2012年深圳中考数学全真模拟试卷(三)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年深圳中考全真数学试卷(三)
一.选择题(共12小题,每小题3分,共36分)
1.在0,-1,1,2这四个数中,最小的数是( )
A 、-1
B 、0
C 、1
D 、2
2.我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的左面看这个几何体的左视图是
A B C D
3、方程x 2 = 2x 的解是( )
A 、x=2
B 、x 1=2 ,x 2= 0
C 、x 1=2,x 2=0
D 、x = 0
4、长城总长约为6700010米,用科学记数法表示是(保留两个有效数字)( )
A 、6.7×105米
B 、6.7×106米
C 、6.7×107米
D 、6.7×108米
5、函数y=
x
k (k ≠0)的图象过点(2,-2),则此函数的图象在平面直角坐标系中的( ) A 、第一、三象限 B 、第三、四象限 C 、A 、第一、二象限 D 、第二、四象限
6、图所列图形中是中心对称图形的为(
)
A B C D
7、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。

参加这个游戏的观众有三次翻牌的机会。

某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( )
A 、41
B 、61
C 、51
D 、20
3 8、实数a 、b 在数轴上的位置如图所示,那么化简|a -b|-2a 的结果是( )
A 、2a -b
B 、b
C 、-b
D 、-2a+b
9、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( )
A 、106元
B 、105元
C 、118元
D 、108元
b O a
10.如图,在△ABC 中,∠A=30°,tanB=2
3,AC=32,AB=( ) A.4 B.5 C.6 D.7
11. 如图, ⊙O 的半径OA=6, 以A 为圆心,OA 为半径的弧叫⊙O 于B 、C 点, 则
BC= ( ) A. 36 B. 26 C. 33 D. 23
12.用一块等边三角形的硬纸片(如图1)做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如
图2),在△ABC 的每个顶点处各剪掉一个四边形,其
中四边形AMDN 中,∠MDN 的度数为( )
A. 100°
B. 110°
C. 120°
D. 130°
二、填空题(每小题3分,共12分) 13.分解因式a-ab 2
14、如图,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△
ABC ≌△DCB ,则还需增加一个条件是
15、已知:
212212+=⨯,323323+=⨯,434434+=⨯,……,若10b a 10b a +=⨯(a 、b 都是正整数),则a+b 的最小值是。

(13) (15)
16、如图,口ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好
落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为
三. 解答题 (本题有7个小题, 共52分)
17、(6分)计算:(13-)0+(
3
1)-1-2)5(--|-1|
A D
B
C
D A
B C E F
A B C D 图1
图2
M N
17、(6分)先化简,再求值:(2
x x 2x x +--)÷2x x 4-,其中x=2011
19、(7分)右图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图。

(1)求该班有多少名学生?(2分)(2)在扇形统计图中,求骑车人数所占的圆心角度 数。

(3分)3)若全年级有500人,估计该年级步行人数。

(2分)
20(7分).如图,梯形ABCD 中,AB ∥DC ,∠B =90°,
E 为BC 上一点,且AE ⊥ED . 若BC =12,DC =7,BE ∶
EC =1∶2, (1)求AB 的长.(4分)(2)求△AED 的面积(3分)
21、(8分)某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。

(1)(4分)求乙工程队单独做需要多少天完成?
(2)(4分)将工程分两部分,甲做其中一部分用了x 天,乙做另一部分用了y 天,其中x 、y 均为正整数,且x<15,y<70,求x 、y.
20 12 8 乘车 步行 骑车
步行50%
步行 20% 骑车 30% A
B E C
D
22、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合),点C 是
BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。

(1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。

23.(9分)、已知△ABC 是边长为4的等边三角形,BC 在x 轴上,点D 为BC 的中点,点
A 在第一象限内,A
B 与y 轴的正半轴相交于点E ,点B (-1,0),P 是A
C 上的一个动点(P 与点A 、C 不重合)
(1)(3分)求点A 、E 的坐标;(2)(3分)若y=c bx x 7
362++-过点A 、E ,求抛物线的解析式。

(3)(3分)连结PB 、PD ,设L 为△PBD 的周长,当L 取最小值时,求点P 的坐标及L 的最小值,并判断此时点P 是否在(2)中所求的抛物线上,请充分说明你的判断理由。

A B C O D E y x
A O D
B H E C。

相关文档
最新文档