八年级数学第二学期 第二次月考检测测试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;
④GE BG DE =+;⑤222BN DF NF +=.真命题有( )
A .2个
B .3个
C .4个
D .5个
2.如图,在菱形ABCD 中,两对角线AC 、BD 交于点O ,AC =8,BD =6,当△OPD 是以PD 为底的等腰三角形时,CP 的长为( )
A .2
B .185
C .75
D .52
3.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且CD=3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论: ①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =28.8. 其中正确结论的个数是( )
A .4
B .3
C .2
D .1
4.如图,在平行四边形ABCD 中,120C ∠=︒,28AD AB ==,点H 、G 分别是边AD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF .则EF 的最大值与最小值的差为( )
A .2
B .232-
C .3
D .43-
5.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;
②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )
A .5
B .4
C .3
D .2
6.在矩形ABCD 中,点E 、F 分别在AB 、AD 上,∠EFB=2∠AFE=2∠BCE ,CD=9,CE=20,则线段AF 的长为( ).
A .32
B .112
C 19
D .4
7.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;
②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )
A .0个
B .1个
C .2个
D .3个
8.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF =4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )
A .3
B .4
C .6
D .8
9.已知,在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 均在x 轴正半轴上,若已知正方形1111D C B A 的
边长为1,1160B C O ︒∠=,且112233////B C B C B C ,则点3A 的坐标是( )
A .331(3,)++
B .333(3,)2++
C .331(3,)2++
D .333(3,)++ 10.如图,在□ABCD 中,AD=2AB ,F 是AD 的中点,作C
E ⊥AB ,垂足E 在线段AB 上(E 不与A 、B 重合),连接E
F 、CF ,则下列结论中一定成立的是 ( )
①∠DCF=12
∠BCD ;②EF=CF ;③2BEC CEF S S ∆∆<;④∠DFE=4∠AEF A .①②③④
B .①②③
C .①②
D .①②④
二、填空题
11.如图,正方形ABCD的边长为4,点E为CD边上的一个动点,以CE为边向外作正方形ECFG,连结BG,点H为BG中点,连结EH,则EH的最小值为______
12.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是直线AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连结AM、MN,若AC=6,AB=5,则AM-MN的最大值为________.
13.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是_____.
14.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为_____.
15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AC=,则BD的长为_______________.
AB=,2
3
16.如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、
P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.
17.如图,Rt ABE ∆中,90,B AB BE ︒
∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________
18.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.
19.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②S △ABG =32
S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG .其中正确的是_____.(把所有正确结论的序号都选上)
20.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC
=,
EC m BC =.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.
三、解答题
21.已知,在△ABC 中,∠BAC =90°,∠ABC =45°,D 为直线BC 上一动点(不与点B ,C 重合),以AD 为边作正方形ADEF ,连接CF .
(1)如图1,当点D 在线段BC 上时,BC 与CF 的位置关系是 ,BC 、CF 、CD 三条线段之间的数量关系为 ;
(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请猜想BC 与CF 的位置关系BC ,CD ,CF 三条线段之间的数量关系并证明;
(3)如图3,当点D 在线段BC 的反向延长线上时,点A ,F 分别在直线BC 的两侧,其他条件不变.若正方形ADEF 的对角线AE ,DF 相交于点O ,OC =
132,DB =5,则△ABC 的面积为 .(直接写出答案)
22.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .
(1)求证:,PG PC PG PC ⊥=.
简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论; (2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC
的值,写出你的猜想并加以证明;
(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点
A B G 、、在一条直线上,如图3,则CP =________.
23.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .
(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.
(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;
(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:
①请直接写出CF 、BC 、CD 三条线段之间的关系.
②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.
24.如图1,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接AE ,CE .
(1)求证:AE =CE ;
(2)如图2,点P 是边CD 上的一点,且PE ⊥BD 于E ,连接BP ,O 为BP 的中点,连接EO .若∠PBC =30°,求∠POE 的度数;
(3)在(2)的条件下,若OE =2,求CE 的长.
25.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.
(1)求点B 的坐标;
(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;
(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.
26.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .
()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;
()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;
()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程
中,点Р随之运动,请直接写出点Р运动的路径长.
27.已知,如图,在三角形ABC ∆中,20AB AC cm ==,BD AC ⊥于D ,且16BD cm =.点M 从点A 出发,沿AC 方向匀速运动,速度为4/cm s ;同时点P 由B 点出发,沿BA 方向匀速运动,速度为1/cm s ,过点P 的动直线//PQ AC ,交BC 于点Q ,连结PM ,设运动时间为()t s ()05t <<,解答下列问题:
(1)线段AD =_________cm ;
(2)求证:PB PQ =;
(3)当t 为何值时,以P Q D M 、、、为顶点的四边形为平行四边形?
28.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .
(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.
(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG =BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;
(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB =AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.
29.阅读下列材料,并解决问题:
如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC 的值是多少.
在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.
参考小红的做法,解决以下问题:
(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC
=_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC
的值.
30.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .
(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;
(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,
①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当
A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.
②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知A
C P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
根据题意,连接CF ,由正方形的性质,可以得到△ABF ≌△CBF ,则AF=CF ,∠BAF=∠BCF ,由∠BAF=∠FGC=∠BCF ,得到AF=CF=FG ,故①正确;连接AC ,与BD 相交于点O ,由正方形性质和等腰直角三角形性质,证明△AOF ≌△FHG ,即可得到EH=AO ,则③正确;把△ADE 顺时针旋转90°,得到△ABM ,则证明△MAG ≌△EAG ,得到MG=EG ,即可得到EG=DE+BG ,故④正确;②无法证明成立,即可得到答案.
【详解】
解:连接CF ,
在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,
在△ABF 和△CBF 中,
45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩

∴△ABF ≌△CBF (SAS ),
∴AF=CF ,∠BAF=∠BCF ,
∵FG ⊥AE ,
∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,
又∵∠BGF+∠CGF=180°,
∴∠BAF=∠CGF ,
∴∠CGF=∠BCF
∴CF=FG ,
∴AF=FG ;①正确;
连接AC 交BD 于O .
∵四边形ABCD 是正方形,HG ⊥BD ,
∴∠AOF=∠FHG=90°,
∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,
∴∠OAF=∠GFH ,
∵FA=FG ,
∴△AOF ≌△FHG ,
∴FH=OA=定值,③正确;
如图,把△ADE 顺时针旋转90°,得到△ABM ,
∴AM=AE ,BM=DE ,∠BAM=∠DAE ,
∵AF=FG ,AF ⊥FG ,
∴△AFG 是等腰直角三角形,
∴∠FAG=45°,
∴∠MAG=∠BAG+∠DAE=45°,
∴∠MAG=∠FAG ,
在△AMG 和△AEG 中,
45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩

∴△AMG ≌△AEG ,
∴MG=EG ,
∵MG=MB+BG=DE+BG ,
∴GE= DE+BG ,故④正确;
如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN , 则有BP=DF ,∠ABP=∠ADB=45°,
∵∠ABD=45°,
∴∠PBN=90°,
∴BP 2+BN 2=PN 2,
由上可知△AFG 是等腰直角三角形,∠FAG=45°,
∴∠MAG=∠BAG+∠DAE=45°,
∴∠MAG=∠FAG ,
在△ANP 和△ANF 中,
45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩

∴△ANP ≌△ANF ,
∴PN=NF ,
∴BP 2+BN 2=NF 2,
即DF 2+BN 2=NF 2,
故⑤正确;
根据题意,无法证明②正确,
∴真命题有四个,
故选C.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.
2.C
解析:C
【解析】
【分析】
过O 作OE ⊥CD 于E .根据菱形的对角线互相垂直平分得出OB ,OC 的长,AC ⊥BD ,再利用勾股定理列式求出CD ,然后根据三角形的面积公式求出OE .在Rt △OED 中,利用勾股定理求出ED .根据等腰三角形三线合一的性质得出PE ,利用CP =CD -PD 即可得出结论.
【详解】
过O 作OE ⊥CD 于E .
∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴OB 12=BD 12=⨯6=3,OA =OC 12=
AC 12=⨯8=4,AC ⊥BD ,由勾股定理得:CD 2222OD OC 34=+=+=5. ∵12OC ×OD =12
CD ×OE ,∴12=5OE ,∴OE =2.4.在Rt △ODE 中,DE =22OD OE -=223 2.4-=1.8.
∵OD =OP ,∴PE =ED =1.8,∴CP =CD -PD =5-1.8-1.8=1.4=75

故选C .
【点睛】
本题考查了菱形的性质,等腰三角形的性质,勾股定理,求出OE 的长是解题的关键.
3.B
解析:B
【分析】
由正方形的性质和折叠的性质得出AB=AF,∠AFG=90°,由HL证明Rt△ABG≌Rt△AFG,得出①正确;
设BG=FG=x,则CG=12﹣x.由勾股定理得出方程,解方程求出BG,得出GC,即可得出②正确;
由全等三角形的性质和三角形内角和定理得出∠AGB=∠GCF,得出AG∥CF,即可得出③正确;
通过计算三角形的面积得出④错误;即可得出结果.
【详解】
①正确.理由如下:
∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质
得:AF=AD,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF.在Rt△ABG和Rt△AFG
中,
AG AG
AB AF
=


=

,∴Rt△ABG≌Rt△AFG(HL);
②正确.理由如下:
由题意得:EF=DE=1
3
CD=4,设BG=FG=x,则CG=12﹣x.
在直角△ECG中,根据勾股定理,得(12﹣x)2+82=(x+4)2,解
得:x=6,∴BG=6,∴GC=12﹣6=6,∴BG=GC;
③正确.理由如下:
∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.

∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GC F=2∠GFC=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF;
④错误.理由如下:
∵S△GCE=1
2
GC•CE=
1
2
×6×8=24.
∵GF=6,EF=4,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=3
5
×24=
72
5
≠28.8.
故④不正确,∴正确的有①②③.
故选B.
【点睛】
本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识;本题综合性强,有一定的难度.
4.C
解析:C
【分析】
如图,取AD的中点M,连接CM、AG、AC,作AN⊥BC于N.首先证明∠ACD=90°,求出
AC,AN,利用三角形中位线定理,可知EF=1
2
AG,求出AG的最大值以及最小值即可解
决问题.
【详解】
解:如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .
∵四边形ABCD 是平行四边形,∠BCD =120°,28AD AB ==
∴∠D =180°−∠BCD =60°,AB =CD =4,
∵AM =DM =DC =4,
∴△CDM 是等边三角形,
∴∠DMC =∠MCD =60°,AM =MC ,
∴∠MAC =∠MCA =30°,
∴∠ACD =90°,
∴AC =43
在Rt △ACN 中,∵AC =3ACN =∠DAC =30°, ∴AN =12
AC =3∵AE =EH ,GF =FH , ∴EF =12
AG , ∵点G 在BC 上,∴AG 的最大值为AC 的长,最小值为AN 的长,
∴AG 的最大值为4323
∴EF 的最大值为233
∴EF 3故选:C
【点睛】
本题考查平行四边形的性质、三角形的中位线定理、等边三角形的判定和性质、直角三角形30度角性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明∠ACD =90°,属于中考选择题中的压轴题.
5.B
解析:B
【分析】
①③利用正方形的性质、翻折不变性即可解决问题;
②构造全等三角形即可解决问题;
④如图2,过B 作BQ ⊥PH ,垂足为Q .证明△ABP ≌△QBP (AAS ),以及△BCH ≌△BQH 即可判断;
⑤利用特殊位置,判定结论即可;
【详解】
解:根据翻折不变性可知:PE=BE,故①正确;
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH−∠EPB=∠EBC−∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
,故③正确;∴∠APB=∠BPH,即PB平分APG
如图1中,作FK⊥AB于K.设EF交BP于O.
∵∠FKB=∠KBC=∠C=90°,
∴四边形BCFK是矩形,
∴KF=BC=AB,
∵EF⊥PB,
∴∠BOE=90°,
∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,
∴∠ABP=∠EFK,
∵∠A=∠EKF=90°,
∴△ABP≌△KFE(ASA),
∴EF=BP,故②正确,
如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中,
∠APB=∠BPH,∠A=∠BQP,BP=BP,
∴△ABP≌△QBP(AAS).
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH(HL)
∴QH=HC,
∴PH=PQ+QH=AP+HC,故④正确;
当点P与A重合时,显然MH>MF,故⑤错误,
故选:B.
【点睛】
本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.
6.C
解析:C
【分析】
如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,进而求出BH=CH=EH=10,∠HBC=∠HCB=a,再根据AD∥BC求出EF∥BH,进而得出△EFG和△BGH 均为等腰三角形,则BF=EH=10,再根据勾股定理即可求解.
【详解】
如图,取CE 的中点H ,连接BH ,设∠EFB=2∠AFE=2∠ECB=2a ,则∠AFB=3a ,
∵在矩形ABCD 中有AD ∥BC ,∠A=∠ABC=90°,
∴△BCE 为直角三角形,
∵点H 为斜边CE 的中点,CE=20,
∴BH=CH=EH=10,∠HBC=∠HCB=a ,
∵AD ∥BC ,
∴∠AFB=∠FBC=3a ,
∴∠GBH=3a-a=2a=∠EFB ,
∴EF ∥BH ,
∴∠FEG=∠GHB=∠HBC+∠HCB=2a=∠EFB=∠GBH ,
∴△EFG 和△BGH 均为等腰三角形,
∴BF=EH=10,
∵AB=CD=9, ∴222210919AF BF AB =
-=-=
故选C.
【点睛】
本题考查直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,解题的关键是根据题意正确作出辅助线. 7.C
解析:C
【分析】
由四边形ABCD 是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE 是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC ⊥BC ,得到S ▱ABCD =AC •BC ,故②正确,根据直角三角形的性质得到3AC BC =,根据三角形的中位线的性质得到OE=
12
BC ,于是得到OE :3∶6;故③错误;
【详解】
解:∵四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BCD ∠=︒
∵CE 平分BCD ∠交AB 于点E ,
∴60DCE BCE ∠=∠=︒,
∴CBE △是等边三角形,
∴BE BC CE ==.
∵2AB BC =,
∴AE BE CE ==,
∴90ACB ∠=︒,
∴30ACD CAB ∠=∠=︒,故①正确;
∵AC BC ⊥,
∴ABCD S AC BC =⋅,故②正确;
在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒,
∴AC =.
AO OC =,AE BE =, ∴1OE BC 2
=, 1
::62
OE AC BC ∴==,故③错误. 故选:C .
【点睛】
此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE 是等边三角形,OE 是△ABC 的中位线是关键.
8.D
解析:D
【分析】
连接EC ,过A 作AM ∥BC 交FE 的延长线于M ,求出平行四边形ACFM ,根据等底等高的三角形面积相等得出△BDE 的面积和△CDE 的面积相等,△ADE 的面积和△AME 的面积相等,推出阴影部分的面积等于平行四边形ACFM 的面积的一半,求出CF×h CF 的值即可.
【详解】
连接DE 、EC ,过A 作AM ∥BC 交FE 的延长线于M ,
∵四边形CDEF 是平行四边形,
∴DE ∥CF ,EF ∥CD ,
∴AM ∥DE ∥CF ,AC ∥FM ,
∴四边形ACFM 是平行四边形,
∵△BDE 边DE 上的高和△CDE 的边DE 上的高相同,
∴△BDE 的面积和△CDE 的面积相等,
同理△ADE 的面积和△AME 的面积相等,
即阴影部分的面积等于平行四边形ACFM 的面积的一半,是
12×CF×h CF , ∵△ABC 的面积是24,BC =3CF
∴12BC×h BC =12
×3CF×h CF =24, ∴CF×h CF =16, ∴阴影部分的面积是
12
×16=8, 故选:D .
【点睛】
此题考查平行四边形的判定及性质,同底等高三角形面积的关系,解题中注意阴影部分面积的求法,根据图形的特点选择正确的求法是解题的关键.
9.C
解析:C
【分析】
根据两直线平行,同位角相等可得∠B 3C 3O=∠B 2C 2O=∠B 1C 1O=60°,然后利用三角形全等可得B 2E 2=E 1E 2=D 1E 1=E 3C 2,E 2C 2=E 3E 4=B 3E 4,解直角三角形求出OC 1、C 1E 、E 1E 2、E 2C 2、C 2E 3、E 3E 4、E 4C 3,再求出B 3C 3,过点A 3延长正方形的边交x 轴于M ,过点A 3作A 3N ⊥x 轴于N ,先求出A 3M ,再解直角三角形求出A 3N 、C 3N ,然后求出ON ,再根据点A 3在第一象限写出坐标即可.
【详解】
解∵B 1C 1∥B 2C 2∥B 3C 3,
∴∠B 3C 3O =∠B 2C 2O =∠B 1C 1O =60°,
∵正方形A 1B 1C 1D 1的边长为1,B 1C 1=C 1D 1,∠B 1C 1D 1=90°,
∴∠C 1B 1O=∠D 1C 1E 1=30°,
∴△C 1B 1O ≌△D 1C 1E 1;
∴B 1O=C 1E 1,OC 1=D 1E 1,
同理可得B 2E 2=E 1E 2=D 1E 1=E 3C 2;E 2C 2=E 3E 4=B 3E 4;
111122223111111222
OC D E E E B E C E B C ∴=====
=⨯= 11113331C E D C === 2234342231333236E C E E B E B E ===
=⨯= 433433313636
E C B E ==⨯=
3343112263
B C E C ∴==⨯= 过点A 3延长正方形的边交x 轴于M ,过点A 3作A 3N ⊥x 轴于N ,
则332323333331133333A M A D D B C B C +=+=+=+= 33333331A N A M ++===3313313322C M A M ++=== 34313333123C N E M C M ⎛⎫+-∴=-=-= ⎪ ⎪⎝⎭
111122223343ON OC C E E E E C C E E E C N =++++++
1313131313322262
-=++++++= ∵点A 3在第一象限,
∴点A 3的坐标是3313,26⎫⎪⎪⎭
. 故选C.
【点睛】
本题考查正方形的性质,坐标与图形性质,全等三角形的判定与性质,30°角的直角三角形.熟练掌握有30°角的直角三角形各边之间的数量关系是解决本题的关键.
10.B
解析:B
【分析】
分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),得出对应线段之间关系进而得出答案.
【详解】
解:①∵F 是AD 的中点,∴AF =FD .
∵在▱ABCD 中,AD =2AB ,∴AF =FD =CD ,∴∠DFC =∠DCF .
∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF
=1
2
∠BCD,故①正确;
延长EF,交CD延长线于M.
∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF.∵F为AD中点,∴AF=FD.在△AEF和△DFM
中,
A FDM
AF DF
AFE DFM
∠=∠


=

⎪∠=∠

,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M.
∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°.
∵FM=EF,∴EF=CF,故②正确;
③∵EF=FM,∴S△EFC=S△CFM.
∵MC>BE,∴S△BEC<2S△EFC
故③正确;
④设∠FEC=x,则
∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x .
∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④错误.
故答案为B.
点睛:本题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出
△AEF≌△DMF是解题的关键.
二、填空题
112
【分析】
过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.
【详解】
解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:
∵H是BG的中点,且BO与HE平行,
∴HE为△BOG的中位线,且BO=2HE,
故要使得HE最短,只需要BO最短即可,
当E点位于C点时,则O点与C点重合,
当E点位于D点时,则O点与A点重合,
故E点在CD上运动时,O点在AC上运动,
由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,
∴△BOC为等腰直角三角形,且BC=4,、
∴22
22
BO,

1
2
2
HE BO,
2
【点睛】
本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE线段长转移到线段BO上.
12.5 2
【分析】
连接DM,直角三角形斜边中线等于斜边一半,得AM=DM,利用两边之差小于第三边得到AM MN DN
-≤,又根据三角形中位线的性质即可求解.
【详解】
连接DM,如下图所示,
∵90BAC EDF ∠=∠=︒
又∵M 为EF 中点
∴AM=DM=12
EF ∴AM MN DM MN DN -=-≤(当D 、M 、N 共线时,等号成立)
∵D 、N 分别为BC 、AC 的中点,即DN 是△ABC 的中位线
∴DN=12AB=52
∴AM MN -的最大值为
52 故答案为
52
. 【点睛】 本题考查了直角三角形斜边中线的性质,三角形的三边关系,关键是确定AM MN -的取值范围.
13.(-10,3)
【解析】
试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE ,设CE=x ,则BE=8-x ,然后根据折叠的性质,可得EF=8-x ,根据勾股定理可得2224(8)x x +=-,解得x =3,则OF=6,所以OC=10,由此可得点E 的坐标为(-10,3). 故答案为:(-10,3)
14.200m
【分析】
如图,延长AC 、BD 交于点E ,延长HK 交AE 于F ,延长NJ 交FH 于M ,则四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形,△ABC 是等边三角形,由此即可解决问题.
【详解】
如图,延长AC 、BD 交于点E ,延长HK 交AE 于F ,延长NJ 交FH 于M
由题意可知,四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形
∵∠A =∠B =60°
∴18060E A B ∠=-∠-∠=
∴△ABC 是等边三角形
∴ED =FM+MK+KH =CN+JG+HK ,EC =EF+FC =JN+KG+DH
∴“九曲桥”的总长度是AE+EB =2AB =200m
故答案为:200m .
【点睛】
本题考查了平行四边形、等边三角形、三角形内角和的知识;解题的关键是熟练掌握平行四边形、等边三角形、三角形内角和的性质,从而完成求解.
15.42
【分析】
首先由对边分别平行可判断四边形ABCD 为平行四边形,连接AC 和BD ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,通过证明△ADF ≌△ABC 来证明四边形ABCD 为菱形,从而得到AC 与BD 相互垂直平分,再利用勾股定理求得BD 长度.
【详解】
解:连接AC 和BD ,其交点为O ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,
∵AB ∥CD ,AD ∥BC ,
∴四边形ABCD 为平行四边形,
∴∠ADF=∠ABE ,
∵两纸条宽度相同,
∴AF=AE ,
∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
∴△ADF ≌△ABE ,
∴AD=AB ,
∴四边形ABCD 为菱形,
∴AC 与BD 相互垂直平分,

BD==故本题答案为:
【点睛】
本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.
16.4:9
【分析】
设DP =DN =m ,则PN
m ,PC =2m ,AD =CD =3m ,再求出FG=CF=
12BC=32m ,分别求出两个阴影部分的面积即可解决问题.
【详解】
根据图形的特点设DP =DN =m ,则PN
m ,

m=MC ,

∴BC =CD =PC+DP=3m ,
∵四边形HMPN 是正方形,
∴GF ⊥BC
∵∠ACB =45︒,
∴△FGC 是等腰直角三角形,
∴FG=CF=
12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98
m 2, ∴12:S S =
12m 2: 98m 2=4:9, 故答案为4:9.
【点睛】
本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
17.①②④⑤
【分析】
根据∠B=90°,AB=BE,△ABE绕点A逆时针旋转45°,得到△AHD,可得△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,可证AD//BC,根据DC⊥BC,可得∠HDE=∠CDE,根据三角形的内角和可得∠HDE=∠CDE,即DE平分∠HDC,所以①正确;
利用∠DAB=∠ABC=∠BCD=90°,得到四边形ABCD是矩形,有∠ADC=90°,∠HDC=45°,由①有DE平分∠HDC,得∠HDO=22.5°,可得∠AHB=67.5°,∠DHO=22.5°,可证OD=OH,利用 AE=AD易证∠OHE=∠HEO=67.5°,则有OE=OH,OD=OE,所以②正确;
利用AAS证明ΔDHE≅ΔDCE,则有DH=DC,∠HDE=∠CDE=22.5°,易的∠DHF=22.5°,
∠DFH=112.5°,则△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③错误;
根据△ABE是等腰直角三角形,JH⊥JE,∵J是BC的中点,H是BF的中点,得到2JH=CF,2JC=BC,JC=JE+CE,易证BC−CF=2CE,所以④正确;
过H作HJ⊥BC于J,并延长HJ交AD于点I,得IJ⊥AD,I是AD的中点,J是BC的中点,H是BF的中点,所以⑤正确;
【详解】
∵Rt△ABE中,∠B=90°,AB=BE,
∴∠BAE=∠BEA=45°,
又∵将△ABE绕点A逆时针旋转45°,得到△AHD,
∴△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,
∴∠EAD=45°,AE=AD ,∠AHD=90°,
∴∠ADE=∠AED,
∴∠BAD=∠BAE+∠EAD=45°+45°=90°,
∴AD//BC,
∴∠ADE=∠DEC,
∴∠AED=∠DEC,
又∵DC⊥BC,
∴∠DCE=∠DHE=90°
∴由三角形的内角和可得∠HDE=∠CDE,
即:DE平分∠HDC,所以①正确;
∵∠DAB=∠ABC=∠BCD=90°,
∴四边形ABCD是矩形,
∴∠ADC=90°,
∴∠HDC=45°,
由①有DE平分∠HDC,
∴∠HDO=1
2
∠HDC=
1
2
×45°=22.5°,
∵∠BAE=45°,AB=AH,
∴∠OHE=∠AHB= 1
2
(180°−∠BAE)=
1
2
×(180°−45°)=67.5°,
∴∠DHO=∠DHE−∠FHE=∠DHE−∠AHB=90°−67.5°=22.5°,∴OD=OH,
在△AED中,AE=AD,
∴∠AED=1 2
(180°−∠EAD)=
1
2
×(180°−45°)=67.5°,
∴∠OHE=∠HEO=67.5°,
∴OE=OH,
∴OD=OE,所以②正确;
在△DHE和△DCE中,
DHE DCE
HDE CDE
DE DE
∠=∠


∠=∠

⎪=


∴ΔDHE≅ΔDCE(AAS),
∴DH=DC,∠HDE=∠CDE=
1
2
×45°=22.5°,
∵OD=OH,
∴∠DHF=22.5°,
∴∠DFH=180°−∠HDF−∠DHF=180°−45°−22.5°=112.5°,∴△DHF不是直角三角形,并DH≠HF,
即有:CD≠HF,所以③不正确;
如图,过H作HJ⊥BC于J,并延长HJ交AD于点I,
∵△ABE是等腰直角三角形,JH⊥JE,
∴JH=JE,
又∵J是BC的中点,H是BF的中点,
∴2JH=CF,2JC=BC,JC=JE+CE,
∴2JC=2JE+2CE=2JH+2CE=CF+2CE=BC,
即有:BC−CF=2CE,所以④正确;
∵AD//BC,
∴IJ⊥AD,
又∵△AHD是等腰直角三角形,
∴I是AD的中点,
∵四边形ABCD是矩形,HJ⊥BC,
∴J是BC的中点,
∴H 是BF 的中点,所以⑤正确;
综上所述,正确的有①②④⑤,
故答案为:①②④⑤.
【点睛】
本题考查了全等三角形的判定与性质、旋转的性质、矩形的性质、角平分线的性质以及等腰直角三角形的判定与性质;证明三角形全等和等腰直角三角形是解决问题的关键. 18.15.5
【分析】
先根据折叠的性质可得,AE DE EAD EDA =∠=∠,再根据垂直的定义、直角三角形的性质可得B BDE ∠=∠,又根据等腰三角形的性质可得BE DE =,从而可得
6DE AE BE ===,同理可得出5DF AF CF ===,然后根据三角形中位线定理可得
1 4.52
EF BC ==,最后根据三角形的周长公式即可得. 【详解】
由折叠的性质得:,AE DE EAD EDA =∠=∠
AD 是BC 边上的高,即AD BC ⊥
90B EAD ∴∠+∠=︒,90BDE EDA ∠+∠=︒
B BDE ∴∠=∠
BE DE ∴=
1112622
DE AE BE AB ∴====⨯= 同理可得:1110522DF AF CF AC ===
=⨯= 又,AE BE AF CF ==
∴点E 是AB 的中点,点F 是AC 的中点
EF ∴是ABC 的中位线
119 4.522
EF BC ∴==⨯= 则DEF 的周长为65 4.515.5DE DF EF ++=++=
故答案为:15.5.
【点睛】
本题考查了折叠的性质、等腰三角形的性质、三角形中位线定理、直角三角形的性质等知识点,利用折叠的性质和等腰三角形的性质得出BE DE =是解题关键.
19.①②④.
【分析】
利用折叠性质得∠CBE=∠FBE ,∠ABG=∠FBG ,BF=BC=10,BH=BA=6,AG=GH ,则可得到∠EBG=12
∠ABC ,于是可对①进行判断;在Rt △ABF 中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x ,则GH=x ,GF=8-x ,HF=BF-BH=4,利用勾股定理得到x 2+42=(8-x )
2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用
相似比得到
4
3
DE AF
DF AB
==,而
6
2
3
AB
AG
==,所以
AB DE
AG DF
≠,所以△DEF与△ABG不相
似,于是可对③进行判断.
【详解】
解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,
∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,
∴∠EBG=∠EBF+∠FBG=1
2
∠CBF+
1
2
∠ABF=
1
2
∠ABC=45°,所以①正确;
在Rt△ABF中,AF=8,
∴DF=AD﹣AF=10﹣8=2,
设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,
∵GH2+HF2=GF2,
∴x2+42=(8﹣x)2,解得x=3,
∴GF=5,
∴AG+DF=FG=5,所以④正确;
∵△BCE沿BE折叠,点C恰落在边AD上的点F处,
∴∠BFE=∠C=90°,
∴∠EFD+∠AFB=90°,
而∠AFB+∠ABF=90°,
∴∠ABF=∠EFD,
∴△ABF∽△DFE,
∴AB
DF

AF
DE

∴DE
DF

AF
AB

8
6

4
3

而AB
AG

6
3
=2,
∴AB
AG

DE
DF

∴△DEF与△ABG不相似;所以③错误.
∵S△ABG=1
2
×6×3=9,S△GHF=
1
2
×3×4=6,
∴S△ABG=3
2
S△FGH,所以②正确.
故答案是:①②④.
【点睛】
本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.
20.7
【分析】
①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得
11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=
+四边形即可得出答案.
【详解】 四边形ABCD 是平行四边形
//,AD BC AD BC ∴=
,,AF EC n m BC BC
m n === AF EC ∴=
AD AF BC EC ∴-=-,即DF BE =
∴四边形AECF 、四边形BEDF 都是平行四边形
//,//AE CF BF DE ∴
∴四边形EGFH 是平行四边形
综上,图中共有4个平行四边形
如图,连接EF
1,,AF EC n m BC B n C
m ==+= AF EC BC AD ∴+==
AF DF AD +=
EC DF ∴=
AF BE ∴=
∴四边形ABEF 、四边形CDFE 都是平行四边形 11,44EFG ABEF EFH CDFE S S S S ∆∆∴==。

相关文档
最新文档