脉冲积分鉴相(相敏检波)法原理
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
T 2 A sin (ω0t 4
+θ0
)dt
=
−
A ω0
cos (ω0t
+θ0
)
T 2
T 4
=
−A ω0
⎡⎢⎣cos ⎛⎜⎝ω0T
2
+θ0
⎞⎟⎠ − cos ⎛⎜⎝ω0T
4
+θ0
⎞⎟⎠⎤⎥⎦
ω0 =2π
⎯c⎯osα⎯−cos⎯β =−⎯2sin⎯αT +⎯β sin⎯α −⎯β →
2
2
( ) ( ) ( ) Q
=
−
2 AT π
sin
(θ0
)
二、波形图
sin(ω0t+θ0) I:0oCLK Q:90oCLK sin(ω0t+θ0)
I:0oCLK/Q:90oCLK I:0oCLK/Q:90oCLK
+ I(θ0) /Q(θ0)
-
三、仿真结果 Matlab 程序
clear all; close all; %===================== A0=1; f0=100; %100Hz T=1/f0; w0=2*pi*f0; tIP=0:T/1000:T/2; tIN=T/2:T/1000:T; tQP=T/4:T/1000:3*T/4; tQN=[0:T/1000:T/4,3*T/4+T/1000:T/1000:T]; t=0:T/1000:T; vt=A0*sin(w0*t); for k=0:360;
vtQ=vtQP-vtQN; K=k+1; I(K)=sum(vtI) /1000; Q(K)=sum(vtQ) /1000; end %============================== figure(1); kk=(0:360);%*1001/361; h=plot(kk,I,'r'); set(h,'linewidth',3); hold on; h = plot(kk,Q,'black');%r'); set(h,'linewidth',3) A=(I(1).^2+Q(1).^2).^0.5; %vt=A*vt; plot(t*360/T,vt) hold off; grid; axis([0 365 -1.1 1.1]); xlabel('³õÏà(¶È)'); ylabel('¼øÏàµçѹ');
=
−
AT 2π
⎡⎣−2 sin
3π 4 +θ0
sin
π 4
⎤ ⎦
=
2 AT 2π
cos
θ0
+π
4
二、波形图
sin(ω0t+θ0) I:0oCLK I':0oCLK' Q:90oCLK Q':90oCLK'
sin(ω0t+θ0)
I':0oCLK' /Q':90oCLK'
I(θ0) / Q(θ0)
三、仿真结果
脉冲积分鉴相相敏检波法原理峰值检波原理检波器原理功率检波器原理脉冲激光沉积原理脉冲充电器原理脉冲变压器原理脉冲发动机原理脉冲打火原理检波器检波电路
单 π 4 脉冲积分鉴相(相敏检波)法原理一、公式推导:来自∫ I =T 4
0
A sin (ω0t
+θ0 )dt
=
−
A ω0
cos (ω0t
+θ0
)
T 4
0
=
2A ω0
cos
(ω0t
+θ0 )
T T
2
=
2A ω0
⎢⎣⎡cos (ω0T
+θ0 ) − cos ⎜⎝⎛ω0T
2
+θ0
⎟⎠⎞⎥⎦⎤
ω0 =2π
⎯⎯⎯T
⎯,ω0T⎯=2π⎯→
I
=
2A ω0
⎡⎣cos (θ0
)
+
cos (θ0
)⎤⎦
=
2 AT π
cos (θ0
)
∫ ∫ ∫ Q =
3T T
4
A
sin
(ω0t
T 4
=
−
2A ω0
⎡⎢⎣cos ⎛⎜⎝ 3ω0T
4
+θ0
⎞⎟⎠ − cos ⎛⎜⎝ω0T
4
+θ0
⎞⎟⎠⎤⎥⎦
ω0 =2π
⎯⎯⎯T
⎯,ω0T⎯=2π⎯→
( ) ( ) Q
=
−
2A ω0
⎡⎣cos
3π 2 +θ0
− cos π 2 +θ0
⎤ ⎦
=
−
2 AT 2π
⎡⎣sin
(θ0
)
+
sin (θ0
)⎤⎦
Matlab 程序
clear all; close all; %============================ A0=1; f0=100; %100Hz T=1/f0; w0=2*pi*f0; tI=0:T/1000:T/4; tQ=T/4:T/1000:T/2; t=0:T/1000:T; vt=A0*sin(w0*t); for k=0:360;
双 π 4 脉冲积分鉴相(相敏检波)法原理
一、公式推导:
∫ ∫ ∫ ∫ I =
T 0
2
A
sin
(ω0t
+
θ0
)dt
−
T T
A sin (ω0t +θ0 )dt
=
2
T 0
A sin (ω0t
+θ0
)dt
−2
T T
A sin (ω0t
2
+θ0
)dt
∫ =
−2
T T
A sin (ω0t
2
+θ0 )dt
=
Silta=k*pi/180; %23Degree Ns=length(Silta); vtIP=A0*sin(w0*tIP+Silta); vtIN=A0*sin(w0*tIN+Silta); vtI=vtIP-vtIN; vtQP=A0*sin(w0*tQP+Silta); vtQN=A0*sin(w0*tQN+Silta);
−A ω0
⎡⎢⎣cos ⎛⎜⎝ω0T
4
+ θ0
⎞⎟⎠
−
cos
(θ0
)
⎤ ⎥⎦
ω0 =2π
⎯c⎯osα⎯−cos⎯β =−⎯2sin⎯αT +⎯β sin⎯α −⎯β →
2
2
( ) ( ) ( ) I
=
−
AT 2π
⎣⎡−2 sin
π 4 +θ0
sin
π 4
⎤ ⎦
=
2 AT 2π
sin
θ0
+π
4
∫ Q =
Silta=k*pi/180; %23Degree Ns=length(Silta); vtI=A0*sin(w0*tI+Silta); vtQ=A0*sin(w0*tQ+Silta); K=k+1; I(K)=sum(vtI) /1000; Q(K)=sum(vtQ) /1000; end
%============================= figure(1); kk=(0:360);%*1001/361; h=plot(kk,I,'r'); set(h,'linewidth',3); hold on; h = plot(kk,Q,'black');%r'); set(h,'linewidth',3) A=(I(1).^2+Q(1).^2).^0.5; %vt=A*vt; plot(t*360/T,vt) hold off; grid; axis([0 365 -1.1 1.1]); xlabel('³õÏà(¶È)'); ylabel('¼øÏàµçѹ');
+
θ0
)dt
−
4
T 0
4
A
sin
(ω0t
+
θ0
)dt
−
T 3T
A sin (ω0t +θ0 )dt
4
∫ ∫ ∫ = 2
3T T
4
A
sin
(ω0t
+
θ0
)dt
−
4
T 0
A sin (ω0t
+θ0 )dt
=
2
( 3T
T 4 A sin ω0t 4
+θ0
)dt
=
−
2A ω0
cos
(ω0t
+θ0 )
3T 4