2020-2021初中数学数据的收集与整理真题汇编及答案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021初中数学数据的收集与整理真题汇编及答案(1)
一、选择题
1.下列调查中,最适宜采用普查方式的是()
A.对全国初中学生视力状况的调査
B.对“十一国庆”期间全国居民旅游出行方式的调查
C.旅客上飞机前的安全检查
D.了解某种品牌手机电池的使用寿命
【答案】C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A.对全国初中学生视力状况的调査,范围广,适合抽样调查,故A错误;
B.对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B错误;C.旅客上飞机前的安全检查,适合普查,故C正确;
D.了解某种品牌手机电池的使用寿命,适合抽样调查,故D错误.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校共2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()
A.被调查的学生有60人
B.被调查的学生中,步行的有27人
C.估计全校骑车上学的学生有1152人
D.扇形图中,乘车部分所对应的圆心角为54°
【答案】C
【解析】
试题分析:根据汽车的人数和百分比可得:被调查的学生数为:21÷35%=60人,故A正确;步行的人数为60×(1-35%-15%-5%)=27人,故B正确;全校骑车上学的学生数为:
2560×35%=896人,故C错误;乘车部分所对应的圆心角为360°×15%=54°,故D正确,则本题选C.
3.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()
A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体
C.500名八年级学生是总体的一个样本D.样本容量是500
【答案】D
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;
B. 每一名八年级学生的视力情况是个体,故B错误;
C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;
D. 样本容量是500,故D正确;
故选:D.
【点睛】
此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.
4.从一堆苹果中任取了20个,称得它们的质量(单位:克),其数据分布表如下.
则这堆苹果中,质量不小于120克的苹果数约占苹果总数的()
A.80% B.70% C.40% D.35%
【答案】B
【解析】
【分析】
在样品中,质量不小于120克的苹果20个中有14个,通过计算在样本中所占比例来估计总体.
【详解】
103114
123103120
++=+++++ =70%,
所以在整体中质量不小于120克的苹果数约占苹果总数的70%. 故选:B . 【点睛】
此题考查通过样本去估计总体,解题关键在于只需将样本“成比例地放大”为总体即可.
5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的1
4
,且数据有160个,则中间一组的频数为( ) A .0.2 B .0.25 C .32 D .40
【答案】C 【解析】 【分析】
由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解:设中间一个小长方形的面积为x ,其他10个小长方形的面积之和为y ,则有x+y =1,x =1
4
y ,解得x =0.2∴中间一组的频数=160×0.2=32. 【详解】
解:设中间一个小长方形的面积为x ,其他10个小长方形的面积之和为y , 则有x+y =1, x =14
y , 解得x =0.2
∴中间一组的频数=160×0.2=32. 故选C. 【点睛】
本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系
6.七年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是( )
A.45°B.60°C.72°D.120°【答案】C
【解析】
试题解析:由题意可得,
第一小组对应的圆心角度数是:
12
122013510
++++
×360°=72°,
故选C.
7.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:
根据统计图提供的信息,下列推断不合理的是()
A.2017年至2019年,年接待旅游量逐年增加
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
C.2019年的月接待旅游量的平均值超过300万人次
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳
【答案】D
【解析】
【分析】
根据折线图,逐项判断即可得答案.
【详解】
由折线图可知:
A.2017年至2019年,年接待旅游量逐年增加,正确,故该选项不符合题意,
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,正确,故该选项不符合题意,
C.2019年的月接待旅游量的平均值超过300万人次,正确,故该选项不符合题意,
D.2017年至2019年,各年1月至6月的折线相对于7月至12月比较平缓,即波动性更小,变化比较平稳,故该选项错误,符合题意,
故选:D.
【点睛】
本题考查频率分布折线图,正确理解图中信息是解题关键.
8.为了解中学生获取信息的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是()
A.抽样调查,24 B.普查,24 C.抽样调查,26 D.普查,26
【答案】A
【解析】
分析:因为普查是针对调查对象的全体,抽查是针对调查对象中抽取部分样本进行调查,求频数可根据频数=样本容量-已知频数之和.
详解:因为为了解中学生获取信息的主要渠道, 先随机抽取50名中学生进行该问卷调查,
所以属于抽样调查,
因为样本容量是50,
所以图中a=50-6-10-6-4=24,
故选A.
点睛:本题主要考查抽查的概念和频数的求解方法,解决本题的关键是要熟练掌握抽查的概念和频数的求解方法.
9.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()
A.0.1 B.0.2
C.0.3 D.0.4
【答案】B
【解析】
∵在5.5~6.5组别的频数是8,总数是40,
∴=0.2.
故选B.
10.随机抽取某校八年级60名女生测试一分钟仰卧数,依据数据绘制成如图所示的数分布直方图,则这60名女生仰卧起坐达到优良(次数不低于41次)频率为().
A.0.65 B.0.35 C.0.25 D.0.1
【答案】B
【解析】
【分析】
根据1分钟仰卧起坐的次数在40.5~60.5的频数除以总数60,得出结果即可.
【详解】
这60名女生仰卧起坐达到优良(次数不低于41次)的频率为156
0.35 60
+
=.
故选:B.
【点睛】
本题考查了频数分布直方图,学会观看频数分布直方图,频率等于频数除以总数.
11.在下列调查方式中,较为合适的是( )
A.为了解石家庄市中小学生的视力情况,采用普查的方式
B.为了解正定县中小学生的课外阅读习惯情况,采用普查的方式
C.为了解某校七年级(2)班学生期末考试数学成绩情况,采用抽样调查方式
D.为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式
【答案】D
【解析】
【分析】
根据普查和抽样调查适用的条件逐一判断即可.
【详解】
A.为了解石家庄市中小学生的视力情况,适合采用抽样调查的方式,故该选项不符合题意,
B.为了解正定县中小学生的课外阅读习惯情况,采用抽样调查的方式,故该选项不符合题意,
C.为了解某校七年级(2)班学生期末考试数学成绩情况,采用普查方式,故该选项不符合
题意,
D.为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式,故该选项符合题意,
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
12.下列调查中,最适合采用全面调查(普查)方式的是()
A.对重庆市初中学生每天阅读时间的调查
B.对端午节期间市场上粽子质量情况的调查
C.对某批次手机的防水功能的调查
D.对某校九年级3班学生肺活量情况的调查
【答案】D
【解析】
【分析】
【详解】
A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;
B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;
C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;
D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;
故选D.
13.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图:
根据该折线图,下列结论错误的是()
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月份
D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
【答案】A
【解析】
【分析】
根据2014年1月至2016年12月期间月接待游客量的数据,逐一分析给定四个结论的正误,可得答案.
【详解】
月接待游客量逐月有增有减,故A错误;
年接待游客量逐年增加,故B正确;
各年的月接待游客量高峰期大致在7,8月,故C正确;
各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D 正确;
故选A.
【点睛】
本题主要考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
14.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是()
A.男女生5月份的平均成绩一样
B.4月到6月,女生平均成绩一直在进步
C.4月到5月,女生平均成绩的增长率约为8.5%
D.5月到6月女生平均成绩比4月到5月的平均成绩增长快
【答案】C
【解析】
【分析】
男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.
【详解】
解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;
B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;
C.4月到5月,女生平均成绩的增长率为8.98.8
100% 1.14%
8.8
-
⨯≈,此选项错误,符合
题意;
D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.
【点睛】
本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.
15.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A型的有200人,那么该校血型为AB型的人数为()
A.100B.50C.20D.8
【答案】B
【解析】
【分析】
根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB 型血所对应的百分比即可求解.
【详解】
∵该校血型为A型的有200人,占总人数为40%,
∴被调查的总人数为200÷40%=500(人),
又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,
∴该校血型为AB型的人数为500×10%=50(人),
故选:B.
【点睛】
本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
16.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()
A.10组 B.9组 C.8组 D.7组
【答案】A
【解析】
【分析】
分析题意求组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.
【详解】
解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,
故可以分成10组.
故选:A.
【点睛】
本题考查的是组数的计算,属于基础题,掌握组数的计算方法是解答此题的关键,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.
17.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下统计图:
建设前经济收入构成比例统计图建设后经济收入构成比例统计图
则下面结论中不正确的是( )
A.新农村建设后,养殖收入增加了一倍
B.新农村建设后,种植收入减少
C.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
D.新农村建设后,其他收入增加了一倍以上
【答案】B
【解析】
【分析】
设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.
【详解】
设建设前经济收入为a,建设后经济收入为2a.
A、建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故A项正确;
B、种植收入37%×2a-60%a=14%a>0,故建设后,种植收入增加,故B项错误;
C、建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,
经济收入为2a,故(58%×2a)÷2a=58%>50%,故C项正确;
D、建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,
故D 项正确,
故选:B .
【点睛】
本题主要考查扇形统计图的应用,命题的真假的判断,考查发现问题解决问题的能力.
18.嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率( )
A .11
B .12
C .0.11
D .0.12
【答案】C
【解析】
【分析】
首先根据总数与表格的数据求出第⑤组的频数,由此进一步求出相应的频率即可.
【详解】
由题意得:
第⑤组的频数为:()1003815221814911-++++++=,
∴其频率为:111000.11÷=,
故选:C.
【点睛】
本题主要考查了频率的计算,熟练掌握相关概念是解题关键.
19.为了解某校八年级720名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是( )
A .这80名学生是总体的一个样本
B .80名学生是样本容量
C .每名学生的体重是个体
D .720名学生是总体
【答案】C
【解析】
【分析】
根据总体、样本、样本容量及个体的定义逐一判断即可得答案.
【详解】
A.80名学生的体重情况是样本,故该选项错误,
B.样本容量是80,故该选项错误,
C.每个学生的体重情况是个体,故该选项正确,
D.720名学生的体重情况是总体,故该选项错误.
故选:C .
【点睛】
本题考查总体、个体、样本、样本容量的定义,根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的、具有某种共同性质构成的整体,我们把所要考察的对象的全体或整体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;某一个样本中的个体的数量就是样本容量;熟练掌握相关定义是解题关键.
20.要反映台州市某一周每天的最高气温的变化趋势,宜采用()
A.条形统计图B.扇形统计图
C.折线统计图D.频数分布统计图
【答案】C
【解析】
根据题意,得
要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.
故选C.。

相关文档
最新文档