研究生中级计量经济学A复习提纲(20150617)

合集下载

计量经济学复习笔记要点

计量经济学复习笔记要点

计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。

方差:变量的每个样本与均值的距离大小的概念。

标准差:对方差开根号就是标准差。

数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。

假设检验的步骤:第一步,设定假设条件。

原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。

第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。

第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。

第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。

如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。

第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。

通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。

计量经济学期末复习提纲(红色部分要注意)绝密!!

计量经济学期末复习提纲(红色部分要注意)绝密!!

计量经济学期末复习提纲(红色部分要注意)绝密!!计量经济学复习提纲第一章绪论一、计量经济学的含义二、计量经济学与其他学科的联系与区别三、计量经济学的内容体系四、计量经济学的研究步骤五、计量经济学的发展概况需要掌握的主要内容1.如何理解计量经济学?(研究对象、理论基础、与经济学的区别、所研究变量的特点)计量经济学是经济学的一个分支,(起因:对经济问题的定量研究名词:1926年弗瑞希仿造出“Biometrics” “Econometrics”标志:1930年成立计量经济学会 1933年创刊《Econometrica》说明:“计量经济学” “经济计量学”)“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。

计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。

经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。

三者结合起来,就是力量,这种结合便构成了计量经济学。

”2.狭义计量经济学研究的是具有因果关系的经济现象,用的是回归的分析方法。

3.计量经济学的建模步骤?一、理论模型的设计: 确定模型包含的变量;确定模型的数学形式;拟定模型中待估计参数的理论期望值区间二、样本数据的收集三、模型参数的估计四、模型的检验计量经济学模型成功的三要素 :理论,数据,方法,三者缺一不可.4.选择解释变量时需要注意的问题:(1)根据经济规律确定变量的数目(2)考虑数据的可得性(3)考虑所有入选变量的关系,要求各变量独立。

---否则会引起多重共线性5.如何确定模型的数学形式?(1)根据经济理论(2)画散点图(3)试模拟6.什么是时间序列数据?在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度。

如我国国内生产总值从1949到2009的变化就是时间序列数据。

计量经济学复习资料

计量经济学复习资料

计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。

它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。

计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。

本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。

二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。

2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。

三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。

2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。

3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。

4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。

四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。

2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。

3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。

4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。

五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。

2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。

计量经济学 复习纲要

计量经济学 复习纲要

第 3 讲多元线性回归
1. 变量系数的解释(剔除、控制其他因素的影响)
ˆ X ˆ X ˆ ˆ Y i 0 1 1i 2 2i ˆ 的解释:在控制其他解释变量(X2)不变的条件下,X1 变化一个单位对 Y 对斜率系数 1
的影响;或者,在剔除了其他解释变量的影响之后,X1 的变化对 Y 的单独影响!
(1 ) (2)
ˆ u
i
0 :残差的均值为 0;
1i
ˆX u
i
ˆ 0 ˆi X 2i 0 , u ˆiY 0; u i
ˆ X ˆ + ˆ X (3) Y = 0 1 1 2 2
ˆ (Y ˆ 的平均值与 Y 的算术平均值相等 ) (4) Yi Y i i i
4. 多重共线性: (1)不完全多重共线与完全多重共线; (2)多重共线的后果以及检验、纠 正的办法 5. 高斯-马尔科夫定理:满足经典假设(哪些假设)的条件下,OLS 估计量是最优线性无 偏估计量。具体理解: (1)线性; (2)无偏性; ( - 1 1 2 2
ˆ X r;X X ˆ ˆ r ˆ r ˆ0 ˆ 1 X 2i r2 ) (其中 X 1i X 1i 1 0 1 2i 1 2i 2i 2 ˆ X u ˆ X ˆ ˆ u ˆi ˆi 3. OLS 估计值的性质: Yi Y i 0 1 1i 2 2i
5.柯克兰特-奥卡特(Cochrane-Orcutt)迭代法(不做考试要求)
简单题与案例分析题注意事项:
1. 计量模型的设立 (1) 被解释变量 (2)解释变量的选择:哪些因素会影响被解释变量?这些因素是否容易获得?不同变量之 间是否存在多重共线性(很强的相关)?模型函数形式的选择(需不需要加入二次项,是否 应该采用对数的形式)? (3)解释变量的符号预期?根据经济理论或者常识判断。 (4)可能遗漏了哪些重要的变量?(不做考核要求) 2. 计量模型的估计与参数检验 (1)模型的参数的经济含义 (2)对参数的显著性进行检验(是否显著不等于 0?) (3)注意单侧与双侧 t 检验临界值的选择; 3. 计量模型的分析 (1)加入新的解释变量之后,原来模型中解释变量的系数发生了变化,解释发生变化的 原因(新加入的解释变量与原来的解释变量之间存在相关性)? (2)综合计量模型的估计结果,对经济理论给出合理的解释。

计量经济学复习提纲 标黑为重

计量经济学复习提纲 标黑为重

考试题型
• 1.单项选择题(本题共15小题,每小题1分,共 15分) • 2.多项选择题(本题共5小题,每小题2分,共10 分) • 3.名词解释(本题共5小题,每小题3分,共15分) • 4.问答题(本题共3小题,每小题5分,共15分) • 5. 计算题(共4小题,第1题7分,第2题8分,后2 题各15分,共45分)
(1)对模型识别的理解 (2)联立方程模型识别的类型 不可识别;恰好识别;过度识别 (3)联立方程模型识别的方法 模型识别的阶条件;模型识别的秩条件; 模型识别的一般步骤和经验方法
3. 联立方程模型的估计方法
(1)递归模型的估计——OLS法 (2)恰好识别模型的估计 ——间接最小二 乘法(ILS) (3)过度识别模型的估计——二段最小二乘 法(TSLS)
第四章 多重共线性
1. 掌握多重共线性的概念 2. 模型中出现多重共线性的原因和不良后果 3. 怎样诊断多重共线性: 简单相关系数检验 法、方差扩大(膨胀)因子法、直观判断法、 逐步回归检测法 4.修正多重共线性的若干方法 : (1)修正多重共线性的经验方法:剔除变量 法;增大样本容量、变换模型形式、利用非 样本先验信息等 (2) 逐步回归法
3.自回归模型的估计
(1) 自回归模型的产生背景:无限分布滞后模 型不能直接估计,模型中引入了预期因素 库伊克模型 、自适应预期模型、局部调整模 型 (2)估计方法:工具变量法 为缓解扰动项与解释变量存在相关带来估计偏 倚:工具变量法的概念、工具变量法的特点、 工具变量法的缺点 (3)德宾h-检验 为诊断一阶自回归模型扰动项是否存在自相关 D-W检验的缺陷、德宾h-检验
计量经济学复习提纲Fra bibliotek第一章 导论
• 1. 了解计量经济学的性质及与其它学科的 关系 • 2. 了解计量经济学的基本概念和计量经济 学的基本研究方法和研究步骤; • 3. 对计量经济学中的模型、变量、数据等 有基本的认知

计量经济学复习提纲

计量经济学复习提纲

(一)基本知识类题型4-1.解释下列概念:(1)异方差性: 由于样本的变化,导致随机误差项的方差各不相同。

(2)序列相关性:随着时间的变化,导致随机误差项之间不是相互独立的。

(3)多重共线性:解释变量之间存在着共线性关系,包括严格的或者近似的线性关系。

(4)偏回归系数:随机应变量对各个自变量的回归系数,表示其对随机变量的解释程度。

(5)完全多重共线性:一般地对K个解释变量X1,X2,…..XK,如果它们之间满足λ1X1+λ2X2+…+λkXk=0其中λ1λ2…λk为常数,且不全为0,则称X1,X2,…..XK之间存在着完全多重共线性。

(6)不完全多重共线性:若λ1X1+λ2X2+…+λkXk+νi=0,其中其中λ1λ2…λk为常数,且不全为0,则称X1,X2,…..XK 之间存在着不完全多重共线性。

(7)随机解释变量:即解释变量时随机的,不再是确定的。

(8)差分法:广义差分法,是指将回归模型滞后一期,使新的误差项νi满足经典假设的所有要求,以消除序列相关性的一种方法。

(9)广义最小二乘法:又叫GLS,将原始变量转化成满足经典模型假设的转换变量,然后使用OLS.(10)D.W.检验:即杜宾沃森检验,是检验一阶自相关最著名的方法,构造统计量d 值,判断其所在的区域得出是否存在自相关的结论。

二、判断下列各题对错,并简单说明理由:1)在存在异方差情况下,普通最小二乘法(OLS)估计量是有偏的和无效的;NO2)如果存在异方差,通常使用的t检验和F检验是无效的;YES3)在存在异方差情况下,常用的OLS法总是高估了估计量的标准差;NO4)如果从OLS回归中估计的残差呈现系统模式,则意味着数据中存在着异方差;YES5)当存在序列相关时,OLS估计量是有偏的并且也是无效的;NO6)消除序列相关的一阶差分变换假定自相关系数ρ必须等于1;NO7)两个模型,一个是一阶差分形式,一个是水平形式,这两个模型的R2值是不可以直接比较的。

中级计量经济学复习

中级计量经济学复习

《中级计量经济学》复习一、上学期的主要内容1、数学知识(Basic Knowledge of Mathematics )1) 矩阵的基础知识(Basic Knowledge of Matrix Algebra ) 2) 概率论与数理统计(Probability and Statistics ) 2、几个回归模型1) 古典线性回归模型(Simple Classical Linear Regression ) 2) 多元线性回归模型(Linear Multiple Regression)3) 带有线性约束的多元线性回归模型及其假设检验(Linear Multiple Regression and its Inference Prediction)4) 正态线性统计模型的最大似然估计(Normal Linear Statistical Model and MLE) 5) 非线性回归模型初步(Nonlinear Regression Model)二、主要知识点1、概率论与数理统计的对应关系概率模型:二项分布、正态分布、几何分布等。

在很多种情况下,参数就决定了分布。

抽样与统计:通过样本确定参数。

顺序统计量、经验分布函数与子样矩设(X 1,…,X n )是从母体中抽取的一个子样,记(x 1,x 2…,x n )是子样的一个观察值,将观察值的各分量按大小递增次序排列,得到*1x ≤*2x ≤…≤*n x当(X 1,…,X n )取值为(x 1,…,x n )时,我们定义)(n k X 取值为*k x 。

称由此得到的)()(1,,n nn X X 为(X 1,…,X n )的一组顺序统计量。

显然)(1n X ≤)(2n X ≤…≤)(n n X ,i ni n X X ≤≤=1)(1min ,即)(1n X 的观察值是子样观察值中最小的一个,而i ni n n X X ≤≤=1)(max ,)(n nX 的观察值是子样观察值中最大的一个。

考研经济学计量经济学的重点复习

考研经济学计量经济学的重点复习

考研经济学计量经济学的重点复习计量经济学是经济学研究中的重要分支,通过运用数理统计方法对经济现象进行定量分析和预测。

对于考研经济学专业的学生来说,掌握计量经济学的核心概念和方法对于提高解题能力和研究能力至关重要。

本文将从历年考研试卷的出题特点出发,总结计量经济学的重点复习内容,助您顺利备考。

一、计量经济学基本概念1. 计量经济学的定义和基本内容- 计量经济学的定义- 计量经济学的研究对象和特点- 计量经济学的基本方法和步骤2. 经济数据的类型和基本统计概念- 定量数据和定性数据- 总体和样本的概念- 统计量和参数的区别与联系3. 计量经济学的基本假设和模型- 随机性假设和确定性假设- 线性回归模型的假设和表达式- 经济学假设与计量经济模型的关系二、简单线性回归模型1. 简单线性回归模型的基本原理- 变量关系的线性假设- 残差项和估计项的定义及意义- 最小二乘估计法的推导和求解2. 简单线性回归模型的假设检验- 相关系数和回归系数的显著性检验 - 模型整体显著性检验- 拟合优度和解释方差的检验3. 简单线性回归模型的统计推断- 参数估计的抽样分布与性质- 参数的置信区间及解释- 参数的假设检验及结论三、多元线性回归模型1. 多元线性回归模型的基本原理- 多元回归模型的定义和表示- 模型的估计和解释- 多重共线性问题及处理方法2. 多元线性回归模型的假设检验 - 回归系数的显著性检验- 模型整体显著性检验- 拟合优度和解释方差的检验3. 多元线性回归模型的统计推断 - 参数估计的抽样分布与性质- 参数的置信区间及解释- 参数的假设检验及结论四、计量经济学的拓展内容1. 异方差问题和加权最小二乘估计 - 异方差性的检验和处理方法- 加权最小二乘法的原理和应用2. 非线性回归模型- 非线性回归模型的基本形式- 参数估计和统计推断方法- 模型的应用与分析3. 模型诊断和残差分析- 残差的定义和性质- 异常观测值和影响观测值的识别方法- 模型诊断和改进的常用方法总结:通过对历年考研试卷的分析可以看出,计量经济学在考研经济学专业中的分量较大。

计量经济学复习要点汇编

计量经济学复习要点汇编

计量经济学复习要点参考教材:李子奈 潘文卿 《计量经济学》 数据类型:截面、时间序列、面板第二章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。

简单线性回归模型是只有一个解释变量的线性回归模型。

回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。

2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。

3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。

4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。

②建立模型的依据不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定) 普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。

经济计量学复习提纲

经济计量学复习提纲

计量经济学简答题:一、 导论相关关系和因果关系。

变量间具有相关性并不等于具有因果性。

计量经济学:计量经济学是数学、经济理论和统计学三者的结合。

计量经济学建模的步骤: (1)理论模型的建立;(2)样本数据的收集;(3)模型参数的估计;(4)模型的检验。

模型的检验包括:经济意义检验、统计学检验、计量经济学检验(经典线性回归模型假设不满足的情况)和预测检验。

统计学检验包括:拟合优度检验、单个变量显著性检验、方程整体显著性检验计量经济学检验包括:多重共线性检验、异方差性检验、自相关性检验。

假设检验包括两种方法:置信区间法和显著性检验法。

进行统计推断时可能发生两类错误:第一类错误(拒绝一个为真的零假设,也可称为弃真错误)和第二类错误(接受一个为假的零假设,或称取伪错误)。

二、 线性回归基本思想:双变量回归模型1、 基本概念:回归。

总体回归模型和样本回归模型。

“线性”一词的含义:解释变量线性和参数线性。

我们所说线性回归模型中的“线性”指的是参数线性。

随机的总体线性回归方程:n i u X B B Y i i i ,,121 =++= 随机的样本线性回归方程:n i e X b b Y ii i ,121 =++=2、参数估计方法:普通最小二乘法(Ordinary Least Squared ,OLS ) 普通最小二乘法原理:使残差平方和∑2i e (RSS )最小对于样本回归方程:n i e X b b Y i i i ,121 =++=使其残差平方和最小,()()22122ˆmin∑∑∑--=-=iiii i X b b Y Y Y e对上式求偏导,可得正规方程组:∑∑+=i i X b nb Y 21∑∑∑+=221i i iiX b X b XY可求得,最小二乘估计量1b ,2b 为:X b Y b 21-=,()()()∑∑∑∑∑∑=--=---=22222iiiiii ii ix yx X n X Y X n Y X X X Y Y X X b3、 经典线性回归模型(Classical Linear Regression Model )假设,即最小二乘法的基本假定假定一:线性回归模型,回归模型是参数线性的,但不一定是变量线性的。

研究生经济学计量经济学知识点归纳总结

研究生经济学计量经济学知识点归纳总结

研究生经济学计量经济学知识点归纳总结经济学是一门研究人类社会经济活动的学科,而计量经济学则是经济学中一个重要的分支,它运用数理统计和计量方法来研究经济现象和经济关系。

作为研究生学习经济学的学生,对计量经济学的知识点归纳总结是非常重要的。

本文将就研究生经济学计量经济学的主要知识点进行系统梳理和总结。

1. 计量经济学简介1.1 计量经济学的定义与发展- 计量经济学的定义及其在经济学中的地位- 计量经济学的发展历程及其与经济学的关系1.2 计量经济学的基本原理与方法- 建立与检验经济模型的方法- 如何进行数据的采集和处理- 计量经济学常用的工具与技术2. 单变量回归模型2.1 单变量回归模型的基本概念- 自变量、因变量、误差项的含义和关系- 回归分析的基本思想和目标2.2 单变量回归模型的估计与检验 - 最小二乘法估计- 各类假设检验- 回归模型的拟合度与解释度2.3 单变量回归模型的应用与扩展 - 异常值与多重共线性的处理- 非线性回归模型的建立与分析 - 面板数据模型的应用3. 多元回归模型3.1 多元回归模型的基本概念- 多个自变量与一个因变量的关系 - 多元回归模型的形式和假设3.2 多元回归模型的估计与检验- 最小二乘法估计与系数解释- 多元回归模型常见检验方法3.3 多元回归模型的应用与扩展- 多重共线性与变量选择- 面板数据模型的建立与应用- 虚拟变量与交互项的使用4. 时间序列分析4.1 时间序列分析的基本概念- 时间序列数据的特点与类型- 时间序列分析的目标和方法4.2 时间序列模型的建立与估计- AR、MA、ARMA模型的定义和性质 - 时间序列模型的参数估计方法4.3 时间序列模型的诊断与预测- 残差序列的诊断方法- 时间序列的预测与模型选择5. 面板数据分析5.1 面板数据的概念和分类- 面板数据的含义和特点- 面板数据的分类及其应用领域5.2 面板数据模型的估计与检验- 固定效应模型与随机效应模型的概念- 面板数据模型的估计方法和效果评估5.3 面板数据模型的应用与扩展- 异质性与端点问题的处理- 面板数据模型的非线性建模方法- 面板数据模型的动态分析框架通过对以上内容的整理和总结,我们可以对研究生经济学计量经济学的主要知识点有一个全面的了解和掌握,为今后的学习和研究提供良好的基础。

计量经济学复习大纲

计量经济学复习大纲

计量经济学复习大纲计量经济学复习大纲第一章绪论1. 建立计量经济学模型的步骤及其要点?(1)如何正确选择解释变量?(2)如何确定模型的基本形式?(3)区分时间序列数据、横截面数据和虚变量数据。

(4)何谓经济意义检验?检验的方法?(5)计量经济学模型成功的三要素及其关系。

2. 结合实际例子理解结构分析方法(弹性、乘数的运用及其模型参数解释)。

第二章一元线性回归模型理论与方法1. 回归分析与相关分析的联系与区别?2. 回归分析的主要目的和内容?3. 总体回归函数PRF的内涵和形式(确定和随机)。

4. 随机干扰项的定义及其内涵?5. 样本回归函数的形式及其与PRF的关系?6. 线性回归模型的基本假设(结合现实经济例子给予解释说明)。

7. OLS法的原理及其参数估计量的估计方法(推导过程)、正规方程组的导出。

8. OLS估计量的计算公式(离差形式)及其参数经济意义解释(要求掌握回归函数的求解计算过程)。

9. OLS估计量的性质(要求掌握线性性、无偏性、有效性的涵义及其证明过程,基本推论要牢记且理解)10. BLUE估计量与高斯-马尔可夫定理?11. 一元参数估计量的概率分布形式、总体方差的无偏估计公式以及样本参数的标准差计算公式(要求牢记公式并熟练运用于计算)。

12. 拟合优度检验的原理(TSS、ESS和RSS的内涵及其关系)?13. 变量显著性检验的方法原理(t检验)(1)小概率事件原理(零假设必须是一小概率事件)?(2) t统计量的构造?14.. 缩小置信区间的方法:同等显著性水平下尽可能减小t检验临界值和样本参数的标准差。

一是增大样本容量;二是提高模型的拟合优度。

15. 本章练习题第2、3、7、8、9(样本参数估计量的性质)、11题要求熟练掌握。

第三章多元线性回归模型理论与方法1. 理解偏回归系数的概念及其应用解释。

2. 多元线性回归模型的基本假定(标量和矩阵形式)。

3. 理解普通最小二乘估计的正规方程组及其参数估计量计算公式。

计量经济学复习提要

计量经济学复习提要

计量经济学复习提纲一、计量经济学复习提要注:以下所说的“教材”是指张保法的《经济计量学》(经济科学出版社'2000 ),可以找上一年级的同学借阅。

概率数理统计复习一、随机变量的分布随机变量的概念。

分布列和分布密度。

槪率的讣算。

随机变虽的期望和方差。

二、常用分布N,t,F分布。

临界值(也称分位数)。

第一章绪论参考:教材第一章一、计量经济学的迫义。

计量经济学的三要素。

二、经济模型。

计量经济模型的特点。

三、建立计量经济模型的步骤。

散点图。

先验信息。

几种常见的数据类型。

计呈经济模型检验包括的几个方面。

四、计量经济学应用的三个方而。

第二章多元线性回归参考:教材第二章和第三章§1概述确定性尖系。

统计尖系(或者回归矢系)。

因果矢系。

尖于线性的两种解释。

§2多元线性回归模型及基本假设多元线性模型的形式。

随机干扰项包含哪些内容?模型的基本假设。

§3参数估计一一最小二乘法回归方程。

残差。

残差平方和。

最小二乘法的基本思想。

高斯一马尔可夫左理的内容。

什么是线性估计、无偏估计、有效估计、一致估计?§4拟合优度三种平方和一一TSS, ESS, RSS 一一的含义。

复相尖系数R'的泄义和解释。

为什么要提出修正复相尖系数?复相尖系数在模型评选中的作用。

§5模型的假设检验(1)参数的显著性检验。

t统讣崑检验的步骤。

简易“2 (广检验法。

P 值的含义、P值检验法。

(2)方程的显著性检验。

F统计量。

检验步骤。

(3)线性约束的检验「参数的线性约束的概念和实例。

了解检验统讣量及其应用。

§6预测点预测。

了解区间预测。

什么是内插预测、外推预测。

绝对预测误差和相对预测误差。

Eviews软件会使用该软件建立多元线性回归模型:(1)掌握常用命令(如:CREATE. DATA、LS等)的使用(2)能够解释回归报告中各常用指标的含义,写出回归方程,参数估计的标准差, R%t 统讣钛F统讣崑p值匚进行参数显著性的检验、方程的显著性检验。

计量经济学复习资料

计量经济学复习资料

计量经济学复习资料计量经济学复习资料计量经济学框架(⽅法论)◆古典线性回归模型假设(assumptions on CLRM)1.回归模型对参数线性2.在重复抽样中,xi是给定的3.残差的平均数为0(E(ui)=0)4.残差的⽅差为常量(同⽅差性)5.残差之间是独⽴的(cov(ui,uj)=0)即没有⾃相关性和序列相关性6.残差和xi之间不能有关联性(cov(xi,ui)=0)7.xi和xj没有完全的多重共线性8.模型是可识别的9.xi是可变的10.n⼤于变量的个数◆模型结构检验Ho:c=0,t-test,p-value,即yi与xi是否有关T绝对值越⼤,得到这样⼀个t值的p值因⽽就很⼩,所以拒绝原假设,yi与xi关系显著。

Ho:c(1)=c(2)=c(3)=0,f-test,p-value,即yi与xi,xj,xk是否关系显著P值越⼩,拒绝原假设出错的概率就越⼩,所以yi与xi,xj,xk关系就显著Ho:c(1)=a,c(2)+c(3)=b,wald-test,p-value对yi和xi进⾏线性回归后,点击view-coefficient test-wald coefficient restrictions Ho:same structure,chow,p-value,即断点检验对yi和xi进⾏线性回归后,点击view-stability tests-chow breakpoint testHo:xi,omitted test,p-value,遗漏变量检验对yi和xi进⾏线性回归后,点击view-coefficient test-omitted variablesHo:xi,rebundant test,p-value,冗余变量检验对yi和袭进⾏线性回归后,点击view-coefficient test-rebundant variablesHo:R2 =0,f-test,p-value做完回归⽅程后,看f值和p值⼤⼩,p值越⼩,即拒绝原假设,表明拟合⽔平越⾼。

研究生中级计量经济学绝密复习资料

研究生中级计量经济学绝密复习资料

研究生中级计量经济学绝密复习资料一、问答题1.线性回归模型的基本假设有哪些?2.写出联立方程回归模型的一般形式和矩阵内容3.写出假设地方政府决定在其管辖区内提高居民财产税税率,这对当地房价有何影响?按照计量经济学方法论来回答这个问题。

二、陈述题1.三、计算题1四、简单题(一)艾斯特里欧(Asteriou)和霍尔(Hall)根据英国1990年第一季度至1998年第二季度的季度数据得到如下回归结果。

应变量是log(IM)=出口的对数(括号内的是t 值)。

解释变量模型1 模型2 模型3 Intercept 0.6318 (1.8348) 0.2139 (0.5967) 0.6857 (1.8500) Log(GDP) 1.9269 (11.4117) 1.9697 (12.5619) 2.0938 (12.1322) Log(CPI) 0.2742(1.9961) 1.0254 (3.1706) — 0.1195 Log(PPI)-0.7706 (-2.5248) 0.1195 (0.8787)Adjusted-R2 0.9638 0.96920.9602(二)根据我国1985-2001年城镇居民人均可支配收入X和人均消费性支出Y资料,按照凯恩斯绝对收入假说建立的消费函数计量经济模型为:Y t=137.422+0.772*X i(5.875)( 127.09) R2= 0.999;DW =1.205;F= 16151|e i|=-451.9+0.871*X i(−0.283)(5.103) R2=0.634508;DW=1.91;F=26.04061(1)解释模型中137.422和0.772的意义;(2)简述什么是模型的异方差性;(3)检验该模型是否存在异方差性。

(4)如果模型存在异方差性,写出消除模型异方差性的方法和步骤。

答:1)回归方程:y=3871.805+2.177916x1+4.05198x2系数的意义:其他不变,投资每增加1单位,国内生产总值增加2.177916单位;其他不变,进出口增加1单位,国内生产总值增加4.051980单位。

计量经济学复习提纲

计量经济学复习提纲

复习课10月28日By Dandan Zhang第一讲:导论1、计量经济学方法的应用?用定量研究的方法分析经济变量间的因果关系。

(causality, ceteris paribus)研究社会科学问题,通常采用非实验数据,这种基于非实验数据的研究方法在分析因果关系时会出现很多问题,比如多个相互关联的因素都会对结果产生影响,那么我们就要采用计量经济学的方法尽可能剔除其他因素的影响,isolate出我们感兴趣的两个变量之间的关系。

一个经典的例子是小时工资的决定,educ, ability, exper。

计量经济学方法的魅力就在于它可以使社会科学研究人员模拟自然科学家在实验室的实验操作手法分析变量间的因果关系。

2、经济数据的种类a) 截面数据(同一时点的不同观测)—本课程的重点b) 时间序列c) 合并的截面数据d) 面板数据******************************************************************************* 第二讲:概率论、估计和假设检验1、统计推断用来自总体的一个样本来推断这个总体的特性。

给定不同的样本,可以得到不同的估计值。

这些估计值的集合就是估计量。

估计量是随机变量(存在一个分布),估计值是一个特定的常数。

2、如何判断估计量是准确地估计的总体特征呢?——3个标准a)无偏性:估计量的期望等于真值b)有效性:对总体某个参数的无偏估计量往往不只一个,对应不同的抽样分布,方差小的那个估计量更为有效。

c)一致性: 在大样本条件下,估计量的渐进性。

随着样本量的增加,估计量的分布趋近于总体真值附近。

plim.第三讲:简单线性回归模型1、为了得到x对y影响的因果判断,必须依赖两个假设条件:a)误差项均值为零E(u)=0b)条件期望零值假设E(u|x)=E(u)=02、OLSa)对方程参数进行估计,确定回归线b)思路:最小化残差平方和,解极值条件,联立方程组3、OLS统计量的代数性质a)残差的样本均值为0b)残差和解释变量(被解释变量的估计值)不相关c)均值点一定在OLS回归线上4、拟和优度a)X对Y的解释程度。

计量经济学复习提纲

计量经济学复习提纲

计 量 经 济 学期末复习提纲一、 题型分布1、简答题——2个,每个15分,共计30分。

2、分析题——1个,每个10分,共计10分。

3、模型分析——6个,每个10分,共计60分。

二、 复习要点1、无推导题型。

2、以笔记为主。

3、强调建模和解释。

4、能独立完成期末论文,就能顺利完成考试试卷。

三、 复习重点——参照笔记1、回归分析概述。

2、普通最小二乘法。

3、模型设定——函数形式的选择(重点)。

4、虚拟变量回归及解释。

5、多重共线性、异方差及序列相关的定义、影响和解决办法。

四、 举例1、举例讨论计量建模的步骤。

2、最小二乘法的基本思想及基本假定。

3、一位同学在综合练习中根据需求法则建立中国食品需求模型,以31个省会城市2006年数据为样本,以人均年食品消费量为被解释变量,以食品价格指数为解释变量,建立一元回归模型,估计得到食品价格指数的参数为正,于是发现“需求法则不适用于中国”。

试回答:①该问题的主要错误在哪里?②试建立一个你认为正确的模型。

4、在一篇研究居民收入差距与经济增长之间关系的论文中,作者分析了居民收入差距将直接影响固定资本投资和人力资本投资,而固定资本投资和人力资本投资直接影响经济增长,于是建立了一个定量分析模型,以GDP 增长率为被解释变量,居民收入差距及其平方项、固定资本投资增长率和人力资本投资增长率同时作为解释变量。

试回答:①该模型的解释变量选择是否正确?为什么?②如果认为不正确,应该如何建立该问题的计量经济学模型?5、考虑用企业年销售额(sales )、股权收益率(roe ,以百分比表示)和企业股票的收益率(ros ,以百分比表示)来解释CEO 薪水(salary )的一个方程:ξββββ++++=ros roe sales salary 3210)ln()ln(问:①解释1β。

②解释2β和3β。

③用模型参数表述虚拟假设,即在控制了sales 和roe 后,ros 对CEO 的薪水没有影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生中级计量经济学(A)复习提纲
一、满足经典假定下参数估计(回归模型建立)
1、经典假定回顾与再认识
2、参数估计——OLS
3、多元回归模型的经济学意义,偏回归系数、标准化后的系数解释
4、回归线性质
5、最优统计特性——无偏性、有效性、一致性
6、统计检验
参数的显著性检验(t检验)、模型的显著性检验(可决系数、F检验)
7、其它参数估计方法
有约束的OLS、GLS、FGLS、GMM
8、一般线性框架下的假设检验
一般意义下的检验统计量、具体的约束检验统计量
9、三大检验
LR、Wald、LM
二、违背经典假定下参数估计(回归模型建立)
1、非球形干扰
定义、具体表现、估计方法(WLS、广义差分法)、异方差下White一致性估计和Newey-West一致性估计(二者的区别)
2、多重共线性
岭回归估计方法与统计特性
3、外生性
定义及种类、Hausman检验
三、设定误差
1、遗漏变量
2、多余变量
3、测量误差
4、检验方法
统计检验、Reset检验
四、现代计量经济学内容之一——离散选择模型
1、线性概率模型
2、Logit回归
估计方法、检验方法(局部——正态分布下的参数显著性检验、Wald检验,整体——Mac可决系数、LR)
3、Probit回归
五、现代计量经济学内容之二——时间序列计量经济模型
1、随机过程、时间序列
2、平稳性
平稳性检验(DF、ADF检验)
3、时间序列模型类型
定义、统计性质、自相关系数与偏自相关系数、时间序列模型的识别
4、伪回归
5、单整性
6、协整与误差修正模型
检验、估计
7、V AR模型
定义(内生变量个数与滞后阶数)、统计性质(平稳性或稳定性)、多变量协整与向量误差修正模型、Johansen检验、Granger因果关系检验、脉冲响应函数与方差分解
六、现代计量经济学内容之三——面板数据模型
1、面板数据
2、混合模型
3、个体固定效应模型
4、个体随机效应模型
5、估计方法
6、模型类型识别检验
F检验、Hausman检验。

相关文档
最新文档