新人教版 六年级上册数学应用题归类整理和答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版 六年级上册数学应用题归类整理和答案
一、六年级数学上册应用题解答题 1.列出综合算式,不计算。
一根电线先截去它的40%,还剩下12米,再截去多少米后,这时正好剩下这根电线全长的14
? 解析:()112140%140%4
⎛⎫÷-⨯-- ⎪⎝
⎭
【分析】
根据题意可得,12米占这根电线总长度的()140%-,据此求出这根电线总长度。
因为第二次截取的长度占这根电线长度的1140%4⎛
⎫-- ⎪⎝
⎭,最后求出第二次截取的长度即可。
【详解】
()112140%140%4⎛
⎫÷-⨯-- ⎪⎝
⎭
=20×0.35 =7.5(米)
答:需再截去7.5米,这时正好剩下这根电线全长的四分之一。
【点睛】
本题考查百分数,解答本题的关键是找准单位“1”。
2.聪聪读一本故事书,读完的页数比这本书总页数的1
3
还多20页。
此时,读完的页数与
未读页数的比是5:7,这本书一共有多少页? 解析:240页 【分析】
可设这本书一共有x 页,根据读完的页数与未读页数的比是5:7可知,已读的页数是整本书的
557+;据此根据已读的页数又是这本书总页数的1
3
还多20页列方程,求解即可。
【详解】
解:设这本书一共有x 页。
1520357x x +=+ 1
2012
x = 240x =
答:这本书一共有240页。
【点睛】
列方程解应用问题,认真读题,找出等量关系,列出方程是解题关键。
3.三个小朋友跳绳,一共跳了252下。
小青跳了总数的
37,小明跳的比小光跳的少25。
三个小朋友分别跳了多少下?
解析:小青108下,小光90下,小明54下
【详解】
略
4.用黑、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用黑瓷砖。
(如图所示)
(1)填写下列表格。
想一想,这些数量之间有什么关系?
大正方形每边的块数3
黑瓷砖块数8
(2)如果所拼的图形中,用了64块白瓷砖,那么,黑瓷砖用了多少块?
解析:(1)4,5,6,7
12,16,20,24
(2)36块
【分析】
(1)大正方形每边的块数每增加1块,所用的黑瓷砖块数就增加4块;
(2)白瓷砖的总块数是每个边上的块数的平方,而黑瓷砖的总数量是白瓷砖一边的数量加1的四倍。
【详解】
(1)
大正方形每边的块数增加1块,所用的黑瓷砖数就增加4块;
(2)64=8×8;
(8+1)×4
=9×4
=36(块);
答:黑瓷砖用了36块。
【点睛】
解答本题的关键是根据图形找到规律,再根据规律来求解。
5.电车从A站经过B站到达C站,然后返回.去时在B站停车,而返回时B站不停.去
时的车速是每小时48km.
(1)A站到C站的距离是多少千米?
(2)返回时的车速是每小时行多少千米?
解析:(1)432千米(2)72千米
【解析】
【详解】
(1)48×(4+5)=432(千米)(2)432÷6=72(千米)
6.甲车间有男工45人,女工36人;乙车间女工人数是男工人数的120%.如果把两个车间的工人合在一起,那么男工和女工的人数正好相等.乙车间共有工人多少人?
解析:99人
【解析】
【详解】
45﹣36=9(人)
120%:1=6:5
9÷(6﹣5)×(6+5)
=9×11
=99(人)
答:乙车间共有工人99人.
7.两列火车同时从相距720km的两城相对开出,经过3小时相遇。
已知甲车速度与乙车速度的比7:5。
甲乙两车的速度各是多少?
解析:甲140千米/时;乙100千米/时
【解析】
【详解】
720÷3×=140(千米/时)
140×=100(千米/时)
8.一个工程队修一条公路,第一天修45米,第二天修全长的1
4
,第二天修的米数又恰好
比第一天多1
5
,这条公路全长多少米?
解析:216m 【详解】
11 451216
54m
⨯+÷=
()()
答:这条公路全长216米.
9.(1)某大酒店里有一种方圆两用餐桌(即外圆中方)。
请你借助圆规等学具,选择相对合理数据画出这种方圆两用桌的桌面模形(要保留作图痕迹),并将正方形外的部分涂上阴影。
(提示:在圆中画一个最大的正方形)
(2)如果圆桌的直径是1米,那么图中阴影部分的面积是多少平方米?
解析:(1)
(2)0.285平方米
【详解】
略
10.加工一批零件,已完成个数与零件总个数的比是1∶5,如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?
解析:50个
【分析】
设这批零件共有x个,根据已完成个数与零件总个数的比是1∶5,可知完成的占总个数的
1 5,没完成的占1-
1
5
,完成了
1
5
x个,没完成(1-
1
5
)x个,根据完成的个数+15=没完
成的个数-15,列出方程解答即可。
【详解】
解:设这批零件共有x个。
1 5x+15=(1-
1
5
)x-15
1 5x+15=
4
5
x-15
3
5
x=30
x=50
答:这批零件共有50个。
【点睛】
关键是通过比确定完成和没完成的对应分率,找到等量关系,从而列出方程进行解答。
11.4月23日是世界读书日,每年的这一天,世界上百多个国家都会举办各种各样的庆祝和图书宣传活动。
某书店这天在图书定价的基础上降价20%出售某种图书,售价每本19.2元。
已知该图书的进价为图书定价的50%,则降价后每卖一本书可以盈利多少元?
解析:2元
【分析】
某书店这天在图书定价的基础上降价20%出售某种图书,说明售价是定价的1-20%=80%,每本19.2元,据此求出定价;书的进价为图书定价的50%,求出书的进价,最后求盈利即可。
【详解】
19.2-19.2÷(1-20%)×50% =19.2-12 =7.2(元)
答:降价后每卖一本书可以盈利7.2元。
【点睛】
本题考查百分数,解答本题的关键是理解定价、售价、进价之间的关系。
12.2019年12月新野到郑州的高铁正式开通,现在从新野乘高铁约需1小时30分到郑州,而乘大巴车到郑州约需4.5小时,现在乘高铁到郑州用的时间比乘大巴车到郑州节省百分之几?速度提高了百分之几? 解析:67%;200% 【分析】
①要求现在乘高铁到郑州用的时间比乘大巴车到郑州节省百分之几,可用乘大巴的时间减去乘高铁的时间,再用这个差除以乘大巴的时间,即(大-小)÷大,就是所求; ②可以把路程看作单位“1”,则乘高铁的速度就是11.5
、乘大巴的速度是14.5,依据(大-
小)÷小,可计算出速度提高了百分之几。
【详解】
①1小时30分=1.5小时 (4.5-1.5)÷4.5 =3÷4.5 ≈66.67% ②(
11.5-14.5
)÷1
4.5
222
399⎛⎫=-÷ ⎪⎝⎭ 4299
=÷ 200%=
答:现在乘高铁到郑州用的时间比乘大巴车到郑州节省66.67%;速度提高了200%。
【点睛】
本题分别考查了一个数比另一个数多百分之几、一个数比另一个数少百分之几。
其中第二小问还要调动有关单位“1”的知识。
13.有甲、乙两列火车,乙车的速度比甲车速度慢20%。
乙车先从B 站出发开往A 站行驶到距离B 站72千米处时,甲车从A 站出发开往B 站,相遇时,甲、乙两列火车行的路程之比是3∶4。
(1)甲、乙两列火车的速度比是( )∶( ); (2)A 、B 两站之间的路程是多少千米? 解析:(1)5;4 (2)315千米 【分析】
(1)甲车速度是单位“1”,乙车的速度比甲车速度慢20%,甲车速度看作100,乙车速度是100-20,写出速度比化简即可。
(2)路程比=速度比,设相遇时甲行驶的路程是x 千米,乙车形式的路程是4
725
x +千
米,根据甲车和乙车的路程比=甲车和乙车的时间比,列出方程求出甲车行驶路程,相遇时,甲、乙两列火车行的路程之比是3∶4,甲车行驶了路程的3
34
+,用甲车路程÷对应分率=A 、B 两站之间的路程。
【详解】
(1)100∶(100-20)=100∶80=5∶4 (2)解:设相遇时甲行驶的路程是x 千米。
34
4725
x x =+
47234512
21645855216588
x x x x
x ⎛⎫
+⨯= ⎪⎝⎭+=⨯=⨯ 135x =
3+4=7 3
1353157
÷
=(千米) 答:A 、B 两站之间的路程是315千米。
【点睛】
本题考查了百分数和比的意义,列方程解决问题和按比例分配应用题,较为综合,关键是理解速度、时间、路程之间的关系以及比的意义。
14.某地为提倡节约用电,推行“阶梯电价“.其计费规则为:居民用电300度及以内,每度电0.5元;用电超过300度至500度部分,每度电加价10%;用电超过500度部分,每度电加价50%,张阿姨家七月份交了216元电费,这个月她家一共用电多少度? 解析:410度 【详解】
300×0.5=150(元) 0.5×(1+10%)=0.6(元) (500﹣300)×0.6
=200×0.6
=120(元)
150+120=270(元)
270>216
(216﹣150)÷0.6
=66÷0.6
=110(度)
300+110=410(度)
答:这个月她家一共用电410度.
15.电子厂原有工人450人,其中女工占36%。
因为生产需要又招进一批女工,这时女工人数占全厂工人总数的40%。
又招进女工多少人?
解析:30人
【详解】
450×(1-36%)÷(1-40%)-450=30(人)
答:又招进女工30人。
16.在一次做“有趣的平衡”的综合实践中,小林拿来一根粗细均匀的竹竿,他从左端量到1.2米处做一个记号A,再从右端量到1.2米处做一个记号B。
这时,他发现A、B之间的长度恰好是全长的20%,这根竹竿长度可能是多少米?(提示:请试着画图理解,然后列式求得两个不同的答案)
解析:2米或3米
【分析】
方法一:如图所示,这根竹竿的距离小于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1+A、B之间的长度是全长的百分之几);
方法二:如图所示,这根竹竿的距离大于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1-A、B之间的长度是全长的百分之几)。
【详解】
①
(1.2+1.2)÷(1+20%)=2(米)
②
(1.2+1.2)÷(1-20%)=3(米)
答:这根竹竿可能是2米或3米。
17.下图是由两个正方形和一个圆组成的,已知大正方形的面积是2
36cm,那么阴影部分
的面积是多少?(圆周率π取3.14)
解析:26平方厘米 【分析】
根据图意可得:阴影部分的面积=圆的面积-小正方形的面积,已知大正方形的面积是
236cm ,36=6×6,即大正方形的边长是6cm ,也正是圆的直径;小正方形的对角线的长度
是6cm ,小正方形的面积是6×6÷2=18(平方厘米)。
据此解答即可。
【详解】 36=6×6
3.14×(6÷2)2-6×6÷2 =3.14×9-18 =28.26-18 =10.26(平方厘米)
答:阴影部分的面积是10.26平方厘米。
【点睛】
本题属于求圆与组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可。
18.下图中,以圆的半径为边长的正方形的面积是75平方厘米.求圆的面积.
解析:52cm 【详解】
2222753.1475235.5r cm S r cm π===⨯=圆()
()
19.一本书共100页,已经看了56页。
剩下的比全书页数的2
5
多4页。
悦悦说的对吗?请通过计算说明理由。
解析:对;理由见详解
【分析】
总页数-已看页数=剩下的页数,将总页数看作单位“1”,总页数×2
5
+4=剩下的页数,通
过两种方式求出的剩下页数一样,说明悦悦说的对,不一样,说明说的不对。
【详解】
100-56=44(页)
100×2
5
+4
=40+4
=44(页)
44=44
答:悦悦说的对。
【点睛】
确定单位“1”,整体数量×部分对应分率=部分数量。
20.根据大数据显示,荔波2016年旅游接待迅速升温,各旅游景区(点)游人如织.全县全年接待游客超700万人,其中大、小七孔景区共接待了游客人数的,小七孔景区比大七孔景区多接待游客,大、小七孔景区各全年接待了游客多少万人?
解析:大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人
【解析】
【详解】
700× =600(万人) 600÷(1+ +1)
=600÷
=250(万人)
600﹣250=350(万人)
答:大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人
21.一个食堂买回一批面粉,第一天吃了1
5
,第二天吃了40 kg,第三天吃的等于前两天吃
的总和,最后还剩16 kg.这批面粉有多少千克?解析:160kg
【解析】
【详解】
()116402121605⎛⎫
+⨯÷-
⨯= ⎪⎝⎭
(kg) 22.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时,有同样的仓库A 和B ,甲在A 仓库、乙在B 仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完,问丙帮助甲、乙各多少时间? 解析:3小时,5小时 【分析】
把一个仓库的货物量看作单位“1”,甲乙丙搬完两个仓库也就是完成了2个单位量,设他们搬完货物花了x 小时,根据“工作效率×工作时间=工作量”列方程即可解答。
【详解】
解:设他们搬完两个仓库货物花了x 小时。
(
110+1
12+115
)×x =2 1
4
x =2 x =8 (1-
110×8)÷115
=15÷115
=3(小时) 8-3=5(小时)
答:丙帮助甲搬运了3小时,帮乙搬运了5小时。
【点睛】
把一个仓库的货物量看作单位“1”,甲乙丙搬完两个仓库也就是完成了2个单位量,这是解答本题的关键。
23.甲、乙两人同时从A 地去B 地(行走的速度保持不变),当甲行走了全程的1
3
时,乙
行走了20千米,当甲到达B 地时,乙还有全程的1
7
没有行走,A .B 两地相距多少千米? 解析:70千米 【解析】 【详解】
(1÷1
3
)×20÷(1-17)=70(千米)
24.一个水池早晨放满了水,上午用去这池水的,下午又用去25升,这时水池的水比半池水还多2升,这个水池早晨用去了多少水? 解析:18升 【解析】
【分析】
把这池水的体积看作单位“1”,若下午用去25+2=27升,那么此时剩余的水的体积与用去水的体积相等,也就是用去水的体积占这池水体积的,先求出这池水体积的比上午用去水的体积多的分率,也就是27升水占这池水体积的分率,再依据分数除法意义,求出这池水的体积,最后依据分数乘法意义即可解答.
【详解】
(25+2)÷(﹣)×
=27×
=90×
=18(升)
答:这个水池早晨用去了18升水. 25.实验小学举行科技大赛,五年级上交作品15件,六年级比五年级多交15。
两个年级共交了多少件作品?
解析:33件
【分析】 六年级比五年级多交15,说明六年级作品占五年级作品的115⎛⎫+ ⎪⎝⎭
,据此求出六年级作品数量,最后求两个年级共交了多少件作品即可。
【详解】
1151515⎛⎫+⨯+ ⎪⎝⎭
=15+18
=33(件)
答:两个年级共交了33件作品。
【点睛】
本题考查分数乘法,解答本题的关键是找到六年级作品数占五年级作品数的几分之几。
26.修一段公路, 甲队独修要用20天,乙队独修要用24天,现在两队同时从两端开工,结果在距中点750m 处相遇。
求这段公路长多少米?
解析:16500米
【分析】
先求出两队合作需要的时间,再求出甲队比乙队多修总路程的几分之几,然后求甲队比乙队多修多少米,在距中点750米处相遇,说明甲队比乙队多修750×2=1500(米),用除法求出这段公路的距离即可。
【详解】
1÷(112024
+)
=1÷
11 120
=120
11
(天)
750×2÷(11201120 20112411
⨯-⨯)
=1500÷(65 1111
-)
=1500×11
=16500(米)
答:这段公路长16500米。
【点睛】
本题考查工程问题和路程问题中的相遇问题,画线段图可以帮助快速理清题意。
27.甲、乙两站相距不到500千米,A、B两列火车从甲、乙两站相对开出,A车行至210
千米处停车,B车行至270千米处停车,这时两车相距的正好是甲、乙两站距离的1
9
,
甲、乙两站的距离是多少?
解析:千米
【详解】
①如果两车未相遇,则甲乙两站之间的距离是:
(210+270)÷(1﹣1
9
)
=480
8
9÷,
=540(千米).
超过500千米,不合题意;
②如果两车相遇过,则甲乙两站之间的距离是:
(210+270)÷(1+ 1
9
)
=480
10
9÷,
=432(千米).
不超过 500 千米,满足题意;
答:甲乙两站之间的距离是432千米.
28.水果店运进一批桂园,第一天售出1
2
,第二天售出余下的3
5
,还剩36千克没有卖,这
批桂园有多少千克?解析:180千克
【详解】
36÷(1-1
2
-
1
2
×
3
5
)=180(千克)
29.如图,已知三角形OAB的面积是18平方厘米,求阴影部分的面积.
解析:74平方厘米
【详解】
设圆的半径是r厘米,那么三角形的底、高,正方形的边长都是r厘米
S三角形=1 2 r2
18=1 2 r2
r2=36
S阴影=r2-1
4
πr2=36-
1
4
×3.14×36=7.74(平方厘米)
30.某赛车的左、右轮的距离是2m,因此在转弯时,外侧的轮子比内侧的轮子要多走一些路。
当赛车绕下面的运动场跑一圈时,外轮比内轮多走多少米?
解析:56m
【详解】
(50÷2+2)×2=54(m)
3.14×54-3.14×50=12.56(m)
31.一个周长为12.56厘米的圆在长方形内滚动一周后回到初始位置(如下图所示),圆心所经过的路程是40厘米,已知图中长方形的长和宽之比是5:2,这个长方形的面积是多少平方厘米?
解析:160平方厘米
【详解】
圆的半径:12.56÷3.14÷2=2(厘米),
设长方形的长和宽分别为5a厘米和2a厘米,则圆心经过的路程长是(5a-2×2)厘米,宽是(2a-2×2)厘米;
(5a-2×2+2a-2×2)×2=40
7a-8=20
7a=28
a=4
长方形的面积为:
(5×4)×(2×4)
=20×8
=160(平方厘米)
答:这个长方形的面积是160平方厘米.
【点睛】
解答此题关键是明确圆心经过的路径是一个长方形,长和宽分别比原长方形少两个半径.32.商场有两台冰箱,标价都是4950元,其中一台比进价贵10%,另一台比进价便宜10%,如果两台冰箱全部卖出,那么总体来讲是赚了还是赔了?如果赚了,赚了多少元?如果赔了,赔了多少元?
解析:赔了,赔了100元
【详解】
略
63.电视机厂八月份生产一批电视机,上旬生产了20%,中旬比上旬多生产43台,下旬生产了80台电视机,则电视机厂八月份共生产了多少台电视机?
205台
【详解】
(43+80)÷(1-20%-20%)=205(台)
答:电视机厂八月份共生产了205台电视机。
33.观察下面点阵中的规律,回答下面的问题:
①方框内的点阵包含了()个点。
②照这样的规律,第12个点阵中应包含多少个点?
我是这样想的:
解析:①13;②34个;我是这样想的:竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34(个)。
【分析】
①第(1)个点阵有1个点,第(2)点阵有4个点,第(3)个点阵有7个点,第(4)个点阵有10个点,从第(2)开始,每一个点阵比前一个多3个点,则第(5)有10+3=13个点。
②竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34 (个)
【详解】
①方框内的点阵包含了13个点。
②12+11+11=34 (个);我是这样想的:竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34 (个)。
【点睛】
本题主要考查学生的观察和分析问题的能力。
34.淘气和奇思都是集邮爱好者,淘气收集了各种邮票63张,奇思收集的邮票数比淘气少27。
(1)画图表示淘气和奇思的邮票张数之间的关系。
(2)奇思比淘气少多少张邮票?
解析:(1)见详解
(2)18张
【分析】
(1)淘气的数量是单位“1”,画一条线段表示淘气收集数量,有63张;奇思的线段比淘气短,短的部分是27
,据此作图。
(2)用淘气收集数量×奇思收集的邮票数比淘气少几分之几=少的数量。
【详解】 (1)
(2)63×27
=18(张)
答:奇思比淘气少18张邮票。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
35.某校六年级学生在青少年科技活动中心参加机器人竞赛,分成甲、乙两个组,甲、乙两组人数比是7:8,如果从乙组调8人到甲组,则甲、乙两组的人数比是5:4,参加机器人比赛的一共多少人?
解析:90人
【详解】
5785478⎛⎫÷- ⎪++⎝⎭ =4845
÷ =90(人)
36.李师傅3天做完一批零件,第一天做的是第二天的,第三天做的是第二天的,已知第三天比第一天多做30个零件,这批零件一共有多少个?
解析:174个
【详解】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个。
37.如图为某学校花坛,它由一个圆心角∠AOB=30°,半径AO=6米的扇形以及分别以
AO、BO的1
3
为直径的6个相等的半圆组成,求此花坛的面积。
解析:84平方米
【分析】
先分别求出扇形和圆的面积,再求出和即可。
【详解】
30
3.14
360
⨯⨯6²
=
1
3.14
12
⨯⨯6²
=9.42(平方米);
3.14×1²=3.14(平方米);
9.42+3.14×3
=9.42+9.42
=18.84(平方米);
答:花坛的面积是18.84平方米。
【点睛】
熟练掌握扇形和圆的面积公式是解答本题的关键。
38.当图中两块阴影部分的面积相等时,x的值应该是多少?(单位:cm)
解析:4厘米【分析】
左边阴影部分的面积=梯形面积-1
4
圆的面积,右边阴影部分的面积=
1
4
圆的面积-三角
形面积,由题意可知两块阴影部分的面积相等,据此列出方程即可。
【详解】
(10+x)×10÷2-3.14×10²÷4=3.14×10²÷4-10×10÷2
解:50+5x-78.5=78.5-50
5x-28.5=28.5
5x=57
x=11.4
答:x的值应该是11.4厘米。
【点睛】
本题考查了列方程解决问题,关键是观察图形特点,找到等量关系。
39.某校参加数学竞赛的男生与女生的人数比是6∶5,后来又增加了5名女生,这时女生人数正好是全班的一半。
原来参加数学竞赛的女生有多少人?
解析:25人
【分析】
由题意知,男生人数没有变,可将男生人数看作单位“1”,原来的女生人数就是男生的5
6
,
增加5名女生后,女生人数是全班的一半,也就是男女生人数相等,由此求出男生人数:
5÷(1-5
6
),再根据原来男女生的人数比求出原来的女生人数。
【详解】
5÷(1-5
6
)×
5
6
=5÷1
6
×
5
6
=25(人)
答:原来参加数学竞赛的女生有25人。
【点睛】
解答此题的关键是找出男生这个量前后没有发生变化。
40.弹簧秤在正常的范围内称物体,称2千克的物体,弹簧全长为12.5cm,称8千克的物体,弹簧全长为14cm。
那么当弹簧全长为15cm时,所称物体的质量为多少千克?
解析:12千克
【解析】
【详解】
解:设弹簧原长为xcm
2:(12.5-x)=8:(14-x)
解得x=12
设所称物体的质量为y千克2:(12.5-12)=y:(15-12)解得y=12。