吴兴区第一中学校2018-2019学年高二上学期第一次月考试卷化学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吴兴区第一中学校2018-2019学年高二上学期第一次月考试卷化学
一、选择题
1. 已知圆C 1:x 2
+y 2
=4和圆C 2:x 2
+y 2
+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣2 2.
已知某运动物体的位移随时间变化的函数关系为
,设物体第n 秒内的位移为a n ,则
数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列 C .公比为a 的等比数列 D
.公比为的等比数列
3. 如图,在△ABC 中,AB=6,
AC=4,A=45°,O 为△ABC 的外心,
则
•等于( )
A .﹣2
B .﹣1
C .1
D .2
4. 已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x+1的解集为( ) A .(1,+∞) B .(﹣∞,﹣1)
C .(﹣1,1)
D .(﹣∞,﹣1)∪(1,+∞)
5.
已知,其中i 为虚数单位,则a+b=( )
A .﹣1
B .1
C .2
D .3
6. 已知命题p :“∀x ∈R ,e x >0”,命题q :“∃x 0∈R ,x 0﹣2>x 02”,则( )
A .命题p ∨q 是假命题
B .命题p ∧q 是真命题
C .命题p ∧(¬q )是真命题
D .命题p ∨(¬q )是假命题
7. 若向量(1,0,x )与向量(2,1,2
)的夹角的余弦值为,则x 为( )
A .0
B .1
C .﹣1
D .2
8.
已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于
π,则()f x 的一条对称轴是( )
A .12
x π=-
B .12
x π=
C .6
x π
=-
D .6
x π
=
9. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm 3
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .π
B .2π
C .3π
D .4π
10
.不等式≤0的解集是( )
A .(﹣∞,﹣1)∪(﹣1,2)
B .[﹣1,2]
C .(﹣∞,﹣1)∪[2,+∞)
D .(﹣
1,2]
11.若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .
3
B .
2
C .
3
D .
4
12.已知集合{}
ln(12)A x y x ==-,{}
2
B x x x =≤,全集U A
B =,则()U
C A B =( )
(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤
-
⎥⎝⎦
二、填空题
13.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1; ③若实数x ,y 满足x 2+y 2=1
,则
的最大值为
;
④若△ABC 为锐角三角形,则sinA <cosB .
⑤在△ABC 中,BC=5,G ,O 分别为△ABC
的重心和外心,且
•
=5,则△ABC 的形状是直角三角形.
14.已知函数f (x )=x m 过点(2
,),则m= .
15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .
16.已知,x y 满足41
y x
x y x ≥⎧⎪
+≤⎨⎪≥⎩
,则222
23y xy x x -+的取值范围为____________. 17.【泰州中学2018届高三10月月考】设函数()()21x
f x e
x ax a =--+,其中1a <,若存在唯一的整数
0x ,使得()00f x <,则a 的取值范围是
18.如果实数,x y 满足等式()2
2
23x y -+=,那么
y
x
的最大值是 .
三、解答题
19.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数()f x 为偶函数且图象经过原点,其导函数()'f x 的图象过点()12,. (1)求函数()f x 的解析式; (2)设函数()()()'g x f x f x m =+-,其中m 为常数,求函数()g x 的最小值.
20.已知函数f (x )=lnx ﹣kx+1(k ∈R ).
(Ⅰ)若x 轴是曲线f (x )=lnx ﹣kx+1一条切线,求k 的值; (Ⅱ)若f (x )≤0恒成立,试确定实数k 的取值范围.
21.设F 是抛物线G :x 2=4y 的焦点.
(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;
(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四
边形ABCD 面积的最小值.
22.已知等差数列{a n }满足a 2=0,a 6+a 8=10. (1)求数列{a n }的通项公式;
(2)求数列{}的前n 项和.
23.已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3. (1)当a=2时,求不等式f (x )<g (x )的解集;
(2)设a >,且当x ∈[,a]时,f (x )≤g (x ),求a 的取值范围.
24.如图,四边形ABEF 是等腰梯形,,2,AB EF AF BE EF AB ====,四边形
ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.
(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .
吴兴区第一中学校2018-2019学年高二上学期第一次月考试卷化学(参考答案)
一、选择题
1.【答案】D
【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.
【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),
∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,
∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,
∴•k=﹣1且=k•+b,
解得k=1,b=2,故直线方程为x﹣y=﹣2,
故选:D.
2.【答案】A
【解析】解:∵,
∴a n=S(n)﹣s(n﹣1)=
=
∴a n﹣a n﹣1==a
∴数列{a n}是以a为公差的等差数列
故选A
【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用
3.【答案】A
【解析】解:结合向量数量积的几何意义及点O在线段AB,AC上的射影为相应线段的中点,
可得,,则•==16﹣18=
﹣2;
故选A.
【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题
4.【答案】A
【解析】解:令F(x)=f(x)﹣2x﹣1,
则F′(x)=f′(x)﹣2,
又∵f(x)的导数f′(x)在R上恒有f′(x)<2,
∴F′(x)=f′(x)﹣2<0恒成立,
∴F(x)=f(x)﹣2x﹣1是R上的减函数,
又∵F (1)=f (1)﹣2﹣1=0,
∴当x >1时,F (x )<F (1)=0,即f (x )﹣2x ﹣1<0, 即不等式f (x )<2x+1的解集为(1,+∞); 故选A .
【点评】本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题.
5. 【答案】B
【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1
另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.
故选B .
【点评】本题考查复数相等的意义、复数的基本运算,是基础题.
6. 【答案】 C
【解析】解:命题p :“∀x ∈R ,e x
>0”,是真命题,
命题q :“∃x 0∈R ,x 0﹣2>x 02
”,即
﹣x 0+2<0,
即: +<0,显然是假命题,
∴p ∨q 真,p ∧q 假,p ∧(¬q )真,p ∨(¬q )假,
故选:C .
【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.
7. 【答案】A
【解析】解:由题意=,∴1+x=
,解得x=0
故选A
【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.
8. 【答案】D 【解析】
试题分析:由已知()2sin()6
f x x π
ω=+
,T π=,所以22π
ωπ=
=,则()2sin(2)6
f x x π
=+,令
2,62x k k Z π
π
π+
=+
∈,得,26
k x k Z ππ
=
+∈,可知D 正确.故选D .
考点:三角函数()sin()f x A x ωϕ=+的对称性. 9. 【答案】B
【解析】解:由三视图可知:此几何体为圆锥的一半,
∴此几何体的体积==2π.
故选:B .
10.【答案】D
【解析】解:依题意,不等式化为,
解得﹣1<x ≤2, 故选D
【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.
11.【答案】A 【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线, ∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值
∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0,
∴两直线的距离为
=
,
∴AB 的中点M 到原点的距离的最小值为+=3
,
故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
12.【答案】C
【解析】
[]11,,0,1,0,22A B A B ⎛⎫⎡⎫
=-∞== ⎪⎪⎢⎝⎭⎣⎭
,(],1U =-∞,故选C .
二、填空题
13.【答案】 :①②③
【解析】解:对于①函数y=2x 3
﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x 0,y 0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x 0,2﹣y 0)也满足函数的解析式,则①正确; 对于②对∀x ,y ∈R ,若x+y ≠0,对应的是直线y=﹣x 以外的点,则x ≠1,或y ≠﹣1,②正确;
对于③若实数x ,y 满足x 2+y 2
=1,则
=
,可以看作是圆x 2+y 2
=1上的点与点(﹣2,0)连线
的斜率,其最大值为,③正确;
对于④若△ABC 为锐角三角形,则A ,B ,π﹣A ﹣B 都是锐角,
即π﹣A ﹣B <
,即A+B >
,B >
﹣A ,
则cosB<cos(﹣A),
即cosB<sinA,故④不正确.
对于⑤在△ABC中,G,O分别为△ABC的重心和外心,
取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,
∵=|,
由
则,
即
则
又BC=5
则有
由余弦定理可得cosC<0,
即有C为钝角.
则三角形ABC为钝角三角形;⑤不正确.
故答案为:①②③
14.【答案】﹣1.
【解析】解:将(2,)代入函数f(x)得:=2m,
解得:m=﹣1;
故答案为:﹣1.
【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.
15.【答案】[].
【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,
解得p,
∵0≤p≤1,
∴,
故答案为:[].
2,6
16.【答案】[]
【解析】
考点:简单的线性规划.
【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数
的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点
(),x y 与原点()0,0的距离;(2(),x y 与点(),a b 间的距离;(3)
y
x
可表示点(),x y 与()0,0点连线的斜率;(4)y b
x a --表示点(),x y 与点(),a b 连线的斜率.
17.【答案】
【解析】试题分析:设
,由题设可知存在唯一的整数0x ,使得
在直线
的下方.因为
,故当
时,
,函数
单调递减;
当时,
,函数
单调递增;故,而当
时,
,故当
且
,解之得,应填答案
3,12e ⎡⎫
⎪⎢⎣⎭
. 考点:函数的图象和性质及导数知识的综合运用.
【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化
为存在唯一的整数0x ,使得
在直线
的下方.然后再借助导数的知识求出函数的最小值,依
据题设建立不等式组求出解之得.
18.【解析】
考点:直线与圆的位置关系的应用. 1
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把
y
x
的最值转化为直线与圆相切是解答的关键,属于中档试题. 三、解答题
19.【答案】(1)()2
f x x =;(2)1m -
【解析】(2)
据题意,()()()2
'2g x f x f x m x x m =+-=+-,即()2222{
22
m x x m x g x m
x x m x -+<
=+-≥,,,,
①若12m <-,即2m <-,当2m x <时,()()22
211g x x x m x m =-+=-+-,故()g x 在2m ⎛⎫-∞ ⎪⎝
⎭,上
单调递减;当2m x ≥时,()()22
211g x x x m x m =+-=+--,故()g x 在12m ⎛⎫- ⎪⎝⎭
,上单调递减,在
()1-+∞,
上单调递增,故()g x 的最小值为()11g m -=--. ②若112m -≤
≤,即22m -≤≤,当2m x <时,()()211g x x m =-+-,故()g x 在2m ⎛
⎫-∞ ⎪⎝⎭,上单调递减; 当2m x ≥时,()()211g x x m =+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭
,上单调递增,故()g x 的最小值为
2
24m m
g ⎛⎫=
⎪⎝⎭. ③若12m >,即2m >,当2
m x <时,()()22
211g x x x m x m =-+=-+-,故()g x 在()1-∞,上单调递
减,在12m ⎛⎫ ⎪⎝⎭,上单调递增;当2m x ≥时,()()22
211g x x x m x m =+-=+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭
,上
单调递增,故()g x 的最小值为()11g m =-.
综上所述,当2m <-时,()g x 的最小值为1m --;当22m -≤≤时,()g x 的最小值为2
4
m ;当2m >时,
()g x 的最小值为1m -.
20.【答案】
【解析】解:(1)函数f (x )的定义域为(0,+∞),f ′(x )
=﹣k=0, ∴
x=,
由
ln ﹣1+1=0,可得k=1;
(2)当k ≤0时,f ′(x )
=﹣k >0,f (x )在(0,+∞)上是增函数;
当k >0时,若x ∈(0
,)时,有f ′(x )>0,若x ∈
(,+∞)时,有f ′(x )<0, 则f (x )在(0
,
)上是增函数,在(,+∞)上是减函数. k ≤0时,f (x )在(0,+∞)上是增函数, 而f (1)=1﹣k >0,f (x )≤0不成立,故k >0, ∵f (x )的最大值为f
(),要使f (x )≤0恒成立, 则f
()≤0即可,即﹣lnk ≤0,得k ≥1.
【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
21.【答案】
【解析】解:(1)设切点.
由,知抛物线在Q点处的切线斜率为,
故所求切线方程为.
即y=x0x﹣x02.
因为点P(0,﹣4)在切线上.
所以,,解得x0=±4.
所求切线方程为y=±2x﹣4.
(2)设A(x1,y1),C(x2,y2).
由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.
因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.
点A,C的坐标满足方程组,
得x2﹣4kx﹣4=0,
由根与系数的关系知,
|AC|==4(1+k2),
因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.
同理可求得|BD|=4(1+),
S ABCD=|AC||BD|==8(2+k2+)≥32.
当k=1时,等号成立.
所以,四边形ABCD面积的最小值为32.
【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.
22.【答案】
【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.
∴,解得,
∴a n﹣1+(n﹣1)=n﹣2.
(2)=.
∴数列{}的前n项和S n=﹣1+0+++…+,
=+0++…++,
∴=﹣1++…+﹣=﹣2+﹣=,
∴S n=.
23.【答案】
【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:
①得x∈∅;
②得0<x≤;
③得…
综上:不等式f(x)<g(x)的解集为…
(2)∵a>,x∈[,a],
∴f(x)=4x+a﹣1…
由f(x)≤g(x)得:3x≤4﹣a,即x≤.
依题意:[,a]⊆(﹣∞,]
∴a≤即a≤1…
∴a的取值范围是(,1]…
24.【答案】(1)证明见解析;(2)证明见解析.
【解析】
考点:直线与平面平行的判定;直线与平面垂直的判定.。