苏教版数学九年级上册 期末试卷测试卷 (word版,含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版数学九年级上册期末试卷测试卷(word版,含解析)
一、选择题
1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是()
A.5人B.6人C.4人D.8人
2.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()
A.4.4 B.4 C.3.4 D.2.4
3.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()
①c>0;②b2-4ac<0;③a-b+c>0;④当x>-1时,y随x的增大而减小.
A.4个B.3个C.2个D.1个
4.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=()
A.60°B.65°C.70°D.80°
5.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()
A .
B .
C .
D .
6.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( ) A .小于
12
B .等于
12
C .大于
12
D .无法确定
7.某篮球队14名队员的年龄如表: 年龄(岁) 18 19 20 21 人数
5
4
3
2
则这14名队员年龄的众数和中位数分别是( ) A .18,19 B .19,19 C .18,4 D .5,4 8.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( )
A .-2
B .2
C .-1
D .1
9.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23
B .1.15
C .11.5
D .12.5
10.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )
A .100°
B .110°
C .120°
D .130°
11.如图,
O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则
CD 的长为( )
A .62
B .32
C .6
D .12
12.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =
60°,AB =6,则⊙O 的半径是( )
A .
32
B .3
C .
32
3 D .3
二、填空题
13.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.
14.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 15.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.
16.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .
17.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=
45
,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;
18.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.
19.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .
20.若32x y =,则x y y
+的值为_____. 21.抛物线2
28y x x m =++与x 轴只有一个公共点,则m 的值为________. 22.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最
小时,QE=____________.
23.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8.
(1)请补充完整下面的成绩统计分析表:
平均分方差众数中位数
甲组89
乙组5
3
88
(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由
_____________________________.
24.如图,Rt△ABC中,∠ACB=90°,BC=3,tan A=3
4
,将Rt△ABC绕点C顺时针旋转
90°得到△DEC,点F是DE上一动点,以点F为圆心,FD为半径作⊙F,当FD=_____时,⊙F与Rt△ABC的边相切.
三、解答题
25.二次函数y=ax2+bx+c中的x,y满足下表
x…-1013…
y…0310…
不求关系式,仅观察上表,直接写出该函数三条不同类型的性质:
(1) ; (2) ; (3) .
26.如图1,在平面直角坐标系中,已知抛物线2
5y ax bx =++与x 轴交于()10
A -,,()
B 5,0两点,与y 轴交于点
C .
(1)求抛物线的函数表达式;
(2)若点P 是位于直线BC 上方抛物线上的一个动点,求△BPC 面积的最大值; (3)若点D 是y 轴上的一点,且以B,C,D 为顶点的三角形与ABC 相似,求点D 的坐标;
(4)若点E 为抛物线的顶点,点F (3,a )是该抛物线上的一点,在x 轴、y 轴上分别找点M 、N ,使四边形EFMN 的周长最小,求出点M 、N 的坐标. 27.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.
28.“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A .全程马拉松;B .半程马拉松;C .迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组. (1)小明被分配到“迷你马拉松”项目组的概率为 ; (2)请利用树状图或列表法求两人被分配到同一个项目组的概率.
29.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x 元时,日盈利为w 元.据此规律,解决下列问题:
(1)降价后每件商品盈利 元,超市日销售量增加 件(用含x 的代数式表示); (2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?
30.如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).
(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';
(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';
(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).
31.如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且AB BD AD
A B B D A D
==
''''''
.判断△ABC和
△A′B′C′是否相似,并说明理由.
32.如图,E是正方形ABCD的CD边上的一点,BF⊥AE于F,
(1)求证:△ADE∽△BFA;
(2)若正方形ABCD的边长为2,E为CD的中点,求△BFA的面积,
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
找出这组数据出现次数最多的那个数据即为众数.
【详解】
解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.
故选:B.
【点睛】
本题考查众数的概念,出现次数最多的数据为这组数的众数.
2.D
解析:D
【解析】
【分析】
直接利用平行线分线段成比例定理对各选项进行判断即可.
【详解】
解:∵a∥b∥c,
∴AB DE BC EF
=,
∵AB=1.5,BC=2,DE=1.8,
∴1.5 1.8
2EF
= , ∴EF=2.4
故选:D.
【点睛】
本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.
3.C
解析:C
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;
由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.
故选:C.
【点睛】
本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.
4.D
解析:D 【解析】 【分析】
根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可; 【详解】
解:∵点I 是△ABC 的内心, ∴∠ABC =2∠IBC ,∠ACB =2∠ICB , ∵∠BIC =130°,
∴∠IBC +∠ICB =180°﹣∠CIB =50°, ∴∠ABC +∠ACB =2×50°=100°,
∴∠BAC =180°﹣(∠ACB +∠ABC )=80°. 故选D . 【点睛】
本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.
5.C
解析:C 【解析】 【分析】
先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可. 【详解】 由题意得: 22111
448222
y x x =
⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8), 故选:C. 【点睛】
此题考查二次函数的性质,根据题意列出解析式是解题的关键.
6.B
解析:B 【解析】 【分析】
利用概率的意义直接得出答案.【详解】
解:抛掷一枚质地均匀的硬币,正面朝上概率等于1
2
,
前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,
正面朝上的概率为:1
2
,
故选:B.
【点睛】
此题主要考查了概率的意义,正确把握概率的定义是解题关键.7.A
解析:A
【解析】
【分析】
根据众数和中位数的定义求解可得.
【详解】
∵这组数据中最多的数是18,
∴这14名队员年龄的众数是18岁,
∵这组数据中间的两个数是19、19,
∴中位数是1919
2
=19(岁),
故选:A.
【点睛】
本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.
8.D
解析:D
【解析】
【分析】
根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.
【详解】
解:把x=2代入程x2+bx-6=0得4+2b-6=0,
解得b=1.
故选:D.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次
方程的解.
9.C
解析:C 【解析】 【分析】
由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数. 【详解】
解:由题意得:(10×14+15×6)÷20=11.5, 故选:C . 【点睛】
此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可. .
10.C
解析:C 【解析】 【分析】
直接利用圆周角定理求解. 【详解】
解:∵∠ABC 和∠AOC 所对的弧为AC ,∠ABC=60°, ∴∠AOC=2∠ABC=2×60°=120°. 故选:C . 【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
11.A
解析:A 【解析】 【分析】
先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得
OCE ∆为等腰直角三角形,所以2
CE =
=CD 的长. 【详解】
∵CD AB ⊥,AB 为直径, ∴CE DE =,
∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°, ∴2222.545BOC A ∠=∠=⨯=, ∴OCE ∆为等腰直角三角形,
∵OC=6,
∴6CE ===
∴2CD CE ==
故选A .
【点睛】
本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.
12.D
解析:D
【解析】
【分析】
根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.
【详解】
解:连接OP ,OM ,OA ,OB ,ON
∵AB ,AM ,BN 分别和⊙O 相切,
∴∠AMO=90°,∠APO=90°,
∵MN ∥AB ,∠A =60°,
∴∠AMN=120°,∠OAB=30°,
∴∠OMN=∠ONM=30°,
∵∠BNO=90°,
∴∠ABN=60°,
∴∠ABO=30°,
在△APO 和△BPO 中,
OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
△APO ≌△BPO (AAS ),
∴AP=12
AB=3, ∴tan ∠OAP=tan30°=OP AP
∴
.
故选D.
【点睛】
本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P 是AB 中点,难度不大.
二、填空题
13.【解析】
试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.
由平均数的公式得:(1+2+3+4+5)÷5=3,
∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4
解析:【解析】
试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案. 由平均数的公式得:(1+2+3+4+5)÷5=3,
∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.
考点:方差.
14.8
【解析】
【分析】
根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)
【详解】
解:∵4,4,,6,6的平均数是5,
∴4+4
解析:8
【解析】
【分析】
根据平均数是5,求m 值,再根据方差公式计算,方差公式为:
2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)
【详解】
解:∵4,4,m ,6,6的平均数是5,
∴4+4+m+6+6=5×5,
∴m=5,
∴这组数据为4,4,m ,6,6, ∴22222214545556565=0.85S ,
即这组数据的方差是0.8.
故答案为:0.8.
【点睛】
本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.
15.9
【解析】
【分析】
根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.
【详解】
解:∵a 是方程的一个根,
∴2a2=a+3,
∴2a2-a=3,
∴.
故答案为:9
解析:9
【解析】
【分析】
根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.
【详解】
解:∵a 是方程223x x =+的一个根,
∴2a 2=a+3,
∴2a 2-a=3,
∴()
2263=32339a a a a --=⨯=.
故答案为:9.
【点睛】
本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 16.【解析】
【分析】
首先求出圆锥的底面半径,然后可得底面周长,问题得解.
【详解】
解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,
∴圆锥的底面半径为cm,
∴底面周长为2π×6=12
解析:12π
【解析】
【分析】
首先求出圆锥的底面半径,然后可得底面周长,问题得解.
【详解】
解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,
6
=cm,
∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,
故答案为:12π.
【点睛】
本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.
17.3或9 或或
【解析】
【分析】
先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.
【详解】
∵AB是半圆O的直径,
∴∠ACB=90,
∵sin∠C
解析:3或9 或2
3或34
3
【解析】
【分析】
先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.
【详解】
∵AB是半圆O的直径,
∴∠ACB=90︒,
∵sin∠CAB=4
5
,
∴
4
5 BC
AB
=,
∵AB=10,
∴2222
1086
AC AB BC
=-=-=,
∵点D为BC的中点,
∴CD=4.
∵∠ACB=∠DCE=90︒,
①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图
∴
1
AC BC
CE CD
=,即
1
68
4
CE
=,
∴CE1=3,
∵点E1在射线AC上,
∴AE1=6+3=9,
同理:AE2=6-3=3.
②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图
∴
3
AC BC
CD CE
=,即
3
68
4CE
=,
∴CE3=
16
3
,
∴AE3=6+
16
3
=
34
3
,
同理:AE4=6-
16
3
=
2
3
.
故答案为:3或9 或
2
3
或
34
3
.
【点睛】
此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.
18.4
【解析】
【分析】
根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.
解:由图可知,
第一行1个数,
第二行2个数,
第
解析:4
【解析】
【分析】
根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.
【详解】
解:由图可知,
第一行1个数,
第二行2个数,
第三行3个数,
…,
则第n行n个数,
故前n个数字的个数为:1+2+3+…+n=
(1)
2
n n+
,
∵当n=63时,前63行共有6364
2
⨯
=2016个数字,2020﹣2016=4,
∴2020在第64行左起第4个数,
故答案为:64,4.
【点睛】
本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.
19.48
【解析】
【分析】
根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】
∵两个相似三角形的面积比为
∴两个相似三角形的相似比为
∴两个相似三角形的周长也比为
∵较大的三
解析:48
【解析】
【分析】
根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】
∵两个相似三角形的面积比为9:16
∴两个相似三角形的相似比为3:4
∴两个相似三角形的周长也比为3:4
∵较大的三角形的周长为64cm
∴较小的三角形的周长为64
348
4
cm ⨯=
故答案为:48.
【点睛】
本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.20..
【解析】
【分析】
根据比例的合比性质变形得:
【详解】
∵,
∴
故答案为:.
【点睛】
本题主要考查了合比性质,对比例的性质的记忆是解题的关键.
解析:5
2
.
【解析】【分析】
根据比例的合比性质变形得:
325
.
22 x y
y
++
==
【详解】
∵
3
2
x
y
=,
∴
325
.
22 x y
y
++
==
故答案为:5 2 .
【点睛】
本题主要考查了合比性质,对比例的性质的记忆是解题的关键.21.8
【解析】
试题分析:由题意可得,即可得到关于m的方程,解出即可.
由题意得,解得
考点:本题考查的是二次根式的性质
点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x
解析:8
【解析】
试题分析:由题意可得,即可得到关于m的方程,解出即可.
由题意得,解得
考点:本题考查的是二次根式的性质
点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.
22.【解析】
【分析】
如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相
解析:67 7
【解析】
【分析】
如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=
∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.
【详解】
如图,过点D作DF⊥BC于F,
∵△ABC,△PQC是等边三角形,
∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,
∴∠BCP=∠ACQ,且AC=BC,CQ=PC,
∴△ACQ ≌△BCP (SAS )
∴AQ =BP ,∠CAQ =∠CBP ,
∵AC =6,AD =2,
∴CD =4,
∵∠ACB =60°,DF ⊥BC ,
∴∠CDF =30°,
∴CF =12
CD =2,DF =CF ÷tan30°= ∴BF =4,
∴BD ,
∵△CPQ 是等边三角形,
∴S △CPQ 2, ∴当CP ⊥BD 时,△CPQ 面积最小,
∴cos ∠CBD =
BP BF BC BD =, ∴
6BP =,
∴BP ,
∴AQ =BP , ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,
∴△ADE ∽△BDC , ∴AE AD BC BD
=, ∴
6AE =,
∴AE ,
∴QE =AQ−AE .
. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键.
23.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,
所以乙组成绩更稳定.
【解析】
【分析】
(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中
解析:(1)83
,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.
【解析】
【分析】
(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;
(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.
【详解】
(1)甲组方差:
()()()()()()22222218789810888589863
⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10
故甲组中位数:(8+9)÷2=8.5
乙组平均分:(9+6+8+10+7+8)÷6=8
填表如下:
故答案为:83
,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.
【点睛】
本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键. 24.或
【解析】
【分析】
如图1,当⊙F 与Rt△ABC 的边AC 相切时,切点为H ,连接FH ,则HF⊥AC,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE=∠ACB=90°,DE =AB =5
解析:
209或145
【解析】
【分析】 如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,
根据相似三角形的性质得到DF =
209
;如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,推出点H 为切点,DH 为⊙F 的直径,根据相似三角形的性质即可得到结论.
【详解】 如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,
连接FH ,则HF ⊥AC ,
∴DF =HF ,
∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =
BC AC =34, ∴AC =4,AB =5,
将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,
∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,
∵FH ⊥AC ,CD ⊥AC ,
∴FH ∥CD ,
∴△EFH ∽△EDC ,
∴
FH CD =EF DE , ∴4DF =55
DF , 解得:DF =
209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,
∵∠A=∠D,∠AEH=∠DEC
∴∠AHE=90°,
∴点H为切点,DH为⊙F的直径,∴△DEC∽△DBH,
∴DE
BD
=
CD
DH
,
∴5
7
=
4
DH
,
∴DH=28
5
,
∴DF=14
5
,
综上所述,当FD=20
9
或
14
5
时,⊙F与Rt△ABC的边相切,
故答案为:20
9
或
14
5
.
【点睛】
本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.
三、解答题
25.(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大
【解析】
【分析】
根据表格中数据,可得抛物线与x轴交点坐标,与y轴交点坐标,抛物线的对称轴直线以及抛物线在对称轴左侧的增减性,从而进行解答.
【详解】
解:由表格数据可知:当x=0时,y=3;当y=0时,x=-1或3
∴该函数三条不同的性质为:
(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大
【点睛】 本题考查二次函数性质,数形结合思想解题是本题的解题关键. 26.(1)245y x x =-++;(2)△BPC 面积的最大值为
1258 ;(3)D 的坐标为(0,-1)或(0,-
103);(4)M (1117,0),N (0,115
) 【解析】
【分析】
(1)抛物线的表达式为:y=a (x+1)(x-5)=a (x 2-4x-5),即-5a=5,解得:a=-1,即可求解; (2)利用S △BPC =
12×PH×OB=52(-x 2+4x+5+x-5)=12(x-52)2+1258
,即可求解; (3)B 、C 、D 为顶点的三角形与△ABC 相似有两种情况,分别求解即可; (4)作点E 关于y 轴的对称点E′(-2,9),作点F (2,9)关于x 轴的对称点F′(3,-8),连接E′、F′分别交x 、y 轴于点M 、N ,此时,四边形EFMN 的周长最小,即可求解.
【详解】
解:(1)把()1,0A -,()5,0B 分别代入25y ax bx =++得:
0=502555a b a b -+⎧⎨=++⎩
∴14a b =-⎧⎨=⎩
∴抛物线的表达式为:245y x x =-++.
(2)如图,过点P 作PH ⊥OB 交BC 于点H
令x =0,得y =5
∴C (0,5),而B (5,0)
∴设直线BC 的表达式为:y kx b =+
∴505b k b =⎧⎨=+⎩
∴15k b =-⎧⎨=⎩
∴5y x =-+
设245P m,m m -++(),则5H m,m -+()
∴224555PH m m m m m =-+++-=-+
∴21552PBC S
m m =⨯⨯-+() ∴255125228
PBC S m =--+() ∴△BPC 面积的最大值为1258
. (3)如图,∵ C (0,5),B (5,0)
∴OC =OB ,
∴∠OBC =∠OCB =45°
∴AB =6,BC =52要使△BCD 与△ABC 相似
则有AB BC BC CD =或AB CD BC BC
= ①当
AB BC BC CD =时 5252CD
= ∴253
CD = 则103OD =
∴D (0,103-
) ② 当AB CD BC BC
=时, CD =AB =6,
∴D(0,-1)
即:D的坐标为(0,-1)或(0,-
10
3
)
(4)∵245
y x x
=-++
2
29
y x+
=--
()
∵E为抛物线的顶点,
∴E(2,9)
如图,作点E关于y轴的对称点E'(﹣2,9),
∵F(3,a)在抛物线上,
∴F(3,8),
∴作点F关于x轴的对称点F'(3,-8),
则直线E' F'与x轴、y轴的交点即为点M、N
设直线E' F'的解析式为:y mx n
=+
则
92
83
m n
m n
=-+
⎧
⎨
-=+
⎩
∴
17
5
11
5
m
n
⎧
=-
⎪⎪
⎨
⎪=
⎪⎩
∴直线E' F'的解析式为:1711
55
y x
=-+
∴11
17
M(,0),N(0,
11
5
).
【点睛】
本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握.
27.12 5
【解析】
【分析】
过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.
【详解】
过点A作AD⊥BC,垂足为D,
∵AB=AC=13,BC=10,
∴BD=DC=1
2
BC=5,
∴AD2222
13512
AB BD
=-=-=,在Rt△ABD中,
∴tan B
12
5 AD
BD
==.
【点睛】
本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.
28.(1)1
3
;(2)
1
3
.
【解析】
【分析】
(1)直接利用概率公式计算;
(2)先利用画树状图展示所有9种等可能的结果数,找出两人被分配到同一个项目组的结果数,然后根据概率公式计算.
【详解】
解:(1)小明被分配到“迷你马拉松”项目组的概率为1
3
;
(2)画树状图为:
共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,
所以两人被分配到同一个项目组的概率=3
9
=
1
3
.
【点睛】
此题主要考查概率的求解,解题的关键是熟知树状图的画法.
29.(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【解析】
【分析】
(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x元,超市平均每天可多售出10x件;
(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w,化为一般式后,再配方可得出结论.
【详解】
解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x件;
(2)设每件商品降价x元时,利润为w元
根据题意得:w=(30-x)(100+10x)= -10x2+200x+3000=-10(x-10)2+4000
∵-10<0,∴w有最大值,
当x=10时,商场日盈利最大,最大值是4000元;
答:每件商品降价10元时,商场日盈利最大,最大值是4000元.
【点睛】
本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w关于x的二次函数解析式是解题的关键.
30.(1)见解析,(2)见解析,(3π
【解析】
【分析】
(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;
(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.
【详解】
解:(1)如图所示,△A′B′C′即为所求.
(2)如图所示,△A ″B ″C ′即为所求.
(3)∵A ′C 2223+13A ′C ′A ″=90°,
∴点A ′所经过的路线长为90?·13180π=132
π, 13π. 【点睛】 本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.
31.△ABC ∽△A 'B 'C ',理由见解析
【解析】
【分析】
由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得
△ABD ∽△A 'B 'D ',进而可得∠B =∠B ',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC ∽△A 'B 'C '.
【详解】
△ABC ∽△A 'B 'C ', 理由:∵
==''''''
AB BD AD A B B D A D ∴△ABD ∽△A 'B 'D ',
∴∠B =∠B ', ∵AD 、A 'D '分别是△ABC 和△A 'B 'C '的中线
∴12BD BC =,1''''2
B D B
C =, ∴12==1''''
''2
BC AB BC A B B C B C , 在△ABC 和△A 'B 'C '中
∵
=''''
AB BC A B B C ,且∠B =∠B ' ∴△ABC ∽△A 'B 'C '.
【点睛】 本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似.
32.(1)见详解;(2)
45 【解析】
【分析】
(1)根据两角相等的两个三角形相似,即可证明△ADE ∽△BFA ;
(2)利用三角形的面积比等于相似比的平方,即可解答.
【详解】
(1)证明:∵BF ⊥AE 于点F ,四边形ABCD 为正方形,
∴△ADE 和△BFA 均为直角三角形,
∵DC ∥AB ,
∴∠DEA=∠FAB ,
∴△ADE ∽△BFA ;
(2)解:∵AD=2,E 为CD 的中点,
∴DE=1,
∴
,
∴2
AE AB =, ∵△ADE ∽△BFA ,
∴245BFA ADE S S ∆∆==, ∵S △ADE =
12×1×2=1, ∴S △BFA =45S △ADE =45
. 【点睛】
本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键.。