沉井施工方案06289
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形排泥阀门井、圆形牵引井沉井工程
专
项
施
工
方
案
第一章施工方案编制说明
1.1编制依据
(1)高富路污水主干管工程设计施工图
(2)规范及标准:
1)《给水排水管道工程施工及验收规范》(GB50268-2008)
2)《建筑基坑支护技术规程》(JGJ120-2012)
3)《建筑地基基础设计规范》(GB50007-2011)
4)《混凝土结构设计规范》(GB5001-2010)
5)《钢筋混凝土工程施工及验收规范》(GB50204—2002)
6)《既有建筑地基基础加固技术规范》(JGJ123-2012)
7)《危险房屋鉴定标准》(JGJ125-2004)
8)《民用建筑可靠性鉴定标准》(GB50292—1999)
9)《建筑抗震加固技术规程》(JGJ116—2009)
10)《建筑工程施工质量验收统一标准》
(8)参考书:
《地下工程设计施工手册》,夏明耀曾进伦编著
1。
2编制说明
在深刻理解本工程的概况、特点、难点的基础上,按照“技术领先、设计优化、施工科学、组织合理、措施得力"的指导思想,通过技术经济比较,确定安全可靠的技术方案,配置足够合适的人员和机具,以确保工程的质量和工期;确保地面所有设施的绝对安全和正常使用;业主及设计施工文件的所有要求.遵循的具体原则如下:
(1)由于工程管网线路主要经过杏坛高富路边上的河涌、涵洞等需要保持现状的已有建筑物,所以在开工前,要组织有关专家及专业技术人员对沿管线30M以内的房屋进行可靠性鉴定,在施工过程中如果这些房屋出现裂缝,沉降,要及时组织专家鉴定并采取补强加固措施。
(2)根据本工程图纸所示排泥阀门井(A型、B型、C型-1、D型、E型,共19座)以及φ3000牵引沉井(共1座) 采用沉井施工,具体详见工程概况,本方案为矩形排泥阀门井沉井,以YW—166#井为代表,沉井深度为9.0米,下沉至设计深度为9。
9米;圆形沉井以φ3000牵引沉井为代表,沉井深度为8.0米,下沉至设计深度为9.0米;沉井所处位置地质条件及地下水位相对比较复杂,施工工艺要求较高,沉箱受力较大,施工难度大。
(3)确保工期原则:根据业主对本工程的工期要求和施工场地移交的时间,合理、详细地编排施工进度计划.科学组织施工,大量采用交叉作业以充分利用空间和时间,使各分项分部工程施工衔接有序;配置足够的资源并充分利用,以确保总体施工计划的实现。
从而确保总工期。
(4)技术可靠原则:根据本工程特点,我司组织了顶管精英力量在以往顶管施工经验的基础上,吸收国内外顶管工程设计、施工和管理的成熟技术,根据有关规程规范确定施工技术方案并确保施工技术方案可靠性高、操作性强。
(5)文明施工及安全原则:在施工管理方面和技术方案等必须与环保安全要求相结合,遵守《安全法》和省市有关规定,确保施工过程绝对安全,不对自然环境和人文环境产生破坏。
(6)经济合理原则:针对本工程的实际情况,本着可靠、经济、合理的原则比较选择施工方案,充分利用资源配备,施工过程实施动态管理,在确保安全、质量、工期等目标的前提下,使工程达到经济合理的目标。
第二章工程概况
2.1工程概况
本工程为麦村污水提升泵站出水压力管道,西起麦村泵站,东至高赞污水提升泵站,
全长约7.0公里,敷设在已建高富路南侧坡脚处的管网工程,本工程在设计上采用沉井施工方式的矩形井有19个、圆形井1个,沉井施工编号及其它详情如下表:矩形井以YW-166#井为代表:YW-166#井井深9.0米,下沉至设计深度为9。
9米, 矩形井外型尺寸是4。
0米×4。
7米,壁厚为650mm、500mm;圆形井以YW-80#井为代表:YW-80#井深8.0米,下沉至设计深度为9.0米,外型尺寸是φ3700mm,壁厚为500mm、350mm;两个井均采用沉井施工方案,均为钢筋砼结构。
两井地质条件及地下水位相对比较复杂,施工工艺要求较高,沉箱受力较大,施工难度大。
沉井材料:1、混凝土C30砼,抗渗等级S6;
2、钢筋采用Φ—HPB235 fy=210N/mm2
Φ-HPB335 fy=300N/mm2
第三章工程地质与水文地质
(一)沉井地形地貌,地质构造与区域稳定性
位于顺德区杏坛镇高富路南侧坡脚处,周围地势较为开阔低平.地貌属三角洲冲积平原,珠江支流一级阶地,地势开阔低平,水道纵横交错,地质构造稳定。
(二)地层岩性
根据钻探资料,沉井场区的岩土层按其成因分类主要有:
①—1砂性素填土:灰黄色,松散,局部稍密,稍湿~饱和,为中砂。
层厚1.4米。
②—1淤泥质土:深灰色,流塑,含较多粉砂,局部夹薄层粉砂。
顶板埋深1。
4米,层厚2。
5米。
②-2粉砂:灰色,饱和,松散,含较多淤泥,局部夹薄层淤泥。
顶板埋深3.9米,层厚8.2米。
(三)地下水
l、地下水类型
如前所述,场区地势开阔低平,地貌属三角洲冲积平原,是地下水和地表水的迳流排泄区.地下水丰富。
场区地下水类型主要有上层滞水和孔隙潜水。
(1)上层滞水:第四系人工填土层结构疏松,含上层滞水,但含水量有限,地下水动态受季节降雨影响。
丰要接受大气降水、场区河涌水的补给。
(2)孔隙潜水:第四系全新统海陆交互相沉积之淤泥质细砂层和上更新统冲积细砂层透水性良好,含孔隙水。
总体属承压水,局部为潜水。
地下水主要接受降雨或地表水的渗入补给和上游地下水的侧向补给。
根据钻孔终孔24小时后观测,场地地下水混合稳定水位埋深一般为1.50~1.70m.场地水网
发育,纵横交错,地下水补给来源充足。
2、地下水腐蚀性
场地的地下水对混凝土结构一般不具腐蚀性;在长期浸水环境下对混凝土结构中钢筋一般不具腐蚀性,在干湿交替环境下对混凝土结构中钢筋具弱腐蚀性:场地的地卜水对对钢结构具有弱腐蚀性.
水对建筑材料的腐蚀防护,应按照《工业建筑防腐蚀设计规范》(GB50046)的规定进行.
(四)岩土物理力学性质
为查明场地各岩土层的物理力学性质,本勘察阶段取原状土样75组作常规土工试验,取岩样2组作天然抗压强度试验.此外,在上层中进行了176次标准贯入试验,在十层中还进行轻型动力触探试验。
通过以上手段,己查明了场地各岩土层的物理力学性质,根据规范的要求,将各岩土层的物理力学参数进行分层统计.
(五)岩土工程评价
1、场地稳定性评价
(1)场区距区域深大断裂较远,本次勘察未发现有明显构造现象,场区基本上处于构造稳定状态,适宜拟建污水主干管工程建设。
(2)、据《广东省地震烈度区划图》,场区地震基本烈度为VII度.据《建筑抗震设计规范》GB50011-2010,场区的地震设防烈度为7度,设计基本地震加速度值为0.10g。
2、地震效应
(1)场区河网密布,地貌属三角洲冲积平原,上覆土层软弱,软土较发育,是建筑抗震不利地段。
(2)场地土的类型为软弱土~中软土,大部分地段等效剪切波速V se<140m/s,覆盖土厚度一般大于15m,小于80m,据《建筑抗震设计规范》(GB50011—2010),场地总体为Ⅲ类建筑场地。
第四章施工方案及技术措施
§1总体流程和施工技术方案概述
1.1施工总体流程
本工程施工总体流程如图2—1【总体施工流程图】所示。
图2-1 总体施工流程图
1。
2施工技术方案概述
沉井施工:排泥阀门井及牵引中间井位置按设计施工图纸进行现场测量放线定位,排泥阀门井及牵引中间井结构采用混凝土C30的沉井结构,分两节下沉,两节需不排水下沉,水下混凝土封底;外加300mm 素混凝土进行地基加固、穿墙止水。
现场监测:针对本工程的情况,现场施工监测主要包括以下内容,施工前进行排泥阀门井及牵引中间井施工范围内的地下管线勘测,排泥阀门井及牵引中间井围护结构变形监测、下沉过程中的井体倾斜和井壁开裂观测。
防水措施:由于本工程为水下作业需要重点考虑以下防水环节,“出洞穿墙防水”、“进洞穿墙防水”,以上任何环节防水处理不好都将导致严重的后果。
本工程主要的防水措施为:出洞进洞穿墙防水方面主要采取预留洞口采用钢板封堵,并用粘土和砖密实填筑,使其满足防水的要求;
§2、施工要求
2.1井底标高根据排水设计管底标高确定,括号内数字根据井标高相应调整。
2。
2井壁开孔需在钢筋混凝土底板施工完后用机械切割。
2。
3混凝土采用C30抗渗砼,本工程工作井采用沉井结构,采用不排水下沉,水下混凝土封底。
2。
4施工顺序为:垫层→支模→绑扎钢筋→现浇沉井下半部→下沉→接沉井上半部→下沉到位→水下混凝土封堵→浇底板。
2.5下沉至设计标高前应做好支护,避免单体倾斜倾倒。
2.6施工前应详细对照工艺图纸各预埋套管及埋件,勿遗漏。
2.7井壁上应做好相应防护措施,防止雨水流进及人员掉落。
2.8施工单位必须核准工作井是否满足施工机具的要求。
2.9各节砼强度要≥95%方可下沉。
§3排泥阀门井及牵引中间井施工方法和技术措施
3。
1施工准备
1、熟悉和掌握沉井所在的地质情况,特别对地下水的标高必须清楚,沉井附近有无地下管线及对周围的建筑物等是否需要保护。
2、设置测量控制网、轴线控制点、沉降观测点。
3。
2排泥阀门井及牵引中间井施工方法
排泥阀门井为长方形4×4.7m,井内净空为3m×3。
7m,井壁第一节高4.5米,壁厚为2.75米高650mm厚、1.75米高500mm厚;第二节高4.5米,壁厚为500厚,每一节设有止水带(1。
5mm厚钢板)。
牵引中间井为圆形φ3700mm,井内净空为φ3000mm,井壁第一节高4.5米,壁厚为2。
75米高500mm厚、1。
75米高350mm厚;第二节高3.5米,壁厚为350厚,每一节设有止水带(1。
5mm厚钢板)。
本工程采用不排水沉井施工法,具体作法如下。
1、排泥阀门井具体布置如施工图(平、剖面图)
2、排泥阀门井具体布置如施工图(平、剖面图)
2、沉井具体施工流程
本工程沉井分三个阶段,即沉井的制作,下沉与封底,这三个阶段又由若干工序组成,详见下列框图:
机械设备,水泥搅拌桩采用GZB—600深层搅拌机进行施工,配备响应的导向架、灰浆泵、拌浆机、电子监测表等。
深层搅拌桩施工流程如图2-4【深层搅拌桩施工流程图】所示。
2)当搅拌桩机正常后,启动电机下沉,可用4档下沉,在下沉过程中,应边送浆边钻进.
3)浆液制备:即按设计确定的浆液配方投料,拌制水泥浆。
在送浆前必须不停搅拌,防止浆液离析。
4)提升注浆搅拌:待搅拌机下沉到设计深度后,边搅拌边提升,提升速度用2档。
5)重复下沉:当搅拌机提升到设计桩顶标高时,重复下沉搅拌,使浆液与土体搅拌均匀,下沉速度为4档。
6)重复提升:待下沉到设计深度时,边喷浆,边搅拌,边提升。
直至提升到地面,控制速度为2档。
7)冲洗系统:冲洗灰浆泵和输浆管系统,直至基本干净,并清除钻头上粘附的软土,检查钻头,如有磨损及时更换.
8)移到新的桩位,重复1-8步骤
搅拌桩施工技术参数及操作要求
施工技术参数如表2—1【搅拌桩施工技术参数表】所示
表2-1 搅拌桩施工技术参数表
搅拌桩施工操作要求
a、桩机就位由专人操作,专人负责电缆管线,专人校正钻头对位,钻头就位采用目测(横竖向观测)。
b、钻进前先打开浆泵送清水,检查各种管路及钻头喷口通畅才可钻进.
c、钻进至桩底喷浆应不少于30秒,使浆液能完全到达桩端。
d、整个制桩过程就保障边喷浆,边搅拌,边提升的连续作业,注意观察有关仪表和管道的脉动情况,以判断管道是否通畅,喷浆是否正常。
e、成桩后应立即检查送浆量,成桩水泥浆总量不得少于设计要求。
f、水泥浆拌制要严格计量,严格控制水灰比,浆液应过筛,以防块体,纸屑等进入管道造成堵塞。
g、水泥不得使用过期、受潮、变质的水泥。
h、施工记录班报表应由桩机施工人员现场及时记录,不允许事后作“回记录"。
i、在施工中出现的问题,当班人员应及时向工地指挥部门值班人员汇报,以便及时妥善处理解决.
j、工程施工除按上述要求外,尚应遵守《软土地基深层搅拌加固技术规程》(YBJ225—91)等有关规程规定.
第六章沉井施工方法
(一)根据现场地质报告,自然地面有1.5米厚素填土,施工时挖去约1.5米该层素填土(具体根据设计图纸的起沉标高而定),用粗砂回填700厚找平及固定垫木。
此砂垫层起找平和固定垫土作用,为构造层。
砂垫层以下为淤泥质土层,层厚2.5米。
承载能力特征值f ak=100Kpa,修正值为120Kp a。
(二)排泥阀门井第一节沉井荷载为(0.65×2。
75+0.5×1.75)×25=66.6KN/m,本工程垫木采用200×300×2000枋木(横纹局部挤压强度为3000Kpa).
沉井传来每根垫木荷载为66。
6KN/m×0。
5m=33.3KN(0.5M间距),每根垫木的荷载,垫木宽0.3米,长度为2米.即承垫木基底压力为P k=(Fk+Gk)/A=55.5KN/m2,小于砂垫层承载能力120Kpa,安全.
(三)牵引中间井第一节沉井荷载为(0。
5×2。
75+0.35×1.75)×25=49.7KN/m,本工程垫木采用200×300×2000枋木(横纹局部挤压强度为3000Kpa)。
沉井传来每根垫木荷载为49。
7KN/m×0.5m=24。
8KN(0.5M间距),每根垫木的荷载,垫木宽0。
3米,长度为2米.即承垫木基底压力为P k=(Fk+Gk)/A=41。
4KN/m2,小于砂垫层承载能力120Kpa,安全。
(四)承垫木的铺设
1、承垫木的间距为0。
5m、规格为200×300×2000mm。
铺设承垫木时应用水平线找平,使承垫木顶面在同一水平面上.平面位置应均匀对称,每根垫木的长度中线与沉井脚踏面中线应垂直。
定位垫木的留置根据设计图纸位于沉井两长边上,详见下图。
2、承垫木的数量计算:
矩形沉井各边垫木数量计算:长边2.7米/0.5=5。
4根,取6根,短边2米/0。
5=4根,取4根. 圆形沉井各边垫木数量计算:圆形周长10。
5米/0.5=21根,取21根.
3、承垫木编号
承垫木设置好后还必须进行编号,承垫木编号根据现场实际情况进行现场编号,以便后面的抽除垫木的需要。
沉井短边处由于垫木伸出1米会影响放置,故将短边垫木分组排列放置,来保证垫木的数量及其承载力的要求。
4、承垫木的抽除顺序:矩形沉井应先分组抽除两短边墙下的垫木,再分组抽除长边下的垫木,最后抽除定位垫木,且每抽一组应对沉井四角标高观测一次。
圆形沉井应对称分组抽取墙下的垫木,最后抽除定位垫木,且每抽一组应对沉井底部标高观测一次。
抽除垫木的方法:先将垫木下的砂在一侧挖去,然后用人工或机具将下落的垫木抽去,每抽出一根后,立即用砂或细石子将空隙填实,并在其内外侧筑成小堤,为确保填实质量,宜喷水分层夯实。
回填越密实,以后的承垫木越易抽除,沉井下沉量也不大,垫木也不会被压断(最后的几组木).在抽除过程中,指挥很重要,一旦沉井有倾斜,就要发令暂停某边的垫木抽除工作,以控制沉井在抽除垫木过程中的均匀下沉。
(三)沉井制作
1、钢筋工程:
a.钢筋配料必须按图纸型号、规格、尺寸进行制作,制作完成后还须编号堆放好。
b.钢筋绑扎及安装是钢筋工程施工的关键工序.绑扎前必须熟悉图纸,核对成品钢
筋的型号、规格、尺寸和数量是否与配料单、配料牌相符,研究钢筋安装及有关工种的配合顺序。
根据现场定位轴线位置,定出钢筋网间距,用粉笔做好记号,便于后面钢筋排放。
为了确保钢筋骨架的外形尺寸及稳定性,首先应设立钢排架,内外两层受力筋之间用拉筋点焊。
在绑扎过程中,钢筋网片外围两行钢筋,每个交叉点必须扎牢,其余可相隔交错呈八字形绑扎,但必须保证钢筋不致产生位移。
根据图纸要求,受力筋接头位置都应错开,其连接区段的长度为45d,且不小于250mm,凡接头中点位于该连接区段长度内属同一区段,其接头百分比面积只允许控制在25%以内.
本工程钢筋接头采用两种形式:一种为单面电弧焊,搭接头长度为10d。
第二种为冷驳,搭接长度为45d.钢筋在完成后应根据图纸要求设保护层,采用4cm厚砂浆垫块,每平方米一块,挂在钢筋网外即可.
2、模板工程
由于井壁高4。
5米,长4.7米,为保证模板侧向稳定,防止弯曲变形,设两道Φ48×3。
5钢管斜支撑,间距1。
2米,支撑底部为压实粘土并铺300×300×20厚实木板防止沉降和滑移.
沉井模板为一般的现浇砼模板,本工程拟采用18 mm 多层胶合板为面板,竖向内木楞采用80×100木枋,其间距为200mm,横向外楞采用两根2×φ48×3.5mm 的钢管,其间距为400mm ,且四角处应相互扣死,钢管采用M14对拉螺栓拉紧,间距400mm 。
井壁模板剖面图
0。
35M ,圆形井第一节井壁高4.5米,勒200×300×2000;根据地质报告,20mm 厚1:2水泥砂浆找平层500800宽的多层胶合板带. 矩形井:q=0。
35×:4。
5×0.6+0。
3×4。
5×2=3。
65 KN/m
圆形井:q=0.25×:4。
5×0.6+0。
3×4。
5×2=3.38 KN/m
垫木间距为500,垫木宽300,净间距500—300=200 矩形井计算间图
q =3650 KN/m 1 2 3 4 5
模板抗弯验算
σ= M / W < f
其中,σ-模板的应力计算值(N/mm 2);
M —模板的最大弯距(N.mm );
W —抵抗矩,W=1000×18。
00×18.0/6=54000.0mm 3;
· [f ]一面板的抗压强度设计值13(N/mm 2);
M=0.1 qL 2=3650×0。
1×2002=1。
46N/mm 2〈[f ]
圆形井计算间图
200 200 2Ф48×3.5
Ф48×3.5
上下两排距离1200内外对称 斜撑
Ф48×3.5
上下两排距离
1200内外对称 18mm 模板 80×100木枋@200
2Ф48×3.5
钢管@400
q =3380 KN/m
1 2 3 4 5
模板抗弯验算
σ= M / W 〈f
其中,σ—模板的应力计算值(N/mm2);
M —模板的最大弯距(N.mm);
W —抵抗矩,W=1000×18。
00×18。
0/6=54000.0mm3;
·[f]一面板的抗压强度设计值13(N/mm2);
M=0.1 qL2=3380×0.1×2002=1。
35N/mm2〈[f]
2.2侧模板强度验算
1.梁侧模板荷载
强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力.
按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值:
F = 0.22γc tβ1β2√v F =γH
其中γ--混凝土的重力密度,取24.000kN/m3;
t ——新浇混凝土的初凝时间,可按现场实际值取,输入0时系统按200/(T+15)计算,得4。
4h;
T-—混凝土的入模温度,取30。
000℃;
V一混凝土的浇筑速度,取4。
000m/h;
H-—混凝土侧压力计算位置处至新浇混凝土顶面总高度,取2。
850m;
β1—-外加剂影响修正系数,取1.200;
β2—混凝土坍落度影响修正系数,取1.000。
根据以上两个公式计算的新浇筑混凝土对模板的最大侧压力F;
分别为58。
1kN/m2、68.4 kN/m2,取较小值58.1kN/m2作为本工程计算荷载。
2、梁侧模板面板的计算
面板为受弯结构,需要验算其抗弯强度和刚度。
强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力。
计算的原则是按照龙骨的间距和模板面的大小,按支撑在内楞上的三跨连续梁计算。
q
200 200 200
面板计算简图
3.抗弯验算
σ= M / W < f
其中,σ—面板的弯曲应力计算值(N/mm2);
M —面板的最大弯距(N。
mm);
W —面板的净截面抵抗矩,W=1000×18。
00×18.0/6=54000.0mm3;
·[f]一面板的抗压强度设计值13(N/mm2);
取倾倒砼产生的水平荷载为4KN/m2
按以下公式计算面板跨中弯矩:
M=0.1qL2
其中,q —作用在模板上的侧压力,包括:
新浇混凝土侧压力设计值:q1=1。
2×58。
1×1.00=-69.72kN/m;
倾倒混凝土侧压力设计值:q2=1。
4×4。
0×1。
00=5.6kN/m;
q = q l+q2=69.72+5。
60=75.32kN/m;
计算跨度(内楞间距):l =200。
00mm;
面板的最大弯距M=0。
1×75.32×0.22=0.3×KN·m;
经计算得到,面板的受弯应力计算值:σ=0。
3×106/54000。
0mm3=5。
6N/mm2;
面板的抗弯强度设计值:[f]=13.000N/mm2;
面板的受弯应力计算值σ=5。
6N/mm2小于面板的抗弯强度设计值[f]=13.000N/mm2,满足要求!
4、挠度计算:根据《建筑施工计算手册》最大挠度计算公式如下:
w = K w qL4 /100EI
E-—面板材质的弹性模量:E=0.6×104N/mm2;
I—-面板的截面惯性矩:I=100。
00×1.80×1.80×1.80/12=48.6cm4;
新浇混凝土最大侧压力值:58.1KN/m
则:w=0.667×58.1×2004/ (100×0.6×104×48。
6×104)
=0.2mm w=0.2 〈[w]=L/250=1。
2mm 符合要求
2。
3、梁侧模板主次楞的计算
1.次楞(竖向内木楞)计算
次楞(木或钢)直接承受模板传递的荷载,按照均布荷载作用下的二跨连续梁计算.本工程中,次楞采用木枋,截面宽度80mm,截面高度100mm,截面惯性矩I和截面抵抗矩W分别为:
W=1。
33×10 5;I=6.67×106mm3
次楞计算简图
(1).次楞强度验算
强度验算计算公式如下:
σ= M / W < f
其中,σ—-次楞弯曲应力计算值(N/mm2);
M一次楞的最大弯距(N.mm);
W一次楞的净截面抵抗矩;
[f]—次楞的强度设计值13(N/mm2)。
按以下公式计算次楞跨中弯矩:
M=0.125q L2
新浇混凝土侧压力设计值:q1=1。
2×58.1×0.20=—13.94kN/m;
倾倒混凝土侧压力设计值:q2=1。
4×4.0×0.20=1。
12kN/m;
其中,作用在次楞的组合荷载,q=15。
06 kN/m;
次楞计算跨度(外楞间距):l=500mm;
次楞的最大弯距:M=0.125×15.06×0。
52=0。
47KN·m;
经计算得到,次楞的最大受弯应力计算值
σ=0。
47×106/1。
33×105=3.5N/mm2;
次楞的抗弯强度设计值:[f]=13。
000N/mm2;
次楞最大受弯应力计算值σ=3.5N/mm2次楞的抗弯强度设计值小于
[f]=13.000N/mm2,满足要求!
(2)、次楞挠度计算:
w = K w qL4 /100EI
其中,作用在次楞的组合荷载,q=11.62 kN/m;
次楞计算跨度(外楞间距):l=500mm;
W=0。
521* 11。
62*6004/(100×0.9×104×6.67×106)
=0。
06mm < [w] =L/250=2.0mm
符合要求
(3)、次楞抗剪计算:
V=0。
625qL=0。
625×15.06×0.5=4.7lKN
τ= 3V/2bh
受剪应力计算值τ=4。
71×103×3/(2×80×100)=0。
88N/mm2;
Q235钢抗剪强度设计值[τ]=1.6N/mm2;
木枋的受剪应力计算值0.88N/mm2小于钢管抗剪强度设计值l.6N/mm2,符合要求
2.主楞(横向外楞)计算
主楞采用2根Φ4 8×3。
5MM双钢管,承受次楞传递的荷载,按照集中荷载作用下的三跨连续梁计算。
W=5.08×103 mm2;
400 400 400
主楞计算简图
(1)主楞抗弯强度验算
σ= M / W < f
其中σ-—主楞受弯应力计算值(N/mm2)
M—主楞的最大弯距(N.mm);
W—主楞的净截面抵抗矩;
[f]—主楞的强度设计值205(N/mm2)。
最大弯矩M按下式计算:
M=0。
175PL
其中,作用在主楞的最大荷载:P=(1.2×58。
1+1。
4×4)×2.85×0.2=42.93kN;
主楞计算跨度(对拉螺栓水平间距):l =200mm;
主楞的最大弯距:M=0。
175×42.93×0.2=1.5kN.m
经计算得到,主楞的受弯应力计算值:
σ=0。
5×1。
5×106/5.08×103=147。
6N/mm2;
主楞的抗弯强度设计值:[f]=205。
000N/mm2;
主楞的受弯应力计算值σ=160.0N/mm2小于主楞的抗弯强度设计值
[f]=205.000N/mm2,满足要求!
(2)挠度计算:
P=33.1KN
w = 1.497PL3/100E1
=0。
5*1。
497*33.1*103*2003/100*2.06*105*12.19*104
=0。
079mm
W=0.079 < [w]=L/250=2。
0mm符合要求。
3.穿梁螺栓的计算
验算公式如下:N〈[N] = f×A
其中N—穿梁螺栓所受的拉力;
A一穿梁螺栓有效面积(mm2);
f —穿梁螺栓的抗拉强度设计值,取170.000 N/mm2;
查表得:
穿梁螺栓的直径:14mm;水平垂直间距均为400,穿梁螺栓有效面积:A=84.3 mm2
穿梁螺栓所受的最大拉力:N=(1.2×58.1+1.4×4)×0.5×0.2=7.53kN。
穿梁螺栓最大容许拉力值:[N]=170×84.3=14.33 kN;
穿梁螺栓所受的最大拉力N=7.53kN小于穿梁螺栓最大容许拉力值[N]=14。
33kN,满足要求!
4、施工平台及施工脚手架
1)施工平台计算:
矩形沉井分二节施工,第一节4.5米高,第二节4.5米。
圆形沉井分二节施工,第一节4。
5米高,第二节3。
5米.
施工平台计算:
采用Φ48钢管支撑架,计算时采用壁厚数据为3。
1(㎜)。
支撑架钢管回转半径r 为15。
91(㎜),支撑架钢管净截面积A为437。
27(㎜2)。
支撑架搭设高度约为6(m),支撑架上部伸出水平横杆的自由长度为0.6(m)。
封口梁下方不铺设脚手架.栏杆、挡脚板自重标准为0.04(KN/M),安全设施荷载(安全网)为0。
005(KN/㎡)。
捞制混凝土时,排栅停止做施工使用.
支撑架架体自重G =1。
2×0.14×6。
05=3.6658(KN)
栏杆与挡脚手板自重NG3=NG31×La×nl÷2=0。
04×1×8÷2=(kN)
吊挂的安全设施荷载计算(安全网)NG4=NG41×La×H=0.005×1×21.82=0。
109(kN)支撑架上部荷载Rdt=10。
4718(kN)
支撑架设计荷载P=G+ NG3+ NG4+Rdt
=3。
6658+0.16+0.109+10。
4718=14。
4066(kN) 根据规范要求钢管立杆计算长度按以下两公式计算所得取数值较大者:
L1=1。
155×1.6×1。
8=3.3264(m)
L2=1。
8+2×0。
6=3(m)
计算长度取值 L=3。
3264(m)
钢管杆的长细比λ=L÷r=1000×3。
3264÷15.91=209。
0453
立杆稳定性系数ф=0.1659
立杆压应力σmax=P÷(ф×A)=1000×14。
4066÷(0.1659×437。
27)=198。
5901(N/㎜2)σmax≤[σ]=205(N/㎜2)满足要求!脚手架为双排支撑
2)脚手架的搭设及拆除工艺
(1)落地式钢管脚手架搭设的工艺流程为:场地平整、夯实→捣砼垫层、验算基础承载力→脚手架定距、定位→纵向扫地杆→立杆→横向扫地杆→小横杆→大横杆(搁栅)→剪刀撑→连墙杆→铺脚手板→扎防护栏杆→扎安全网.
定距定位:根据构造要求在建筑物四角用尺量出内、外立杆离墙距离,并做好标记。
并依据本方案所设的预埋件位置确定立杆位置,同时用钢卷尺分出立杆位置,立杆垫板就应准确放在定位线上。
双排架宜先立里排立杆,后立外排立杆。
每排立杆宜先立两头的,再立中间的一根,相看齐后,立中间部分各立杆。
双排架内、外排两立杆的连线要与墙面垂直。
立杆接长时,宜先立外排,后立内排.
当脚手架基础下有设备基础、管沟时,在脚手架使用过程中应开挖。
开始搭设立杆时,应每隔6跨设置一根抛撑,直至连墙件安装稳定后,方可根据情况拆除。
脚手架必须配合施工进度搭设,一次搭设高度不应超过相邻连墙件以上两步。
当搭至有连墙件的构造点时在搭设完该处的立杆,纵向水平杆,横向水平杆后,应立即设置连墙件.
①脚手架必须设置纵、横向扫地杆.纵向扫地杆应采用直角扣件固定在距底座上皮不大于200mm处的立杆上。
横向扫地杆亦应采用直角扣件固定在紧靠纵向扫地杆下方的立杆上。
当立杆基础不在同一高度上时,必须将高处的纵向扫地杆向低处延长两跨与立杆固定,高低差不应大于1m。
靠边坡上方的立杆轴线到边坡的距离不应小于500mm。
②顶层操作平台及斜道构造措施
(2)脚手架拆除的工艺流程:
拆除程序应遵守由上而下,先搭后拆的原则,即先拆拉杆、脚手板、剪刀撑、斜撑,而后拆小横杆、大横杆、立杆等.(一般的拆除顺序为:安全网→栏杆→脚手板→剪刀撑→小横杆→大横杆→立杆.)
拆除作业必须由上而下逐层进行,严禁上下同时作业。
连墙件必须随脚手架逐层拆除,严禁先将连墙件整层或数层拆除后再拆脚手架,分段。