高中数学必修五教案(8篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五教案(8篇)
(经典版)
编制人:__________________
审核人:__________________
审批人:__________________
编制单位:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!
Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!
高中数学必修五教案(8篇)
作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,借助教案可以更好地组织教学活动。

那么什么样的教案才是好的呢?这次本店铺为您带来了高中数学必修五教案(8篇)在同学们参考的同时,也可以分享一下本店铺给您的同桌。

高中数学必修5教案篇一
教学目标
1.数列求和的综合应用
教学重难点
2.数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式
(2)求{|an|}的前n项和Tn
4.等差数列{an}的公差为,S100=14
5.则a1+a3 + a5 + …+a99=
5.已知方程(X2-2X+mX2-2X+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anXn ,求数列{bn}前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项
之和为21.中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15.求当n为何值时,Sn有最大值,并求出它的最大值
.已知数列{an},an∈N,Sn= (an+(2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0.已知f(X)=X2 -2(n+(1)X+ n2+5n-7 (n∈N)
(1)设f(X)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(X)的图象的顶点到X轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是f(t)=
销售量g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量X的取值区间的讨
论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值。

高中数学必修五教案篇二
教学目标
1.数列求和的综合应用
教学重难点
2.数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式
(2)求{|an|}的前n项和Tn
4.等差数列{an}的公差为,S100=14
5.则a1+a3 + a5 + …+a99=
5.已知方程(X2-2X+mX2-2X+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anXn ,求数列{bn}前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21.中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15.求当n为何值时,Sn有最大值,并求出它的最大值
.已知数列{an},an∈N,Sn= (an+(2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0.已知f(X)=X2 -2(n+(1)X+ n2+5n-7 (n∈N)
(1)设f(X)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(X)的图象的顶点到X轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是f(t)=
销售量g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量X的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值
高中数学必修五复习知识点
1、棱柱
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
2、棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的性质:
(1)侧棱交于一点。

侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。

且其面积比等于截得的棱锥的高与远棱锥高的比的平方
3、正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(2)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。

且顶点在底面的射影为底面三角形的垂心。

高中数学学习方法
一)、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。

特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。

认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二)、适当多做题,养成良好的解题习惯。

要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。

刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。

让自己的精力高度集中,
使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。

实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三)、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。

对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

高中数学必修五教案篇三
教学目标
进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。

教学重难点
教学重点:熟练运用定理。

教学难点:应用正、余弦定理进行边角关系的相互转化。

教学过程
一、复习准备:
1、写出正弦定理、余弦定理及推论等公式。

2、讨论各公式所求解的三角形类型。

二、讲授新课:
1、教学三角形的解的讨论:
①出示例1、在△ABC中,已知下列条件,解三角形。

分两组练习→讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况。

(A为锐角时)
②练习:在△ABC中,已知下列条件,判断三角形的解的情况。

2、教学正弦定理与余弦定理的活用:
①出示例2、在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4.求最大角的余弦。

分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。

②出示例3、在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。

分析:由三角形的什么知识可以判别?→求最大角余弦,由符号进行判断
③出示例4、已知△ABC中,试判断△ABC的形状。

分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?
3、小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。

三、巩固练习:
3、作业:教材P11 B组1、2题。

高中数学必修5教案篇四
教学准备
教学目标
数列求和的综合应用
教学重难点
数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式
(2)求{|an|}的前n项和Tn
4.等差数列{an}的公差为,S100=14
5.则a1+a3 + a5 + …+a99=
5.已知方程(X2-2X+mX2-2X+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anXn ,求数列{bn} 前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21.中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15.求当n为何值时,Sn有最大值,并求出它的最大值
.已知数列{an},an∈N,Sn= (an+(2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0.已知f(X)=X2 -2(n+(1)X+ n2+5n-7 (n∈N)
(1)设f(X)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(X)的图象的顶点到 X轴的距离构成数列{dn},求数列{dn}的前n项和 sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是 f(t)=
销售量 g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量X的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值
人教高中必修5数学教案篇五
教学准备
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一。

基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。

二。

问题讨论
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。

思维点拨::三角形中的三角变换,应灵活运用正、余弦定理。

在求值时,要利用三角函数的有关性质。

例6:在某海滨城市附近海面有一台风,据检测,当前台
风中心位于城市O(如图)的东偏南方向
300 km的海面P处,并以20 km / h的速度向西偏北的
方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

一。

小结:
1、利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2、利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

3、边角互化是解三角形问题常用的手段。

三。

作业:P80 闯关训练
人教高中必修5数学教案篇六
教学准备
教学目标
进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。

教学重难点
教学重点:熟练运用定理。

教学难点:应用正、余弦定理进行边角关系的相互转化。

教学过程
一、复习准备:
1、写出正弦定理、余弦定理及推论等公式。

2、讨论各公式所求解的三角形类型。

二、讲授新课:
1、教学三角形的解的讨论:
①出示例1、在△ABC中,已知下列条件,解三角形。

分两组练习→讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况。

(A为锐角时)
②练习:在△ABC中,已知下列条件,判断三角形的解的情况。

2、教学正弦定理与余弦定理的活用:
①出示例2、在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4.求最大角的余弦。

分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。

②出示例3、在ΔABC中,已知a=7,b=10,c=6,判断三角形
的类型。

分析:由三角形的什么知识可以判别?→求最大角余弦,由符号进行判断
③出示例4、已知△ABC中,试判断△ABC的形状。

分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?
3、小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。

三、巩固练习:
3、作业:教材P11 B组1、2题。

高中数学必修五教案篇七
教学目标
A、知识目标:
掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:
(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)
(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

教学重点:
等差数列前n项和的公式。

教学难点:
等差数列前n项和的公式的灵活运用。

教学方法:
启发、讨论、引导式。

教具:
现代教育多媒体技术。

教学过程
一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。

提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案
5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。

(教师观察学生的表情反映,然后将此问题缩小十倍)。

我们来看这样一道一例题。

例1.计算:1+2+3+4+5+6+7+8+9+10、
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

二、教授新课(尝试推导)
师:如果已知等差数列的首项a1.项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

上面(I)(II)两个式子称为等差数列的前n项和公式。

公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)X高÷2相类比,这里的上底是等差数列的首项a1.下底是第n项an,高是项数n。

引导学生总结:这些公式中出现了几个量?(a1.d,n,an,Sn)它们由哪几个关系联系?[an=a1+(n—(1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。

下面我们举例说明公式(I)和(II)的一些应用。

师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。

同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

高中数学必修五复习知识点篇八
1、棱柱
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
2、棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的性质:
(1)侧棱交于一点。

侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。

且其面积比等于截得的棱锥的高与远棱锥高的比的平方
3、正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(2)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。

且顶点在底面的射影为底面三角形的垂心。

相关文档
最新文档