2020年上海16区中考数学二模分类汇编-专题10 几何证明(23题压轴题)(逐题详解版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年上海市16区中考数学二模汇编
专题10 几何证明(23题压轴题)
1.(2020闵行二模)
2.(2020嘉定二模)
3.(2020松江二模)
4.(2020宝山二模)
5.(2020奉贤二模)
6.(2020金山二模)
7.(2020静安二模)
8.(2020长宁二模)
9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模)
13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)
1.(2020闵行二模)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为E,CE=AB,点F为CE的中点,点G在线段CD上,联结DF,交AG于点M,交EG于点N,且∠DFC=∠EGC.(1)求证:CG=DG;
(2)求证:2
CG GM AG
=⋅.
2.(2020嘉定二模)已知:△ABC,AC
AB=,∠BAC=90°,点D是边BC的中点,点E在边AB上(点E不与点A、B重合),点F在边AC上,联结DE、DF.
(1)如图6-1,当∠EDF=90°时,求证:BE=AF;
(2)如图6-2,当∠EDF=45°时,求证:.
CF
BE
DF
DE
=
2
2
F
D C
A
B
E
E
D
A
F
3.(2020松江二模)如图,已知AB 、AC 是⊙O 的两条弦,且AO 平分∠BAC . 点M 、N 分别在弦AB 、AC 上,满足AM=CN .
(1)求证AB=AC ;
(2)联结OM 、ON 、MN ,求证:.
4.(2020宝山二模)如图5,E F 、分别是正方形ABCD 的边DC CB 、的中点,以AE 为边作正方形AEHG ,HE 与BC 交于点Q ,联结AQ DF 、.
(1)求证:AE DF ⊥;
(2)设123,,,CEQ AED EAQ S S S S S S ∆∆∆===,求证123S S S +=.
OA
OM AB MN = A
B
C O M
5.(2020奉贤二模)已知:如图6,在梯形ABCD 中,CD ∥AB ,∠DAB=90°,对角线AC 、BD 相交于点E ,AC ⊥BC ,垂足为点C ,且CA CE BC ⋅=2.
(1)求证:AD=DE ;
(2)过点D 作AC 的垂线,交AC 于点F ,
求证:AF AE CE ⋅=2.
6. (2020金山二模)如图,已知C 是线段AB 上的一点,分别以AC 、BC 为边在线段AB 同侧作正方形ACDE 和正方形CBGF ,点F 在CD 上,联结AF 、BD ,BD 与FG 交于点M ,点N 是边AC 上一点,联结EN 交AF 于H .
A B C D
E
图6
(1)求证:AF =BD ;
(2)如果GF GM AC AN =,求证:AF ⊥EN .
7.(2020静安二模)已知:如图8,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE=AB ,联结DE 、AC .点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H .
(1)求证:BG =GF ;
(2)如果AC =2AB ,点F 是DE 的中点,求证:BH GH AH ⋅=2.
E
8.(2020长宁二模)如图6,已知四边形ABCD 是矩形,点E 在对角线AC 上,点F 在边CD 上(点
F 与点C 、D 不重合)
,EF BE ⊥,且︒=∠+∠45CEF ABE . (1)求证:四边形ABCD 是正方形;
(2)联结BD ,交EF 于点Q ,求证:DF CE BC DQ ⋅=⋅.
9.(2020崇明二模)如图,已知四边形ABCD 菱形,对角线AC BD 、相交于点O ,DH AB ⊥,垂足为点H ,交AC 于点E ,连接HO 并延长交CD 于点G .
(1)求证:
12DHO BCD ∠=∠; (2)求证:2HG AE DE CG =.
10.(2020浦东二模).已知:如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点E ,过点E 作AC 的垂线交边BC 于点F ,与AB 的延长线交于点M ,且AB AM AE AC ⋅=⋅.
求证:(1)四边形ABCD
矩形;
(2)2DE EF EM =⋅.
11.(2020徐汇二模) 如图,平行四边形ABCD 中,点E 、F 、G 、H 分别在AB 、BC 、CD 、AD 边上且AE=CG ,AH=CF .
(1)求证:四边形EFGH 是平行四边形; (2)如果AB=AD ,且AH=AE ,求证:四边形EFGH 是矩形.

12.(2020青浦二模)如图6,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的两个外角的平分线,
12EAF BAD ∠=∠,边AE 、AF 分别交两条角平分线于点E 、F .
(1)求证:ABE ∆∽FDA ∆;
(2)联结BD 、EF ,如果2
DF AD AB =⋅,求证:BD EF =.
13.(2020•虹口区二模)如图,在△ABC 中,AB =AC ,点D 在边BC 上,联结AD ,以AD 为一边作△ADE ,
满足AD =AE ,∠DAE =∠BAC ,联结EC .
(1)求证:CA 平分∠DCE ;
(2)如果AB 2=BD •BC ,求证:四边形ABDE 是平行四边形.
G F E D
C B A H
14.(2020杨浦二模)如图,已知在正方形ABCD 中,对角线AC 与BD 交于点O ,点M 在线段OD 上,联结AM 并延长交边DC 于点E ,点N 在线段OC 上,且ON=OM ,联结DN 与线段AE 交于点H ,联结EN 、MN .
(1)如果EN //BD ,求证:四边形DMNE 是菱形;
(2)如果EN ⊥DC ,求证:2AN NC AC =⋅.
15(2020黄浦二模) 已知:如图,圆O 是△ABC 的外接圆,AO 平分∠BAC .
(1)求证:△ABC 是等腰三角形;
(2)当OA =4,AB =6,求边BC 的长.
16.(2020普陀二模)
2020年上海市16区中考数学二模汇编
专题10 几何证明(23题压轴题)
1.(2020闵行二模)
2.(2020嘉定二模)
3.(2020松江二模)
4.(2020宝山二模)
5.(2020奉贤二模)
6.(2020金山二模)
7.(2020静安二模)
8.(2020长宁二模)
9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模)
13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)
1.(2020闵行二模)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为E,CE=AB,点F为CE的中点,点G在线段CD上,联结DF,交AG于点M,交EG于点N,且∠DFC=∠EGC.(1)求证:CG=DG;
(2)求证:2
CG GM AG
=⋅.
【分析】
(1)首先证明△ECG≌△DCF,则有CG=CF,因为CF=1
2
CE,则有CG=
1
2
CD,则结论可证;
(2)延长AG、BC交于点H,首先证明△ADG≌△HCG,则有AG=HG,然后根据直角三角形斜边中
线有AG=HG=EG,进而得出∠CDF=∠DAH,进一步可证△ADG∽△DMG,则有MG DG
DG AG
=,即
2
DG GM AG
=⋅,又因为CG=DG即可证明结论.
【详解】
证明:(1)∵四边形ABCD是平行四边形,CE=AB,∴AB=CD=EC.
又∵∠DFC=∠EGC,∠FCD=∠GCE,∴△ECG≌△DCF,
∴CG=CF.
∵点F为CE的中点,
∴CF=1
2 CE,
∴CG=1
2 CD,
即:CG=DG.
(2)延长AG、BC交于点H.
∵△ECG≌△DCF,
∴∠CEG=∠CDF,DG=CG.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAH=∠H,∠ADC=∠DCH.∴△ADG≌△HCG,
∴AG=HG.
∵AE⊥BC,
∴∠AEC=90°,
∴AG=HG=EG.
∴∠CEG=∠H,
∴∠CDF=∠DAH.
又∵∠AGD=∠DGM,
∴△ADG∽△DMG.
∴MG DG DG AG

∴2DG GM AG =⋅
又,CG=DG ,
,2CG GM AG =⋅.
【点睛】本题主要考查全等三角形的判定及性质,相似三角形的判定及性质,掌握全等三角形的判定
及性质,相似三角形的判定及性质是解题的关键.
2.(2020嘉定二模)已知:△ABC ,AC AB =,∠BAC =90°,点D 是边BC 的中点,点E 在边AB 上(点
E 不与点A 、B 重合),点
F 在边AC 上,联结DE 、DF .
(1)如图6-1,当∠EDF =90°时,求证:BE =AF ;
(2)如图6-2,当∠EDF =45°时,求证:.CF BE DF DE =22
证明:(1)联结AD (如图6-1).在Rt △ABC 中,∵︒=∠90BAC ,CD BD =,
∴AD BD =,BC AD ⊥,︒=∠=∠45CAD BAD . ···················································· 1分
在△ABC 中,∵AC AB =,∴C B ∠=∠. ······································································ 1分
∵︒=∠90BAC ,∴︒=∠+∠90C B .∴︒=∠=∠45C B .
又∵︒=∠45CAD ,∴CAD B ∠=∠. ·········································································· 1分
∵︒=∠+∠90ADE BDE ,︒=∠+∠90ADE ADF ,∴ADF BDE ∠=∠. ·················· 1分
在△BDE 和△ADF 中,∵CAD B ∠=∠,AD BD =,ADF BDE ∠=∠,
∴△BDE ≌△ADF . ································································································· 1分
∴AF BE =. ··········································································································· 1分
F
D
C A
B E
E D A F
(2)∵EDF BDE BDF ∠+∠=∠,CFD C BDF ∠+∠=∠,
∴=∠+∠EDF BDE CFD C ∠+∠.又∵︒=∠=∠45EDF C ,∴=∠BDE CFD ∠. ····· 1分
又∵C B ∠=∠,∴△BDE ∽△CFD . ·············································································· 1分
∴DF DE CF BD CD BE ==. ·································································································· 2分 ∴2)(DF
DE CF BD CD BE =⋅. ································································································ 1分 又∵CD BD =,∴.22CF
BE DF DE = ·················································································· 1分 方法2. 如图6-2,联结AD ,过点D 作AB DG ⊥,AC DH ⊥,垂足分别为G 、H .
证出△BDE ∽△CFD ,累计得到 ··················································································· 2分
∴.S S DF DE CFD
BDE △△=22 ········································································································ 1分 写出DH CF DG BE DH CF DG BE S S CFD BDE
⋅⋅=⋅⋅=2
121△△. ········································································ 1分 证出DH DG =, ········································································································ 1分
∴.22CF BE DF
DE = ············································································································ 1分
3.(2020松江二模)如图,已知AB 、AC 是⊙O 的两条弦,且AO 平分∠BAC . 点M 、N 分别在弦AB 、
AC 上,满足AM=CN .
(1)求证AB=AC ;
(2)联结OM 、ON 、MN ,求证:. OA
OM AB MN = F
D
C A
B E
H G E D A B F
证明: (1)过点O 作OD ⊥AB , OE ⊥AC …………………………………………1分
∵AO 平分∠BAC .∴OD=OE …………………………………………………………2分
∴AB =AC ………………………………………………………………………………2分
(2) 联结OB ,∠1,∠2,∠3,∠4,∠5如图所示,
∵AM=CN, AB =AC
∴BM =AN ………………………………………………………………………………1分
∵OA =OB ,∴∠1 =∠3
∵∠1 =∠2,∴∠2 =∠3 ……………………………………………………………1分
∴△BOM ≌△AON ……………………………………………………………………1分
∴∠4=∠5 ,OM =ON …………………………………………………………………1分
∴∠AOB =∠MON ……………………………………………………………………1分
∴△NOM ∽△BOA ……………………………………………………………………1分 ∴OA OM AB MN = ……………………………………………………………………1分
4.(2020宝山二模)如图5,E F 、分别是正方形ABCD 的边DC CB 、的中点,以AE 为边作正方
形AEHG ,HE 与BC 交于点Q ,联结AQ DF 、.
(1)求证:AE DF ⊥;
(2)设123,,,CEQ AED EAQ S S S S S S ∆∆∆===,求证123S S S +=.
A
B
C O M
解析:
(1)证明:∵四边形ABCD 是正方形
∴AD =DC ,∠ADE =∠DCF =90°
在△ADE 和△DCF 中
{AD =DC
∠ADE =∠DCF DF =CE
∴△ADE ≌△DCF (SAS )
∴∠EAD =∠CDF
∵∠AED +∠CDF =90°
∴∠AED +∠EAD =90°
∴AE ⊥DF
(2)易证△ADE ∽△ECQ
∵E 是CD 的中点
∴1 2
QE CE DE AE AD AD === ∵∠ADE =∠C =90°
∴△AEQ ∽△ADE ∽△ECQ
设CE =DE =a ,则AD =2a ,AE =√5a ∴1315S S =,234 5
S S = ∴123 S S S +=
5.(2020奉贤二模)已知:如图6,在梯形ABCD 中,CD ∥AB ,∠DAB=90°,对角线AC 、BD 相交于
点E ,AC ⊥BC ,垂足为点C ,且CA CE BC ⋅=2.
(1)求证:AD=DE ;
(2)过点D 作AC 的垂线,交AC 于点F ,
求证:AF AE CE ⋅=2.
证明:(1)∵CA CE BC ⋅=2,∴BC CA CE BC . ································································· (1分) ∵BCA ECB ∠=∠,∴△BCE ∽△ACB . ····························································· (1分)
∴CBE CAB . ·
····························································································· (1分) ∵AC ⊥BC
,∠DAB=90°,∴90BEC CBE ∠+∠=︒,90DAE CAB ∠+∠=︒. ∴BEC DAE . ·
······························································································· (1分) ∵BEC
DEA ,∴DAE DEA . ····························································· (1分) ∴AD DE . ·
··········································································································· (1分) (2)∵DF ⊥AC , AC ⊥BC ,∴∠DFE=∠BCA =90°.∴//DF BC . ∴CE BE EF DE
=. ··········································································································· (2分) ∵//DC AB ,∴
BE AE DE CE =. ················································································· (1分) ∴CE AE EF CE
=. ··············································································································· (1分) ∵AD DE ,DF ⊥AC ,∴AF EF . ·
······································································ (1分) ∴2CE AE EF =⋅. ······································································································· (1分)
7. (2020金山二模)如图,已知C 是线段AB 上的一点,分别以AC 、BC 为边在线段AB 同侧作正方
A B C D
E
图6
形ACDE 和正方形CBGF ,点F 在CD 上,联结AF 、BD ,BD 与FG 交于点M ,点N 是边AC 上一点,联结EN 交AF 于H .
(1)求证:AF =BD ;
(2)如果GF GM AC AN =,求证:AF ⊥EN . 证明:(1),四边形ACDE 和四边形BCFG 是正方形,
,AC =DC ,FC =BC ,,ACF =,DCB =90°,,△ACF ≌△DCB ,---------------------------(4分)
,AF =BD . ---------------------------------------------------------------------------------------------(2分)
(2)在正方形ACDE 和正方形CBGF 中,AC =AE ,GF =GB ,
,AN GM AC GF =,,AN GM AE GB =,
又,,EAN =,BGM =90°,,△AEN ∽△GBM ,,,AEN =,GBM ,-----------------------(2分)
,四边形BCFG 是正方形,∴CD ∥BG ,∴,CDB =,GBM ,
∵△ACF ≌△DCB ,∴,CAF =,CDB ,∴,CAF =,AEN ,----------------------------------(2分)
∵∠EAN =90°,∴,AEN +,ANE=90°,∴,NAH +,ANH=90°,
∴,AHN=90°,∴AF ⊥EN .------------------------------------------------------------------------(2分)
7.(2020静安二模)已知:如图8,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE=AB ,联结
DE 、AC .点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H .
(1)求证:BG =GF ;
(2)如果AC =2AB ,点F 是DE 的中点,求证:BH GH AH ⋅=2.
E
证明:(1)∵四边形ABCD 是平行四边形,
∴AB =CD ,AB //CD . ······························································································ (1分)
∵AB =AE ,∴AE =CD . ······························································································ (1分)
∴四边形ACDE 是平行四边形. ··············································································· (1分)
∴AC//DE . ················································································································· (1分) ∴1==AE AB GF BG . ····································································································· (1分) ∴BG =GF . ·················································································································· (1分)
(2)∵AB =AE ,∴BE =2AE . ∵AC =2AB ,∴BE =AC .
∵四边形ACDE 是平行四边形,∴AC=DE .
∴DE=BE . ··················································································································· (1分)
∵点F 是DE 的中点,∴ DE=2EF .
∴AE= EF . ·················································································································· (1分)
∵∠E =∠E ,∴△BEF ≌△DEA . ··············································································· (1分)
∴∠EBF =∠EDA . ······································································································· (1分)
∵AC //DE ,∴∠GAH =∠EDA .
∴∠EBF =∠GAH .
∵∠AHG=∠BHA ,∴△AHG ∽△BHA . ··································································· (1分)
∴AH
GH BH AH =. ∴BH GH AH ⋅=2. ······························································································· (1分)
8.(2020长宁二模)如图6,已知四边形ABCD 是矩形,点E 在对角线AC 上,点F 在边CD 上(点
F 与点C 、D 不重合)
,EF BE ⊥,且︒=∠+∠45CEF ABE . (1)求证:四边形ABCD 是正方形;。

相关文档
最新文档