新抚区第三中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新抚区第三中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 设a=lge ,b=(lge )2,
c=lg
,则( )
A .a >b >c
B .c >a >b
C .a >c >b
D .c >b >a
2. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )
A .(2,+∞)
B .(0,2)
C .(4,+∞)
D .(0,4)
3. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则
log (a 5+a 7+a 9)的值是( )
A
.﹣ B .﹣5 C .5 D

4. 设a >0,b >0,若是5a 与5b
的等比中项,则+的最小值为( )
A .8
B .4
C .1
D .
5. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V
≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,
那么,近似公式V
≈L 2h 相当于将圆锥体积公式中的π近似取为( )
A

B

C

D

6. 某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )
A .13π
B .16π
C .25π
D .27π 7. 设函数f (x )
=,则f (1)=( )
A .0
B .1
C .2
D .3
8. 过抛物线y=x 2
上的点的切线的倾斜角( )
A .30°
B .45°
C .60°
D .135°
9. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪
-+≥⎨⎪-≤⎩
,则目标函数32z x y =-的最小值为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .-5
B .-4 C.-2 D .3 10.如图所示,阴影部分表示的集合是( )
A .(∁U
B )∩A B .(∁U A )∩B
C .∁U (A ∩B )
D .∁U (A ∪B )
11.若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1
B .m >0或m <﹣1
C .m >1或m ≤0
D .m >1或m <0
12.已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
A.
2
B.2
C.
D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.
二、填空题
13.不等式
的解集为 .
14.对于映射f :A →B ,若A 中的不同元素有不同的象,且B 中的每一个元素都有原象,则称f :A →B 为一一映射,若存在对应关系Φ,使A 到B 成为一一映射,则称A 到B 具有相同的势,给出下列命题: ①A 是奇数集,B 是偶数集,则A 和B 具有相同的势;
②A 是平面直角坐标系内所有点形成的集合,B 是复数集,则A 和B 不具有相同的势; ③若区间A=(﹣1,1),B=R ,则A 和B 具有相同的势.
其中正确命题的序号是 .
15.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .
16.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .
17.设函数
,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同
的实数根,则实数a 的取值范围是 .
18.设抛物线2
4y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若3
2
PF =
,则M 点的横坐标为 . 三、解答题
19.设数列的前项和为,且满足
,数列
满足
,且
(1)求数列

的通项公式
(2)设,数列的前项和为,求证
:
(3)设数列
满足

),若数列
是递增数列,求实数
的取值范围。

20.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,
5313a b +=.111]
(1)求{}n a ,{}n b 的通项公式; (2)求数列{}n
n
a b 的前项和n S .
21.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.
22.已知圆C 的圆心在射线3x ﹣y=0(x ≥0)上,与直线x=4相切,且被直线3x+4y+10=0
截得的弦长为.
(Ⅰ) 求圆C 的方程;
(Ⅱ) 点A (1,1),B (﹣2,0),点P 在圆C 上运动,求|PA|2+|PB|2
的最大值.
23.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,
.若
,f(x-1)≤f(x),则实数a 的取值范围为
A[] B[] C[]
D[
]
24.(本小题满分12分)
数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .
新抚区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】C
【解析】解:∵1<e<3<,
∴0<lge<1,∴lge>lge>(lge)2.
∴a>c>b.
故选:C.
【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.
2.【答案】C
【解析】解:令f(x)=x2﹣mx+3,
若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,
则f(1)=1﹣m+3<0,
解得:m∈(4,+∞),
故选:C.
【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.3.【答案】B
【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),
∴a n+1=3a n>0,
∴数列{a n}是等比数列,公比q=3.
又a2+a4+a6=9,
∴=a5+a7+a9=33×9=35,
则log(a5+a7+a9)==﹣5.
故选;B.
4.【答案】B
【解析】解:∵是5a与5b的等比中项,
∴5a•5b=()2=5,
即5a+b=5,
则a+b=1,
则+=(+)(a+b)=1+1++≥2+2=2+2=4,
当且仅当=,即a=b=时,取等号,
即+的最小值为4,
故选:B
【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.5.【答案】B
【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,
∴=(2πr)2h,
∴π=.
故选:B.
6.【答案】C
【解析】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.
则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积
S=4πr2=25π.
故选C.
【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题.
7.【答案】D
【解析】解:∵f(x)=,
f(1)=f[f(7)]=f(5)=3.
故选:D.
8.【答案】B
【解析】解:y=x2的导数为y′=2x,
在点的切线的斜率为k=2×=1,
设所求切线的倾斜角为α(0°≤α<180°),
由k=tanα=1,
解得α=45°.
故选:B.
【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.
9.【答案】B
【解析】
试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31
y 22
x z =
+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为
B.
考点:线性规划约束条件中关于最值的计算. 10.【答案】A
【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成, ∴对应的集合表示为A ∩∁U B . 故选:A .
11.【答案】A
【解析】解:∵函数f (x )=3﹣|x ﹣1|
+m
的图象与x 轴没有交点,
∴﹣m=3﹣|x ﹣1|
无解,
∵﹣|x ﹣1|≤0,
∴0<3﹣
|x ﹣1|
≤1,
∴﹣m ≤0或﹣m >1, 解得m ≥0或m >﹣1 故选:A .
12.【答案】B
【解析】设2
(,)4y P y
,则
2
1||||
y PF PA +=.又设
2
14
y t +=,则244y t =-,1t …
,所以||||PF PA ==,当且仅当2t =,即2y =±时,等号成立,此时点(1,2)P ±,
PAF ∆的面积为11
||||22222
AF y ⋅=⨯⨯=,故选B.
二、填空题
13.【答案】 (0,1] .
【解析】解:不等式,即,求得0<x ≤1,
故答案为:(0,1].
【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.
14.【答案】 ①③ .
【解析】解:根据一一映射的定义,集合A={奇数}→B={偶数},不妨给出对应法则加1.则A →B 是一一映射,故①正确;
对②设Z 点的坐标(a ,b ),则Z 点对应复数a+bi ,a 、b ∈R ,复合一一映射的定义,故②不正确;
对③,给出对应法则y=tan x ,对于A ,B 两集合可形成f :A →B 的一一映射,则A 、B 具有相同的势;∴
③正确. 故选:①③
【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力.
15.【答案】 6 .
【解析】解:根据题意可知:f (x )﹣2x
是一个固定的数,记为a ,则f (a )=6,
∴f (x )﹣2x =a ,即f (x )=a+2x

∴当x=a 时,
又∵a+2a
=6,∴a=2,
∴f (x )=2+2x

∴f (x )+f (﹣x )=2+2x +2+2﹣x =2x +2﹣x
+4
≥2+4=6,当且仅当x=0时成立,
∴f (x )+f (﹣x )的最小值等于6,
故答案为:6.
【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.
16.【答案】 [﹣1,﹣) .
【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣
1,﹣).
故答案为:[﹣1,﹣).
【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.
17.【答案】(﹣1,﹣]∪[,).
【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.
当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.
当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.
当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.
当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.
当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.
设g(x)=ax,则g(x)过定点(0,0),
坐标系中作出函数y=f(x)和g(x)的图象如图:
当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,
则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,
故满足条件的斜率k的取值范围是或,
故答案为:(﹣1,﹣]∪[,)
【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.
18.【答案】2
【解析】由题意,得2p =,(1,0)F ,准线为1x =-,设11(,)A x y 、22(,)B x y ,直线AB 的方程为(1)y k x =-,
代入抛物线方程消去y ,得22
2
2
(24)0k x k x k -++=,所以2122
24k x x k ++=,121x x =.又设00(,)P x y ,
则01212112()[(1)(1)]22y y y k x k x k =+=-+-=,所以021x k =,所以212
(,)P k k

因为0213
||112
PF x k =+=+=,解得22k =,所以M 点的横坐标为2.
三、解答题
19.【答案】 【解析】
解:∵S n =2-a n ,即a n +S n =2,∴a n +1+S n +1=2. 两式相减:a n +1-a n +S n +1-S n =0.
即a n +1-a n +a n +1=0,故有2a n +1=a n ,∵a n ≠0,

∵b n +1=b n +a n (n =1,2,3,…),
得b 2-b 1=1,




将这n -1个等式相加,得
又∵b 1=1,.
(2)证明:.
而 ①



=8-(n =1,2,3,…).
∴T n <8. (3)由(1)知
由数列是递增数列,∴对
恒成立,

恒成立, 即
恒成立, 当为奇数时,即恒成立,∴, 当为偶数时,即恒成立,∴

综上实数的取值范围为
20.【答案】(1)2,2==q d ;(2)1
23
26-+-=n n n S . 【解析】
(2)121
2--=n n n n b a ,………………6分 12212
1
223225231---+-++++=n n n n n S ,①
n
n n n n S 212232252321211321-+-++++=- .②……………8分 ①-②得n
n n n n S 2
122222222212`1221--+++++=-- 2311222
221
1222222
n n n
n S --=++++
-,…………10分
所以1
23
26-+-
=n n n S .………………12分
考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.
【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {
n
n
b 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S . 21.【答案】
【解析】解:不等式|x ﹣1|>m ﹣1的解集为R ,须m ﹣1<0,即p 是真 命题,m <1 f (x )=﹣(5﹣2m )x 是减函数,须5﹣2m >1即q 是真命题,m <2, 由于p 或q 为真命题,p 且q 为假命题,故p 、q 中一个真,另一个为假命题 因此,1≤m <2.
【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.
22.【答案】
【解析】解:(Ⅰ)设圆C 的方程为(x ﹣a )2+(y ﹣b )2=r 2
(r >0)… 圆心在射线3x ﹣y=0(x ≥0)上,所以3a ﹣b=0…①.… 圆与直线x=4相切,所以|a ﹣4|=r …②…
圆被直线3x+4y+10=0截得的弦长为
,所以
…③…
将①②代入③,可得(3a+2)2+12=(a ﹣4)2,化简得2a 2
+5a=0,解得a=0或(舍去)…
所以b=0,r=4,于是,圆C 的方程为x 2+y 2
=16.…
(Ⅱ)假设点P 的坐标为(x 0,y 0),则有
.…
=38+2(x 0﹣y 0).下求x 0﹣y 0的最大值.…
解法1:设t=x
0﹣y 0,即x 0﹣y 0﹣t=0.该直线与圆必有交点,所以
,解得,等号当且仅当
直线x 0﹣y 0﹣t=0与圆x 2+y 2
=16相切时成立.
于是t 的最大值为,所以|PA|2
+|PB|2
的最大值为.…
解法2:由可设x 0=4sin α,y 0=4cos α,于是

所以当
时,x
0﹣y 0取到最大值

所以|PA|2
+|PB|2
的最大值为
.…
【点评】此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,垂径定理,勾股定理,点到直线的距离公式,以及正弦函数的定义域与值域,是一道综合性较强的题.
23.【答案】B 【解析】
当x ≥0时,
f (x )=,
由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2; 当a 2<x <2a 2时,f (x )=﹣a 2;
由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。

∴当x >0时,。

∵函数f (x )为奇函数, ∴当x <0时,。

∵对∀x ∈R ,都有f (x ﹣1)≤f (x ), ∴2a 2﹣(﹣4a 2)≤
1,解得:。

故实数a 的取值范围是。

24.【答案】(1)122n n b +=-;(2)222(4)n n S n n +=-++.
【解析】
试题分析:(1)已知递推公式122n n b b +=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得n b ,变形形式为12()n
n b x b x ++=+;(2)由(1)可知122(2)n n n n a a b n --==-≥,这是数列{}n a 的后项与前项的差,要求通项公式可用累加法,即由112()()n n n n n a a a a a ---=-+-+
211()a a a +-+求得.
试题解析:(1)112222(2)n n n n b b b b ++=+⇒+=+,∵12
22
n n b b ++=+,
又121224b a a +=-+=,
∴2
3
12(21)
(2222)22222221
n n
n n a n n n +-=++++-+=
-+=--. ∴224(12)(22)
2(4)122
n n n n n S n n +-+=
-=-++-. 考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式.。

相关文档
最新文档