陵城区第一中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陵城区第一中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是( )
A .30°
B .45°
C .60°
D .120°
2. 已知集合{| lg 0}A x x =≤,1
={|
3}2
B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]
C .(1,3]
D .1
[,1]2
【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 3. 已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( )
A .向右平移
2π个单位 B .向左平移2π
个单位 C. 向右平移23π个单位 D .左平移23
π
个单位
4. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )
A .0<
B .0
C .0
D .0
5. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( )
A .{a|3≤a ≤4}
B .{a|3<a ≤4}
C .{a|3<a <4}
D .∅ 6. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( )
A .M ∪N
B .(∁U M )∩N
C .M ∩(∁U N )
D .(∁U M )∩(∁U N )
7. 复数满足2+2z
1-i =i z ,则z 等于( )
A .1+i
B .-1+i
C .1-i
D .-1-i
8. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )
A .a ,b ,c 中至少有两个偶数
B .a ,b ,c 中至少有两个偶数或都是奇数
C .a ,b ,c 都是奇数
D .a ,b ,c 都是偶数
9. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z
A .1
B .2
C .3
D .4
10.下列关系式中正确的是( )
A .sin11°<cos10°<sin168°
B .sin168°<sin11°<cos10°
C .sin11°<sin168°<cos10°
D .sin168°<cos10°<sin11°
11.设函数y=的定义域为M ,集合N={y|y=x 2
,x ∈R},则M ∩N=( ) A .∅
B .N
C .[1,+∞)
D .M
12.设函数()()21x
f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的
取值范围是( ) A .3,12e ⎡⎫-
⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫
⎪⎢⎣⎭
1111] 二、填空题
13.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12
n n n S λ-+<+|对一切n N *
∈恒成立,则λ的取值范围是___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.
14.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .
15.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx ﹣2)+f (x )<0恒成立,则x 的取值范围为_____.
16.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A .
B .
C .
D .
17.已知sin α+cos α=,且
<α<,则sin α﹣cos α的值为 .
18.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .
三、解答题
19.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C 的参数方程为⎩⎨
⎧==α
αsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.
(1)将曲线C 的参数方程化为普通方程; (2)求||||PB PA ⋅的最值.
20.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边
长的概率为( ) A
B
C D
21.(14分)已知函数1
()ln ,()e x x f x mx a x m g x -=--=,其中m ,a 均为实数.
(1)求()g x 的极值; 3分
(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111
()()()()
f x f x
g x g x -<-
恒成立,求a 的最小值; 5分
(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分
22.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n 人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人. (1)求n 的值;
(2)把在前排就坐的高二代表队6人分别记为a ,b ,c ,d ,e ,f ,现随机从中抽取2人上台抽奖.求a 和b 至少有一人上台抽奖的概率.
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
23.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.
24.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣.
(Ⅰ)求sin∠BAD的值;
(Ⅱ)求AC边的长.
陵城区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴, 建立空间直角坐标系, 设AA 1=2AB=2AD=2,
A 1(1,0,2),C 1(0,1,2),=(﹣1,1,0),
B (1,1,0),G (0,1,1),=(﹣1,0,1),
设直线A 1C 1与BG 所成角为θ,
cos θ==
=,
∴θ=60°. 故选:C .
【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.
2. 【答案】D
【解析】由已知得{}=01A x x <?,故A B =1
[,1]2
,故选D .
3. 【答案】B
【解析】
试题分析:函数()cos ,3f x x π⎛

=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝
⎭,故选B.
考点:函数()sin y A x ωϕ=+的图象变换.
4. 【答案】D
【解析】解:∵A 1B ∥D 1C ,
∴CP 与A 1B 成角可化为CP 与D 1C 成角.
∵△AD 1C 是正三角形可知当P 与A 重合时成角为

∵P 不能与D 1重合因为此时D 1C 与A 1B 平行而不是异面直线,
∴0<θ≤

故选:D .
5. 【答案】A
【解析】解:∵A={x|a ﹣1≤x ≤a+2}
B={x|3<x <5} ∵A ∩B=B ∴A ⊇B

解得:3≤a ≤4 故选A
【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.
6. 【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4}, ∴∁U M={0,1}, ∴N ∩(∁U M )={0,1}, 故选:B .
【点评】本题主要考查集合的子交并补运算,属于基础题.
7. 【答案】
【解析】解析:选D.法一:由2+2z
1-i =i z 得
2+2z =i z +z , 即(1-i )z =-2,
∴z =-2
1-i =-2(1+i )
2=-1-i.
法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,
∴⎩
⎪⎨⎪⎧2+2a =a -b
2b =a +b , ∴a =b =-1,故z =-1-i.
8. 【答案】B
【解析】解:∵结论:“自然数a ,b ,c 中恰有一个偶数” 可得题设为:a ,b ,c 中恰有一个偶数 ∴反设的内容是 假设a ,b ,c 中至少有两个偶数或都是奇数.
故选B .
【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.
9. 【答案】A
【解析】解:因为每一纵列成等比数列,
所以第一列的第3,4,5个数分别是,,.
第三列的第3,4,5个数分别是,,.
又因为每一横行成等差数列,第四行的第1、3个数分别为,,
所以y=

第5行的第1、3个数分别为
,.
所以z=.
所以x+y+z=++=1.
故选:A.
【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.
10.【答案】C
【解析】解:∵sin168°=sin(180°﹣12°)=sin12°,
cos10°=sin(90°﹣10°)=sin80°.
又∵y=sinx在x∈[0,]上是增函数,
∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.
故选:C.
【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小.11.【答案】B
【解析】解:根据题意得:x+1≥0,解得x≥﹣1,
∴函数的定义域M={x|x≥﹣1};
∵集合N中的函数y=x2≥0,
∴集合N={y|y≥0},
则M∩N={y|y≥0}=N.
故选B
12.【答案】D
【解析】
考点:函数导数与不等式.1
【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,x g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.
二、填空题
13.【答案】31λ-<<
【解析】由221111
1123(1)22
22n n n S n n
--=+⨯
+⨯++-⋅
+,2
111
12222n
S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以12
42
n n n S -+=-,
于是由不等式12
|1
42
n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<.
14.【答案】 .
【解析】解:∵直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1), ∴a+b ﹣1=0,即a+b=1,
∴ab ≤
=
当且仅当a=b=时取等号,
故ab 的最大值是
故答案为:
【点评】本题考查基本不等式求最值,属基础题.
15.【答案】22,3⎛⎫- ⎪⎝⎭
【解析】
16.【答案】
【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,
在在直三棱柱中,∠ACB=90°,
∴DM⊥平面AA1C1C,
则∠MAD是AM与平面AA1C1C所的成角,
则DM=,AD===,
则tan∠MAD=.
法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,
则∵AC=BC=1,侧棱AA
=,M为A1B1的中点,
1
∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量
设AM与平面AA1C1C所成角为θ,
则sinθ=||=
则tanθ=
故选:A
【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.
17.【答案】.
【解析】解:∵sinα+cosα=,<α<,
∴sin2α+2sinαcosα+cos2α=,
∴2sin αcos α=﹣1=,
且sin α>cos α,
∴sin α﹣cos α=
=
=

故答案为:

18.【答案】 30° .
【解析】解:取AD 的中点G ,连接EG ,GF 则EG DC=2,GF
AB=1,
故∠GEF 即为EF 与CD 所成的角. 又∵FE ⊥AB ∴FE ⊥GF ∴在Rt △EFG 中EG=2,GF=1故∠GEF=30°.
故答案为:30°
【点评】此题的关键是作出AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.
三、解答题
19.【答案】(1)
12
22
=+y x .(2)||||PB PA ⋅的最大值为,最小值为21.
【解析】

题解析:解:(1)曲线C 的参数方程为⎩
⎨⎧==αα
sin cos 2y x (α为参数),消去参数α
得曲线C 的普通方程为12
22
=+y x (3分) (2)由题意知,直线的参数方程为⎩⎨⎧=+=θθsin cos 1t y t x (为参数),将⎩⎨⎧=+=θ
θsin cos 1t y t x 代入1222
=+y x 得01cos 2)sin 2(cos 222=-++θθθt t (6分)
设B A ,对应的参数分别为21,t t ,则]1,2
1
[sin 11sin 2cos 1||||||22221∈+=+=
=⋅θθθt t PB PA . ∴||||PB PA ⋅的最大值为,最小值为2
1
. (10分)
考点:参数方程化成普通方程. 20.【答案】C
【解析】
21.【答案】解:(1)e(1)
()e
x
x g x -'=,令()0g x '=,得x = 1. 列表如下:
∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. 3

(2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.
∵()0x a
f x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. 设1e ()()e x h x
g x x =
=,∵12
e (1)()x x h x x --'=> 0在[3,4]恒成立,
∴()h x 在[3,4]上为增函数. 设21x x >,则212111
()()()()
f x f x
g x g x -<-
等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.
设1e ()()()ln 1e x
u x f x h x x a x x
=-=---⋅,则u (x )在[3,4]为减函数.
∴21e (1)()10e x a x u x x x -'=--⋅≤在(3,4)上恒成立. ∴11
e e x x a x x
---+
≥恒成立. 设11e ()e x x v x x x --=-+,∵11
2
e (1)()1e x x x v x x
---'=-+=121131e [()]24x x ---+,x ∈[3,4], ∴1221133
e [()]e 1244
x x --+>>,∴()v x '< 0,()v x 为减函数.
∴()v x 在[3,4]上的最大值为v (3) = 3 -22
e 3

∴a ≥3 -22e 3,∴a 的最小值为3 -22
e 3
. 8分
(3)由(1)知()g x 在(0,e]上的值域为(0,1].
∵()2ln f x mx x m =--,(0,)x ∈+∞,
当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.
当0m ≠时,2()
()m x m f x x
-'=
,由题意知()f x 在(0,e]不单调, 所以20e m <<,即2
e
m >.①
此时()f x 在2(0,)m 上递减,在2
(,e)m
上递增,
∴(e)1f ≥,即(e)e 21f m m =--≥,解得3
e 1
m -≥.②
由①②,得3
e 1
m -≥.
∵1(0,e]∈,∴2
()(1)0f f m =≤成立.
下证存在2
(0,]t m
∈,使得()f t ≥1.
取e m t -=,先证e 2
m m
-<,即证2e 0m m ->.③
设()2e x w x x =-,则()2e 10x w x '=->在3
[
,)e 1
+∞-时恒成立. ∴()w x 在3[,)e 1+∞-时为增函数.∴3
e ))01
((w x w ->≥,∴③成立.
再证()e m f -≥1.
∵e e 3()1e 1m m f m m m --+=>>-≥,∴3
e 1
m -≥
时,命题成立. 综上所述,m 的取值范围为3
[,)e 1
+∞-. 14分
22.【答案】
【解析】解:(1)由题意可得,∴n=160;
(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b .f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f )共15种,其中a 和b 至少有一人上台抽奖的基本事件有9种,
∴a 和b 至少有一人上台抽奖的概率为
=;
(3)由已知0≤x ≤1,0≤y ≤1,点(x ,y )在如图所示的正方形OABC 内,
由条件得到的区域为图中的阴影部分
由2x ﹣y ﹣1=0,令y=0可得x=,令y=1可得x=1
∴在x ,y ∈[0,1]时满足2x ﹣y ﹣1≤0的区域的面积为=
∴该代表中奖的概率为=.
23.【答案】
【解析】解:设双曲线方程为
(a >0,b >0)
由椭圆+=1,求得两焦点为(﹣2,0),(2,0),
∴对于双曲线C:c=2.
又y=x为双曲线C的一条渐近线,
∴=
解得a=1,b=,
∴双曲线C的方程为.
24.【答案】
【解析】解:(Ⅰ)由题意,因为sinB=,所以cosB=…
又cos∠ADC=﹣,所以sin∠ADC=…
所以sin∠BAD=sin(∠ADC﹣∠B)=×﹣(﹣)×=…
(Ⅱ)在△ABD中,由正弦定理,得,解得BD=…
故BC=15,
从而在△ADC中,由余弦定理,得AC2=9+225﹣2×3×15×(﹣)=,所以AC=…【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题.。

相关文档
最新文档