平行四边
形,可得AE=BF ,在三角形BCF 中求出BF 即可.
【详解】
作FH BC ⊥于H ,
∵ABC 是等边三角形,2AF =,4CF =
∴BC=AC=6 在HCF 中, CF=4, 060BCF ∠=
030,2CFD CH ∴∠==
2224212FH ∴=-=
22241227BF BH FH ∴++=
∵ABC 是等边三角形,ADE 是等边三角形
∴AC=AB ,AD=AE ,060CAB DAE ∠=∠= CAD BAE ∴∠=∠
CAD BAE ∴∆≅∆
060ABE ACD ∴∠=∠=
ABE BAC ∴∠=∠
BE AF ∴
∵BF AE
∴AEBF 是平行四边形
∴AE=BF= 27【点睛】
本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
7.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________
【答案】23或43.
【解析】
【分析】
过点D 作DF 1∥BE ,求出四边形BEDF 1是菱形,根据菱形的对边相等可得BE=DF 1,然后根据等底等高的三角形的面积相等可知点F 1为所求的点,过点D 作DF 2⊥BD ,求出
∠F 1DF 2=60°,从而得到△DF 1F 2是等边三角形,然后求出DF 1=DF 2,再求出∠CDF 1=∠CDF 2,利用“边角边”证明△CDF 1和△CDF 2全等,根据全等三角形的面积相等可得点F 2也是所求的点,然后在等腰△BDE 中求出BE 的长,即可得解.
【详解】
如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,
所以BE=DF 1,且BE 、DF 1上的高相等,
此时S △DCF1=S △BDE ;
过点D 作DF 2⊥BD ,
∵∠ABC=60°,F 1D ∥BE ,
∴∠F 2F 1D=∠ABC=60°,
∵BF 1=DF 1,∠F 1BD=
12
∠ABC=30°,∠F 2DB=90°, ∴∠F 1DF 2=∠ABC=60°,
∴△DF 1F 2是等边三角形,
∴DF 1=DF 2,
∵BD=CD ,∠ABC=60°,点D 是角平分线上一点, ∴∠DBC=∠
DCB=12
×60°=30°, ∴∠CDF 1=180°-∠BCD=180°-30°=150°,
∠CDF 2=360°-150°-60°=150°,
∴∠CDF 1=∠CDF 2,
∵在△CDF 1和△CDF 2中,
1212DF DF CDF CDF CD CD ⎧⎪∠∠⎨⎪⎩
=== , ∴△CDF 1≌△CDF 2(SAS ),
∴点F 2也是所求的点,
∵∠ABC=60°,点D 是角平分线上一点,DE ∥AB ,
∴∠DBC=∠BDE=∠ABD=
12×60°=30°, 又∵BD=6,
∴BE=12×6÷cos30°=3÷32
=23, ∴BF 1=BF 2=BF 1+F 1F 2=23+23=43,
故BF 的长为23或43.
故答案为:23或43.
【点睛】
本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F 有两个.
8.如图,OP 平分∠AOB,∠AOP=15°,PC∥OA,PC =4,点D 是射线OA 上的一个动点,则PD 的最小值为_____.
【答案】2
【解析】
【分析】
作PE⊥OA 于E ,根据角平分线的性质可得PE =PD ,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE ,即可求得PD .
【详解】
当PD⊥OA时,PD有最小值,作PE⊥OA于E,
∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,
∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,
∴∠AOB=30°,
∵PC∥OB,
∴∠ACP=∠AOB=30°,
∴在Rt△PCE中,PE=1
2
PC=
1
2
×4=2(在直角三角形中,30°角所对的直角边等于斜边
的一半),
∴PD=PE=2,
故答案是:2.
【点睛】
此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.
9.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,则∠D=__________.
【答案】30°
【解析】
试题解析:(1)连接CE,
∵△ABC是等边三角形,
∴AC=BC,
在△BCE与△ACE中,
{
AC BC
AE BE
CE CE
=
=
=
∴△BCE≌△ACE(SSS)
∴∠BCE=∠ACE=30°
∵BE平分∠DBC,
∴∠DBE=∠CBE,
在△BDE与△BCE中,
{
BD BC
DBE CBE
BE BE
∠∠
=
=
=
∴△BDE≌△BCE(SAS),
∴∠BDE=∠BCE=30°.
10.如图,四边形ABCD是正方形,直线l1、l2、l3分别过A、B、C三点,l1∥l2∥l3,若l1与l2之间的距离为4,l2与l3之间的距离为5,则正方形的边长为______.
【答案】41
【解析】
解:过B作直线BF⊥l3于F,交直线l1于点
E.∵l1∥l3,∴∠AEB=∠BFC=90°,∴BE=4,BF=5.∵ABCD是正方形,
∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°.∵∠ABE+∠BAE=90°,∴∠BAE=∠CBF.在
△ABE和△BCF中,
∵∠BAE=∠CBF,∠AEB=∠BFC,AB=BC,∴△ABE≌△BCF,∴AE=BF=5.在Rt△AEB中,AB=22
AE BE=22
54
+=41.故答案为41.
点睛:本题考查了全等三角形的性质和判定,正方形的性质的应用,解答本题的关键是能正确作出辅助线,并进一步求出△ABE≌△BCF,难度适中.
二、八年级数学全等三角形选择题(难)
11.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:
①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )
A .5
B .4
C .3
D .2
【答案】B
【解析】
【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.
【详解】
①正确:∵ABC △是等边三角形,
∴60BAC ︒∠=,∴CA AB =.
∵ABD △是等腰直角三角形,∴DA AB =.
又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,
∴DA CA =,∴()
1180150152ADC ACD ︒︒︒∠=∠=
-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°
∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG ∵∠AGD=90°-∠ADG=90°-15°=75°
∠AFG≠∠AGD
∴AF≠AG
③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,
∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.
又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,
在DAF △和ABH 中
()
AFD BHA
DAF ABH AAS
DA AB
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴DAF
△≌ABH.∴DF AH
=.
⑤正确:∵150
CAD︒
∠=,AH CD
⊥,
∴75
DAH︒
∠=,又∵45
DAF︒
∠=,∴754530
EAH︒︒︒
∠=-=
又∵AE DB
⊥,∴2
AH EH
=,又∵=
AH DF,∴2
DF EH
=
【点睛】
本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.
12.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()
A.五对B.四对C.三对D.二对
【答案】A
【解析】
如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;
④△ABO≌△ACO;⑤△ADO≌△AEO;
∴图中共有5对全等三角形.故选A.
13.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,
BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;
④∠BCE+∠BCD=180°.其中正确的是()
A.①②③B.①②④C.①③④D.②③④
【答案】C
【解析】
已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,
BD=BC ,BE=BA ,可得∠BCD =∠BDC =∠BAE =∠BEA , 再由
∠BCE =∠BDA ,∠BCE =∠BCD +∠DCE ,∠BDA =∠DAE +∠BEA ,∠BCD =∠BEA ,可得∠DCE =∠DAE ,所以AE =EC ;再由△ABD ≌△EBC ,可得AD=EC ,所以AD=AE=EC ,即③正确;由△ABD ≌△EBC ,可得∠BCE =∠BDA ,所以∠BCE +∠BCD =∠BDA +∠BDC =180°,④正确.故选C.
点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.
14.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结
论:①45ADC ∠=︒;②12
BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
试题解析:如图,
过E 作EQ ⊥AB 于Q ,
∵∠ACB=90°,AE 平分∠CAB ,
∴CE=EQ ,
∵∠ACB=90°,AC=BC ,
∴∠CBA=∠CAB=45°,
∵EQ ⊥AB ,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ ,
∴∠QEB=45°=∠CBA ,
∴EQ=BQ ,
∴AB=AQ+BQ=AC+CE ,
∴③正确;
作∠ACN=∠BCD ,交AD 于N ,
∵∠CAD=
12
∠CAB=22.5°=∠BAD , ∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD ,
∴∠DBC=∠CAD ,
在△ACN 和△BCD 中, DBC CAD AC BC
ACN DCB ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ACN ≌△BCD ,
∴CN=CD ,AN=BD ,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN ,
∴AN=CN ,
∴∠NCE=∠AEC=67.5°,
∴CN=NE ,
∴CD=AN=EN=
12AE , ∵AN=BD ,
∴BD=12
AE , ∴①正确,②正确;
过D 作DH ⊥AB 于H ,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠FCD=∠DBA ,
∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,
∴DF=DH ,
在△DCF 和△DBH 中
90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩
====,
∴△DCF ≌△
DBH ,
∴BH=CF ,
由勾股定理得:AF=AH ,
∴
2,2AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF
+++++++====, ∴AC+AB=2AF ,
AC+AB=2AC+2CF ,
AB-AC=2CF ,
∵AC=CB ,
∴AB-CB=2CF , ∴④正确.
故选D
15.如图,点P 、Q 分别是边长为6cm 的等边ABC △边AB 、BC 上的动点,点P 从顶点 A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s ,下面四个结论:
①BQ AM =②ABQ △≌CAP △③CMQ ∠的度数不变,始终等于60︒④当第 2秒或第4秒时,PBQ △为直角三角形,正确的有( )个.
A .1
B .2
C .3
D .4
【答案】C
【解析】 ∵点P 、Q 速度相同,
∴AP BQ =.
在ACP △和ABQ △中,
60AP BQ CAP ABQ AC BA =⎧⎪∠==︒⎨⎪=⎩
, ∴ACP △≌BAQ △,故②正确.
则AQC CPB ∠=∠.
即B BAQ BAQ AMP ∠+∠=∠+∠.
∴60AMP B ∠=∠=︒.
则60CMQ AMP ∠=∠=︒,故③正确. ∵APM ∠不一定等于60︒.
∴AP AM ≠.
∴BQ AM ≠.故①错误.
设时间为t ,则AP=BQ=t ,PB=4-t
①当∠PQB =90°时,
∵∠B =60°,
∴PB =2BQ ,得6-t =2t ,t =2 ;
②当∠BPQ =90°时,
∵∠B =60°,
∴BQ =2BP ,得t =2(6-t ),t =4;
∴当第2秒或第4秒时,△PBQ 为直角三角形.
∴④正确.
故选C.
点睛:本题考查了等边三角形的性质、全等三角形的判定与性质、直角三角形的性质等知识点,综合性强,难度较大.
16.在边长为1的正方形网格中标有A 、B 、C 、D 、E 、F 六个格点,根据图中标示的各点位置,与△ABC 全等的是( )
A .△ACF
B .△ACE
C .△ABD
D .△CEF 【答案】C
【解析】
【分析】 利用勾股定理先分别求得△ABC 的各边长以及各选项中三角形的各边长,再根据三角形全等的判定方法进行判定即可得.
【详解】
在△ABC 中,2231+10,2211+2,2,
A 、在△ACF 中,2221+5105252,则△ACF 与△ABC 不全等,故不符合题意;
B 、在△ACE 中,10,2,2,则△ACE 与△AB
C 不全等,故不符合题意; C 、在△AB
D 中,AB=AB ,2=BC ,2=AC ,则由SSS 可证明△AC
E 与△ABC 全
等,故符合题意;
D、在△CEF中,CF=3≠10,3≠2,3≠22,则△CEF与△ABC不全等,故不符合题意,故选C.
【点睛】
本题考查了勾股定理以及全等三角形的判定,熟练掌握勾股定理以及全等三角形的判定方法是解题的关键.
17.如图,在等腰直角△ABC中,∠ACB=90°,点O为斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:
①图中全等三角形有三对;②△ABC的面积等于四边形CDOE面积的倍;
③DE2+2CD•CE=2OA2;④AD2+BE2=2OP•OC.正确的有()个.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
结论(1)正确.因为图中全等的三角形有3对;
结论(2)错误.由全等三角形的性质可以判断;
结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.
结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.【详解】
结论(1)正确,理由如下:
图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.
由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.
∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.
在△AOD与△COE中,
∴△AOD≌△COE(ASA),
同理可证:△COD≌△BOE.
结论(2)错误.理由如下:
∵△AOD≌△COE,
∴S△AOD=S△COE,
∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC
即△ABC的面积等于四边形CDOE的面积的2倍.
结论(3)正确,理由如下:
∵△AOD≌△COE,
∴CE=AD,
∴CD+CE=CD+AD=AC=OA,
∴(CD+CE)2=CD2+CE2+2CD•CE=DE2+2CD•CE=2OA2;
结论(4)正确,理由如下:
∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.
在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.
∵△AOD≌△COE,∴OD=OE,
又∵OD⊥OE,∴△DOE为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
∴,
即OP•OC=OE2.
∴DE2=2OE2=2OP•OC,
∴AD2+BE2=2OP•OC.
综上所述,正确的结论有3个,
故选C.
【点睛】
本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.
18.如图,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H;如果∠ABC=60º,则下列结论:①∠ABP=30º;②∠APC=60º;③PB=2PH;④∠APH=∠BPC;其中正确的结论个数是()
A .1
B .2
C .3
D .4
【答案】B
【解析】
【分析】 作PM ⊥BC 于M ,PN ⊥BA 于N .根据角平分线的性质定理可证得PN=PM ,再根据角平分线的判定定理可得PB 平分∠ABC ,即可判定①;证明△PAN ≌△PAH ,△PCM ≌△PCH ,根据全等三角形的性质可得∠APN=∠APH ,∠CPM=∠CPH ,由此即可判定②;在Rt △PBN 中,∠PBN=30°,根据30°角直角三角形的性质即可判定③;由∠BPN=∠CPA=60°即可判定④.
【详解】
如图,作PM ⊥BC 于M ,PN ⊥BA 于N .
∵∠PAH=∠PAN ,PN ⊥AD ,PH ⊥AC ,
∴PN=PH ,同理PM=PH ,
∴PN=PM ,
∴PB 平分∠ABC ,
∴∠ABP=
12
∠ABC=30°,故①正确, ∵在Rt △PAH 和Rt △PAN 中, PA PA PN PH =⎧⎨=⎩
, ∴△PAN ≌△PAH ,同理可证,△PCM ≌△PCH ,
∴∠APN=∠APH ,∠CPM=∠CPH ,
∵∠MPN=180°-∠ABC=120°,
∴∠APC=
12
∠MPN=60°,故②正确, 在Rt △PBN 中,∵∠PBN=30°, ∴PB=2PN=2PH ,故③正确,
∵∠BPN=∠CPA=60°,
∴∠CPB=∠APN=∠APH,故④正确.
综上,正确的结论为①②③④.
故选D.
【点睛】
本题考查了角平分线的性质定理及判定定理、全等三角形的判定与性质及30°角直角三角形的性质,熟练运用相关知识是解决问题的关键.
19.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;
④△BRP≌△CSP,其中结论正确的的序号为()
A.①②③B.①②④C.②③④D.①②③④
【答案】A
【解析】
【分析】
根据角平分线性质即可推出②,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;没有条件证明
△BRP≌△QSP.
【详解】
试题分析:
解:∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,
∵AP=AP,PR=PS,
∴AR=AS,∴②正确;
∵AQ=QP,
∴∠QAP=∠QPA,
∵∠QAP=∠BAP,
∴∠QPA=∠BAP,
∴QP∥AR,∴③正确;
没有条件可证明
△BRP≌△QSP,∴④错误;
连接RS,
∵PR=PS,
∵PR⊥AB,PS⊥AC,
∴点P在∠BAC的角平分线上,
∴PA平分∠BAC,∴①正确.
故答案为①②③.
故选A.
点睛:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.
20.在△ABC与△DEF中,下列各组条件,不能判定这两个三角形全等的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DE,∠B=∠E,∠A=∠F
C.AC=DF,BC=DE,∠C=∠D D.AB=EF,∠A=∠E,∠B=∠F
【答案】B
【解析】利用全等三角形的判定定理,分析可得:
A、AB=DE,∠B=∠E,∠C=∠F可利用AAS证明△ABC与△DEF全等;
B、∠A=∠F,∠B=∠E,AC=DE,对应边不对应,不能证明△ABC与△DEF全等;
C、AC=DF,BC=DE,∠C=∠D可利用ASA证明△ABC与△DEF全等;
D、AB=EF,∠A=∠E∠B=∠F可利用SAS证明△ABC与△DEF全等;
故选:D.
点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
21.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()
A.0个B.1个C.2个D.3个
【答案】D
【解析】
分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS
得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.
详解:①∵四边形ABCD和EFGC都为正方形,
∴CB=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,
∴△BCE≌△DCG,
∴BE=DG,
故结论①正确.
②如图所示,设BE交DC于点M,交DG于点O.
由①可知,△BCE≌△DCG,
∴∠CBE=∠CDG,即∠CBM=∠MDO.
又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,
∴∠DOM=∠MCB=90°,
∴BE⊥DG.
故②结论正确.
③如图所示,连接BD、EG,
由②知,BE⊥DG,
则在Rt△ODE中,DE2=OD2+OE2,
在Rt△BOG中,BG2=OG2+OB2,
在Rt△OBD中,BD2=OD2+OB2,
在Rt△OEG中,EG2=OE2+OG2,
∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.
在Rt△BCD中,BD2=BC2+CD2=2a2,
在Rt△CEG中,EG2=CG2+CE2=2b2,
∴BG2+DE2=2a2+2b2.
故③结论正确.
故选:D.
点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.
22.如图,把ΔABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN
上,直线MN∥AB.在ΔABC中,若∠AOB=125°,则∠ACB的度数为()
A.70°B.65°C.60°D.85°
【答案】A
【解析】
【分析】
利用平行线间的距离处处相等,可知点O到BC、AC、AB的距离相等,得出O为三条角平分线的交点,根据三角形内角和定理和角平分线的定义即可得出结论.
【详解】
如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F.
∵MN∥AB,∴OD=OE=OF(平行线间的距离处处相等).
如图2:过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F'.
由题意可知:OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点.
∵∠AOB=125°,∴∠OAB+∠OBA=180°-125°=55°,
∴∠CAB+∠CBA=2×55°=110°,∴∠ACB=180°-110°=70°.
故选A.
【点睛】
本题考查了三角形的内心,平行线间的距离处处相等,角平分线定义,解答本题的关键是判断出OD=OE=OF.
23.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是().
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到
∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证
△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.
【详解】
解:如图,连接AP
∵PR⊥AB,PS⊥AC,PR=PS
∴△APR≌△APS
∴AS=AR,∠RAP=∠PAC
即①正确;
又∵AQ=PQ
∴∠QAP=∠QPA
∴∠QPA=∠BAP
∴OP//AB,即②正确.
在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.
如图,连接PS
∵△APR≌△APS
∴AR=AS,∠RAP=∠PAC
∴AP垂直平分RS,即④正确;
故答案为C.
【点睛】
本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的
判定和性质是解答本题的关键
24.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN 于点C,AD⊥MN于点D,下列结论错误的是( )
A.AD+BC=AB B.与∠CBO互余的角有两个
C.∠AOB=90°D.点O是CD的中点
【答案】B
【解析】
【分析】
根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.
【详解】
∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.
∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;
与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;
∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=1
2
∠EOD,∠BOC=
1
2
∠MOE,
∴∠AOB=1
2
(∠EOD+∠MOE)=
1
2
×180°=90°,故C选项结论正确;
在Rt△AOD和Rt△AOE中,
AO AO
AD AE
=
⎧
⎨
=
⎩
,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理
可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.
故选B.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.
25.如图,点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,BF=CE,添加一个适当的条件后,仍不能使得△ABC≌△DEF()
A.AC=DF B.AC∥DF C.∠A=∠D D.AB=DE
【答案】A
【解析】
【分析】
根据AB∥DE证得∠B=∠E,又已知BF=CE证得BC=EF,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.
【详解】
∵AB∥DE,
∴∠B=∠E,
∵BF=CE,
∴BF+FC=CE+FC,
∴BC=EF,
若添加AC=DF,则不能判定△ABC≌△DEF,故选项A符合题意;
若添加AC∥DF,则∠ACB=∠DFE,可以判断△ABC≌△DEF(ASA),故选项B不符合题意;
若添加∠A=∠D,可以判断△ABC≌△DEF(AAS),故选项C不符合题意;
若添加AB=DE,可以判断△ABC≌△DEF(SAS),故选项D不符合题意;
故选:A.
【点睛】
此题考查三角形全等的判定定理,熟练掌握定理,并能通过定理去判断条件是否符合全等是解决此题的关键.
26.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】
【分析】 利用“角边角”证明△APE 和△CPF 全等,根据全等三角形的可得AE=CF ,再根据等腰直角三角形的定义得到△EFP 是等腰直角三角形,根据全等三角形的面积相等可得△APE 的面积等于△CPF 的面积相等,然后求出四边形AEPF 的面积等于△ABC 的面积的一半.
【详解】
∵AB=AC ,∠BAC=90°,点P 是BC 的中点,
∴AP ⊥BC ,AP=PC ,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF 是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF ,
在△APE 和△CPF 中,
45APE CPF AP PC
EAP C ∠∠⎧⎪⎨⎪∠∠︒⎩
====, ∴△APE ≌△CPF (ASA ),
∴AE=CF ,故①②正确;
∵△AEP ≌△CFP ,同理可证△APF ≌△BPE ,
∴△EFP 是等腰直角三角形,故③错误;
∵△APE ≌△CPF ,
∴S △APE =S △CPF ,
∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =
12S △ABC .故④正确, 故选C .
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF ,从而得到△APE 和△CPF 全等是解题的关键,也是本题的突破点.
27.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.
A .1
B .1或3
C .1或7
D .3或7
【答案】C
【解析】
【分析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.
【详解】
解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=16-2t=2,
解得t=7.
所以,当t的值为1或7秒时.△ABP和△DCE全等.
故选C.
【点睛】
本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.
28.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;
④AC=3BF,其中正确的结论共有()
A.4个B.3个C.2个D.1个
【答案】A
【解析】
试题解析:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,
在△CDE与△DBF中,{
C CBF
CD BD
EDC BDF
∠=∠
=
∠=∠
,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正
确;
∵AE=2BF,∴AC=3BF,故④正确.
故选A.
考点:1.全等三角形的判定与性质;2.角平分线的性质;3.相似三角形的判定与性质.
29.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()
①△AFB≌△AEC;②B F=CE;③∠BFC=∠EAF;④AB=BC
.
A.①②③B.①②④C.①②D.①②③④
【答案】A
【解析】
【分析】
根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】
如图,
∵∠EAF=∠BAC,
∴∠BAF=∠CAE;
在△AFB与△AEC中,
AF AE
BAF CAE
AB AC
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△AFB≌△AEC(SAS),
∴BF=CE;∠ABF=∠ACE,
∴A、F、B、C四点共圆,
∴∠BFC=∠BAC=∠EAF;
故①、②、③正确,④错误.
故选A..
【点睛】
本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.
30.如图,D为BAC
∠的外角平分线上一点并且满足BD CD
=,DBC DCB
∠=∠,过D作DE AC
⊥于E,DF AB
⊥交BA的延长线于F,则下列结论:
①CDE △≌BDF ;②CE AB AE =+;③BDC BAC ∠=∠;④DAF CBD ∠=∠. 其中正确的结论有( ).
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】 BD=CD,AD 是角平分线,所以FD=DE,∠DFB =∠DEC =90°,所以CDE ≌BDF ;①正确.由全等得BF=CE ,因为FA=AE,FB=AB+FA ,所以CE=AB+AE , ②正确.由全等知, ∠DCE=∠FBD,所以∠BAC=∠BDC. ③正确. ∴DBF DCE ∠=∠,
∴A 、B 、C 、D 四点共圆,
∴DAF CBD ∠=∠,④正确.
故选D.。