无功补偿及补偿装置的选择
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲:基础知识
一、为什么要进行无功补偿?交流电力系统需要电源供给两部分能量,一部分用于作功而被消耗掉,这部分能量将转换成机械能、光能、热能和化学能,我们称之为“有功功率”。
另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,有电能转换为磁能,再有磁能转换为电能,周而复始,并没有消耗,这部分能量我们称之为“无功功率”。
无功是相对于有功而言的,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。
在电力系统中,除了负荷无功功率外,变压器和线路上的电抗上也需要大量的无功功率。
在电网中安装并联电容器、同步调相机等容性设备以后,可以供给感性电抗消耗的部分无功功率小电网电源向感性负荷提供无功功率。
也即减少无功功率在电网中的流动,因此可以降低输电线路因输送无功功率造成的电能损耗,改善电网的运行条件。
这种做法称为“无功补偿”。
无功功率的定义国际电工委员会给出的无功功率的定义为:电压与无功电流的成积。
QC=U< IC 其物理意义为:电路中电感元件与电容元件活动所需的功率交换称为无功功率。
(插入讲解电感元件及电容元件)电磁(电感)元件建立磁场占用的电能,电容元件建立电场所占的电能.电流在电感元件中作功时,电压超前于电流90 C .而电流在电容元件中作功时,电流超前电压90 °C .在同一电路中,电感电流与电容电流方向相反,互差180 °C .如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的原理。
(电容元件、电感元件均为动态元件,电容元件的电流是电压与时间的导数关系,
,电感元件的电压是电流与时间的导数关系,)
矢量图:
我们将每一瞬间电感上的电压与电感电流IL相乘得到电感的功率曲线PL(图a), 同样的,将电容上的电压与电容电流IC相乘得到电容的功率曲线PC(图b)。
如图(a)所示,功率在第二个和第四个1/4周期内电感在吸收功率,并把所吸收的能量转化为磁场能量;而在第一和第三个1/4 周期内电感就放出功率,储存在磁场中的能量将全部放出。
这时电感好象一个电源,把能量送回电网。
磁场能量和外部能量的转化反复进行,电感的平均功率为零,所以电感是不消耗功率的。
如图(b)所示,在电容中,在第一个1/4周期内,电容在吸收功率进行充电,把能量储存在电场中。
在第二个1/4 周期内电容则放出功率,原来储存在电场中的能量将全部送回给外部电路。
第三和第四个1/4 周期内各重复一次。
电容的充电和放电过程,实际上就是外部电路的能量和电容的电场能量之间的交换过程。
在一个周期内,其平均功率为零,所以电容也是不消耗功率的。
我们注意到:在第一个1/4 周期中,当电压通过零点逐渐上升时,电容开始充电吸收功率,电感则将储存的能量放回电路。
而当第二个1/4 周期,电感吸收功率时,电容放出功率。
第三和第四个
1/4 周期又重复这样的充放电循环过程。
因此,电容和电感并联接在同一电路时,
当电感吸收能量时,正好电容释放能量;电感放出能量时,电容正好吸收能量。
能量就在它们中间互相交换。
即电感性负荷所需的无功功率,可以由电容器的无功
输出得到补偿,因此我们把具有电容性的装置称为“无功补偿装置”。
二、功率因数
1、功率因数的定义:功率因数等于网络的电压比电流超前的相位差的余弦。
2、提高功率因数的意义:
(1)改善设备的利用率因为功率因数还可以表示成如下形式:
COS ==
其中U -------- 线电压,kV
I ―――线电流,A 可见,在一定的电压和电流下,提高COS s ,其输出的有功功率越大。
发电机、变压器等电力设备在设计时均有一定的电压有效值U和电流有效值I,即设备需在一定的额定电压及额定电流下运行。
根据P= Ulcos S,若功率因数较低,则发电机发出的有功功率或变压器通过的有功功率P 较低,即设备容量得不到充分应用。
(2)提高功率因数可以减少电压损失电力网电压损失的公式可以求出:
△U —UR+j △ UX
从以上公式可以看出,影响△ U的因素有四个:线路的有功功率P、无功功率Q、电阻R和电抗X。
如果采用容抗为XC的电容来补偿,则电压损失为:
△U=
功率因数低,Q就大,△ U就增大,受电端的电压就要降低。
在电压低于允许值时,将严重影响电动机及其它用电设备的正常运行。
特别是在用电高峰时,因为功率因数低,将出现大面积地区电压降低,严重影响工农业生产的正常进行。
故采用补偿电容提高功率因数后,电压损失△ U减少,改善了电压质量。
(3)提高功率因数可以减少线路损失
据有关资料,目前全国有近20GA 的高耗能变压器在运行,一些城网高耗能配变
变压器占配变变压器总数的50%。
许多城网无功功率不足,调节手段落后,造成电压偏低,损耗增大。
1995 年全国线损率高达7.8%。
通过多方面的努力,1997年全国线损率才达到8.2%。
与一些发达国家相比,我国线损率约高出2〜3个百分点。
据统计,电力网中65%以上的电能损耗在10kV 以下的配电网中损耗的,因此配电网中的减少线路损失非常重要。
当线路通过电流I 时,其有功损耗为:
△P=3I2R X 10 —3 ( kW)
或△ P=3 ( R X10 —3=3 ( ) X0 —3 (kW)
有以上公式可见,线路有功损失厶P与cos2 S成反比,cos S越高,△ P越小。
( 4) 提高电力网的传输能力
视在功率与有功功率成下述关系:
P=Scos©
可见,在传送一定功率P的条件下,cos©越高,所需视在功率越小。
综上所述,提高功率因数是必须的。
但是功率因数的提高是整个网络的事,必须提高电网各个组成部分的功率因数,才能充分利用发电、变电设备的容量,减少网损,降低线路的电压损耗,以达到节约电能和提高功率因数的目的。
(插入讲解功率因数的目标及力率收费)
1、对功率因数的要求
除电网有特殊要求的用户外,用户在当地供电企业规定的电网高峰时负荷的功率因数应达到下列规定:100KVA 及以上高压供电用户的功率因数为0.9 以上。
其它电力用户和大、中型电力排灌站、泵购转售电企业,功率因数为0.85 以上。
农业用电,功率因数为0.80 以上。
2、功率因数调整电费
我国执行得电价结构为两价结构,但实际上是包括基本电费、电量电费和按功率因数调整电费三部分。
发、供电部门,除了供给用户得有功负荷之外,还要供给用户以无功负荷。
鉴于电力生产得特点,用户功率因数得高低,对电力系统发、供、用电设备得充分利用,有着显者得影响。
为了合理地使国家地能量资源,充分发挥发、供电设备地生产能力,我国专门制定了《力率调整电费办法》,按照功率因数调整电费。
《力率调整电费办法》适用于实行两部电价制大工业用户地生产用电。
按功率因数调整电费地收取办法是:(1)按照规定地电价计算出当月地基本电费和电量电费。
(2)再按照功率因数调整电费表所订地百分数增减计算。
如下表 1 和2 所示。
(3)计算用户功率因数采用加数平均值,即以用户在一个月内所消耗的有功电量W和无功电量Q进行计算,即:
cos ©= 如果用户的平均功率因数在功率因数调整电费表所列数字之间,以四舍五入计算,如0.855 为0.86 ,0.754 为0.75。
表 1 减免功率因数电费表
月平均功率
因数0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
0.99 1.00
全部电费地减少(%)0 0.5 1.0 1.5 2.0 2.2 2.5 2.7 3.0
表 2 增收功率因数电费表
平均功率因数0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72
增收(%)0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 平均功率因数0.71 0.70 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60 增收(%)7.0 7.5 8.0 8.5 9.0 9.5 10 11 12 13 14 15 备注自0.59 以下,每降低0.01 ,增收全部电费地2%3、举例说明改善cos ©能给用户带来经济效益。
【例1】某10kV煤矿企业电力用户原来功率因数为cos ©1= 0.75,视在功率为3150kVA,年用电时间T = 3000h,收费按两部电价,试确定:
(1)该用户得年支付电费。
(2)欲使功率因数提高到0.95 ,需装设得补偿容量。
(3)按许继目前的电容器补偿装置,分情况做出方案,并计算出投资费用(投资按每年10%回收)。
求安装补偿装置后,企业所获得的年效益。
解:
(1)补偿前用户年支付电费:
1)基本电费。
按最大负荷收取,每kVA 负荷收取值为180 元/年,故:
FJ仁180X3150=567000(元)
2)电量电费。
每kW.h 为0.209 元,故
FD1 =0.209 X2362.5 X3000=1481287.5 (元)
3)用户的总支付电费为:
FZ2=567000+1481287.5=2048287(元)
4)当功率因数为0.75 时,增收功率因数电费为全部电费的5%,则增收的电费为:
FZZ=2048287X 0.05=102414 (元)
5)用户实际缴纳电费为:
FZ1 总= FZ2+FZZ=2150701(元)
(2)补偿容量计算:
已知cos©l = 0.75 , cos©2 = 0.95,S=3150kVA,贝U
P1 = Scos©l= 3150X0.75=2362.5 (kW)
Q=P( - )
=2362.5( - )
=1307(kvar)
需补偿1307kvar ,考虑各方面因素,总补偿容量按1500kvar 考虑。
(3)按许继目前的产品做出配置方案并计算补偿后年支出费用:方案:一次性投投切方案。
此方案用于整体系统负荷变化不大的情况。
主要配置元件为:(此方案仅考虑系统存在 5 次7 次谐波情况,用6%串联电抗器抑制系统谐波)
TBB10-1500kvar 配置如下:序号名称型号数量单位备注
1 隔离接地开关GN24-12D1/630 1 只
2 铁心串联电抗器CKSC-90/10-6 1 台
3 高压并联电容器BFM11/ -250-1W
6 台
4 熔断器BRW-12/60P 6
5 氧化锌避雷器HY5WR-17/45 3 只
6 放电线圈FDGE8-11/ -1. 7-1W
3 只
7 带电显示器DXN-12T 1 只
8 放电指示灯AD11-22/21 3 只
9 电磁锁DSN3 3 只
10 铝母线、绝缘子等附件1 套
11 电容器柜体骨架1 套
按此种方案预计投入资金约为:10 万元。
1)补偿后的视在功率和基本电费为:
SB = =2487(kVA)
FJ2=180X2487=447660 (元)
2)电量电费。
每kW.h 为0.209 元,故
FD2=0.209 X2362.5 >3000=1481287.5(元)
3)支付资产折旧费用:
Ff=100000 X0.仁10000(元)
4)用户的总支付电费为:
FZ2=447660+1481287.5 +10000=1938947(元)
5)当功率因数为0.95 时,减免功率因数电费为全部电费的2.5%,则减免的电费为:
FZZ=1938947X 0.025=48473 (元)
6)用户实际缴纳电费为:
FZ2 总= FZ2 -FZZ=1890474(元)
7)补偿后的经济效益分析:
△F= FZ1 总—FZ2 总=2150701 —1890474 = 260227 (元)
结论:有以上分析得在装设无功补偿装置后,一年少交电费约为26 万元,节省的费用完全可以上购买以上方案中的补偿设备,并且大有结余。
【例2】配电网无功补偿算例。
( 1 )无功补偿的原理。
在电网中,线路或变压器的可变功率损耗为:
P=3I2R X10—3= R X10—3
当负荷功率因数由1降至cos ©时,有功损耗将增加的百分数为:
3毗=(-1)100%
因此,提高负荷的功率因数与降低线损的关系为:
S P%=(1—) X00%
下图表示一个主变容量为15000kVA 的35kV 变电所,单回路供电的电力网,单回35kV 供电线路至35 kV 变电所,期间T 接一个电力排灌站,根据有关负荷数据如下:
I段视在功率Sjf1=9.2MVA.
U段视在功率Sjf2=11.7MVA.
在未装补偿前,该变电所主变功率因数为0.75 ,此种情况:
I段线路的全年损失电量为:
△A1 = X R1X24X365=570X 103 (kW.h)
U段线路的全年损失电量为:
△A1 = X R2X24X365=1440X 103 (kW.h)
整条线路的全年损失电量为:
△A = △A1 +△A2 = 570X103 + 1440X103=2010X 103 (kW.h)
若在该变电所10kV 侧加装3000kvar 的补偿后电容器,主变的功率因数将由0.75 提高0.91 ,可使线损降低值为:
S P%^( 1- ) X100% =( 1 - ) X100% = 32 %
即加装3000kvar 的补偿后,可使线损下降32%,即减少损失电量为
△ A, = S P%\A = 32 % >2010X103 = 64.32 (万kW.h)
( 2) 经济效益分析。
从前面的计算中可知,每年可减少损失电量64.32 万
kW.h,其效益究竟有多大,可参考现行电价估算如下:
1 ) 全年直接减少损失,增加纯利润
M=64.32X0.50 = 32.16 (万元)
2) 力率调整由罚到奖,增加纯收入.补偿前该线路全年总电量
A1=1.17 X106X8760X0.75 X0-3 = 7686.9 (万kW.h)
由于功率因数为0.75,低于0.85,故应罚力率调整款
0.5%X8760X0.35=13.5( 万元)
补偿后
A2=1.17 X106X8760X0.91 X0-3 = 9326.7 (万kW.h)
由于功率因数为0.91,大于规定的0.85,故奖励21.3万元.
实际增加纯收入A= A1 + A2=34.8(万元)
合计增收:M+A=66.96( 万元)
综上所述:投资20 多万元,一年就能获得66.96 万元的收入.不仅4个月就能收回投资,而且取得长久的明显的经济效果.所以说,无功补偿,功在电网,利在自己.
三、无功补偿方式
无功补偿原则
全面规划、合理布局、分级补偿、就地平衡
无功补偿方法集中补偿与分散补偿相结合高压补偿与低压补偿相结合
调压与降损相结合配电网中常用的无功补偿方式为:
1 、分组补偿在系统的部分变、配电所中,在各个用户中安装无功补偿装置;
2 、分散补偿在高低压配电线路中分散安装并联电容机组;
3、就地补偿在配电变压器低压侧和车间配电屏间安装并联电容器以及在单台电动机附近安装并联电容器,进行集中或分散的就地补偿。
四、补偿容量的选择
( 1 )按公司计算:Qc=P )
其中:Qc -所需安装的并联电容器容量kvar ;
P -最大负荷月的平均有功功率kW;
cos ^1-补偿前功率因数;
cos以一补偿前功率因数;
(2)在不具备计算条件时,电容器的安装容量按变压器容量的10 %〜30 %确定。
( 3)单台感应电动机的就地补偿;
在进行无功补偿时,有时采取对单台感应电动机进行个别补偿,这时不能用上面介绍的方法选择电容器,也不能简单以负荷作为计算的依据,因为如果按照电动机在负荷情况下选择电容器,则在空载时就会出现过补偿,即功率因数超前,而且当电动机停机切断电源时,电容器就会对电动机放电,使仍在旋转着的电动机变为感应发电机,感应电势可能超出电动机额定电压的好多倍,对电动机和电容器的绝缘都不利。
因此单台电机个别补偿时电容器的容量应按照不超过空载电流的0.9 倍进行选择,即:
QC K 0.9 UelO
其中:Qc —所需安装的并联电容器容量kvar;
Ue —电动机额定电压kV;
Io —电动机空载电流A ;
(4)安装容量与输出容量的关系为保证补偿电容器安全、稳定、可靠运行,我们必须在补偿电容器前加串调谐电抗器,而补偿电容器在串接电抗器后,输出容量和安装容量的关系应依下式计算:
五、功率因数cos©与效率n得区别:
电动机和变压器得效率n是指其输出有功功率与输入的有功功率的比值。
用效率的概念来说明电动机或变压器的有功损耗。
功率因数cos©是用来说明在电网和设备之间往复振荡的电场或磁场能量有多少,功率因数越高说明在电网和设备之间往复振荡的能量越少。
第二讲:设计基础
目录
第一节:元件的设计选型
第二节:电气接线
第三节:成套设备的保护
第四
节:
电容器组投切方式的选择
第一节:元件的设计选型 1 电容器电容器做为无功补偿的重要元器件,应用于1kV 以上的工频电力系统中,用来提高系统的功率因数,改善电压质量,降低线路损耗,充分发挥发电、供电设备的效率。
产品以铝箔为极板,烷基苯浸膜纸(WF )、二芳基乙烷浸膜纸(FF)复合,二芳基乙烷浸全膜(FM)、苄基甲苯全膜为介质,采用卷绕式元件经串、并联后压制制成,电容器箱体内充满浸渍济。
一般有单相、三相、集合式等多种分类。
单相电容器:
BAM11/ —200 —1WR
内置放电电阻
户外单相额定容量额定电压苄基甲苯浸渍的聚丙烯薄膜全膜介质并联
集合式电容器:
BAMH11/ —1200 —1 X3W
三相
集合式,采用内熔丝保护
(BFM 表示二芳基乙烷浸渍的聚丙烯薄膜全膜介质)了解集合式电容器及全膜电容器:集合式电容器是将单台壳式电容器经串并联后装入大油箱内并充以绝缘油制
成。
1996 年已占到高压并联电容器年产量的20% 。
其优点是结构紧凑占地面积小,接头少,安装和运行维护工作量很小。
为克服容量不能调整的缺点,后来又开发了可调容量的集合式电容器,按照容量调整范围划分有50%/100% 和
33.3%/66.7%/100% 两类产品。
由于单元壳式电容器完全浸入绝缘油中,防止了单元壳式电容器的外绝缘发生故障。
单元壳式电容器内部配有内熔丝,少量元件损坏后由熔丝切除,整台电容器仍可继续运行。
缺点是含油量大,外壳大油箱易存在渗漏油,故障损坏后需返厂修理所用时间较长,单位容量造价较高。
关于集合式电容器有两个问题需要注意:
(1)为避免大容量集合式电容器发生相间短路故障时造成严重后果,容量超过5000kvar 的集合式电容器必须做成三相分体结构,即一相一台。
(2)集合式电容器的引出套管外绝缘爬电比距必须 > 3.5cm/kV相对于系统最高运行电压),以保证其绝缘强度。
箱式电容器是在集合式电容器基础上发展起来的一种电容器,与集合式电容器的不同之处是内部单元电容器没有外壳,直接浸入绝缘油中,外壳大油箱采用波纹油箱或带金属膨胀器,与外部大气完全隔离。
同集合式电容器相比,外壳体积和内部含油量进一步减少,以西安电力电容器厂3000kvar 产品为例,箱式电容器比集合式电容器外壳体积减少59.1% ,重量减少60.6%。
由于材料用量减少,价格比集合式电容器要低。
缺点是内部元件发生故障由内熔丝切除后,会对大油箱内的绝缘油造成污染。
全膜电容器具有损耗低、发热量小、温升低、体积小、重量轻的优点。
国产全膜电容器自1986 年开始生产以来,经过不断改进完善,质量已趋于稳定,在可靠性方面已经好于部分进口产品。
自1995 年以来产量逐年大幅度增长,已有多家产品通过了两部鉴定。
同国外先进产品相比,差距主要表现在比特性上,材料消耗是国外先进产品的两倍。
既便如此,同膜纸复合介质产品相比体积、重量均大幅度下降。
以桂林电容器厂100kvar 产品为例:全膜产品比膜纸复合介质产品体积下降31.2%,重量下降44.4%。
集合式产品以锦州电容器厂3000kvar 产品为例:全膜产品比膜纸复合介质产品体积下降55%,重量下降47.9%。
箱式电容器采用全膜产品后可取消散热器。
最近,电容器制造业制订了关于加速发展国产高压全膜电容器的若干措施,必将进一步提高国产高压全膜电容器的质量。
因此,新增电容器应全部采用全膜产品,浸渍剂优先选用苄基甲苯(M/DBT)和SAS-40。