霍山县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

霍山县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为()
A.(﹣,﹣2] B.[﹣1,0] C.(﹣∞,﹣2] D.(﹣,+∞)
2.利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a﹣1)<0成立的概率是()
A.B.C.D.
3.将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.B.C.D.
4.已知向量=(1,2),=(x,﹣4),若∥,则x=()
A.4 B.﹣4 C.2 D.﹣2
5.已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()
A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)
6.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程
y=3﹣5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程y=bx+a必过;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是()
A.0 B.1 C.2 D.3
7
.如图,已知平面=,.是直线上的两点,是平面内的两点,且
,,,.是平面上的一动点,且有,则四棱锥
体积的最大值是()
A. B. C. D.
8.复数i﹣1(i是虚数单位)的虚部是()
A.1 B.﹣1 C.i D.﹣i
9.命题“∀a∈R,函数y=π”是增函数的否定是()
A.“∀a∈R,函数y=π”是减函数 B.“∀a∈R,函数y=π”不是增函数
C.“∃a∈R,函数y=π”不是增函数D.“∃a∈R,函数y=π”是减函数
10.抛物线y2=2x的焦点到直线x﹣y=0的距离是()
A.B.C.D.
11.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()
A.80 B.40 C.60 D.20
12.若函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,则实数m的取值范围是()
A.m≥0或m<﹣1 B.m>0或m<﹣1 C.m>1或m≤0 D.m>1或m<0
二、填空题
13.已知平面上两点M(﹣5,0)和N(5,0),若直线上存在点P使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:
①y=x+1 ②y=2 ③y=x ④y=2x+1
是“单曲型直线”的是.
14.若的展开式中含有常数项,则n的最小值等于.
15.(本小题满分12分)点M(2pt,2pt2)(t为常数,且t≠0)是拋物线C:x2=2py(p>0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.
(1)求证:直线PQ的斜率为-2t;
(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值.
16.若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=.17.长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE
所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为.
18.已知f(x)=,若不等式f(x﹣2)≥f(x)对一切x∈R恒成立,则a的最大值为.
三、解答题
19.已知函数f(x)=和直线l:y=m(x﹣1).
(1)当曲线y=f(x)在点(1,f(1))处的切线与直线l垂直时,求原点O到直线l的距离;
(2)若对于任意的x ∈[1,+∞),f (x )≤m (x ﹣1)恒成立,求m 的取值范围;
(3)求证:ln <
(n ∈N +

20.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.
21.如图,已知椭圆C
,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 的另外一个交
点为A ,且线段AB 的中点E 在直线y=x 上. (1)求直线AB 的方程;
(2)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,直线BM 交椭圆C 于另外一点Q . ①证明:OM •ON 为定值; ②证明:A 、Q 、N 三点共线.
22.数列{a n}的前n项和为S n,a1=1,a n+1=2S n+1,等差数列{b n}满足b3=3,b5=9,
(1)分别求数列{a n},{b n}的通项公式;
(2)若对任意的n∈N*,恒成立,求实数k的取值范围.
23.设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.
24.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.
(1)求证:CM⊥EM;
(2)求MC与平面EAC所成的角.
霍山县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,
故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,
故有,即,解得﹣<m≤﹣2,
故选A.
【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.
2.【答案】C
【解析】解:由ln(3a﹣1)<0得<a<,
则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,
故选:C.
3.【答案】D
【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin[2(x﹣)]=sin(2x﹣);考察选项不难发现:
当x=时,sin(2×﹣)=0;
∴(,0)就是函数的一个对称中心坐标.
故选:D.
【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型.
4.【答案】D
【解析】:解:∵∥,
∴﹣4﹣2x=0,解得x=﹣2.
故选:D.
5.【答案】A
【解析】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),
则向量==(﹣7,﹣4);
故答案为:A.
【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.
6.【答案】C
【解析】解:对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,正确;
对于②,设有一个回归方程y=3﹣5x,变量x增加一个单位时,y应平均减少5个单位,②错误;
对于③,线性回归方程y=bx+a必过样本中心点,正确;
对于④,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,
我们说某人吸烟,那么他有99%的可能患肺病,错误;
综上,其中错误的个数是2.
故选:C.
7.【答案】A
【解析】【知识点】空间几何体的表面积与体积
【试题解析】由题知:是直角三角形,又,所以。

因为,所以PB=2PA。

作于M,则。

令AM=t,则
所以即为四棱锥的高,
又底面为直角梯形,
所以
故答案为:A
8.【答案】A
【解析】解:由复数虚部的定义知,i﹣1的虚部是1,
故选A.
【点评】该题考查复数的基本概念,属基础题.
9.【答案】C
【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.
故选:C.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
10.【答案】C
【解析】解:抛物线y2=2x的焦点F(,0),
由点到直线的距离公式可知:
F到直线x﹣y=0的距离d==,
故答案选:C.
11.【答案】B
【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,
∴三年级要抽取的学生是×200=40,
故选:B.
【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.
12.【答案】A
【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,
∴﹣m=3﹣|x﹣1|无解,
∵﹣|x﹣1|≤0,
∴0<3﹣|x﹣1|≤1,
∴﹣m≤0或﹣m>1,
解得m≥0或m>﹣1
故选:A.
二、填空题
13.【答案】①②.
【解析】解:∵|PM|﹣|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即,(x>0).
对于①,联立,消y得7x2﹣18x﹣153=0,
∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.
对于②,联立,消y得x2=,∴y=2是“单曲型直线”.
对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.
对于④,联立,消y得20x2+36x+153=0,
∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.
故符合题意的有①②.
故答案为:①②.
【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.
14.【答案】5
【解析】解:由题意的展开式的项为T r+1=C n r(x6)n﹣r()r=C n r=C n r
令=0,得n=,当r=4时,n 取到最小值5
故答案为:5.
【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n的表达式,推测出它的值.
15.【答案】
【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y-2pt2=k(x-2pt).①
将①与拋物线x2=2py联立得,
x2-2pkx+4p2t(k-t)=0,
解得x1=2pt,x2=2p(k-t),将x2=2p(k-t)代入x2=2py得y2=2p(k-t)2,∴P点的坐标为(2p(k-t),2p(k-t)2).
由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =
2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )
=-2t ,
即直线PQ 的斜率为-2t .
(2)由y =x 22p 得y ′=x
p

∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2pt
p =2t .
其切线方程为y -2pt 2=2t (x -2pt ), 又C 的准线与y 轴的交点T 的坐标为(0, -p
2). ∴-p
2
-2pt 2=2t (-2pt ).
解得t =±12,即t 的值为±1
2
.
16.【答案】 5 .
【解析】解:P (1,4)为抛物线C :y 2
=mx 上一点,
即有42
=m ,即m=16, 抛物线的方程为y 2
=16x ,
焦点为(4,0),
即有|PF|==5.
故答案为:5.
【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.
17.【答案】 4或 .
【解析】解:设AB=2x ,则AE=x ,BC=,
∴AC=

由余弦定理可得x 2=9+3x 2
+9﹣2×3×
×

∴x=1或,
∴AB=2,BC=2,球O 的直径为=4,
或AB=2
,BC=
,球O 的直径为=

故答案为:4或

18.【答案】﹣.
【解析】解:∵不等式f(x﹣2)≥f(x)对一切x∈R恒成立,∴若x≤0,则x﹣2≤﹣2.
则不等式f(x﹣2)≥f(x)等价为,﹣2(x﹣2)≥﹣2x,
即4≥0,此时不等式恒成立,
若0<x≤2,则x﹣2≤0,
则不等式f(x﹣2)≥f(x)等价为,﹣2(x﹣2)≥ax2+x,
即ax2≤4﹣3x,
则a≤=﹣,
设h(x)=﹣=4(﹣)2﹣9,
∵0<x≤2,∴≥,
则h(x)≥﹣9,∴此时a≤﹣9,
若x>2,则x﹣2>0,
则f(x﹣2)≥f(x)等价为,a(x﹣2)2+(x﹣2)≥ax2+x,即2a(1﹣x)≥2,
∵x>2,∴﹣x<﹣2,1﹣x<﹣1,
则不等式等价,4a≤=﹣
即2a≤﹣
则g(x)=﹣在x>2时,为增函数,
∴g(x)>g(2)=﹣1,
即2a≤﹣1,则a≤﹣,
故a的最大值为﹣,
故答案为:﹣
【点评】本题主要考查不等式恒成立问题,利用分类讨论的数学思想,结合参数分离法进行求解即可.
三、解答题
19.【答案】
【解析】(Ⅰ)解:由f(x)=,得,
∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.
原点O到直线l的距离为;
(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,
设,即∀x∈[1,+∞),g(x)≤0成立.

①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;
②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,
当△≤0,即m时,g′(x)≤0,
∴g(x)在(1,+∞)上单调递减,
∴g(x)≤g(1)=0,即不等式成立.
当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),
,,
当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.
综上所述,m;
(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.
不妨令,
∴ln ,
(k ∈N *
).
∴.



累加可得:,(n ∈N *
).
即ln

(n ∈N *
).
【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式
是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是
压轴题.
20.【答案】16
y x =-. 【解析】
试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线
12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1
考点:直线方程的求解.
21.【答案】
【解析】(1)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),
∵点A在椭圆C上,∴,
整理得:6t2+4t=0,解得t=﹣或t=0(舍去),
∴E(﹣,﹣),A(﹣,﹣),
∴直线AB的方程为:x+2y+2=0;
(2)证明:设P(x0,y0),则,
①直线AP方程为:y+=(x+),
联立直线AP与直线y=x的方程,解得:x M=,
直线BP的方程为:y+1=,
联立直线BP与直线y=x的方程,解得:x N=,
∴OM•ON=|x M||x N|
=2•||•||
=||
=||
=||
=.
②设直线MB的方程为:y=kx﹣1(其中k==),
联立,整理得:(1+2k2)x2﹣4kx=0,
∴x Q=,y Q=,
∴k AN===1﹣,k AQ==1﹣,
要证A、Q、N三点共线,只需证k AN=k AQ,即3x N+4=2k+2,
将k=代入,即证:x M•x N=,
由①的证明过程可知:|x M|•|x N|=,
而x M与x N同号,∴x M•x N=,
即A、Q、N三点共线.
【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题.
22.【答案】
【解析】解:(1)由a n+1=2S n+1①
得a n=2S n﹣1+1②,
①﹣②得a n+1﹣a n=2(S n﹣S n﹣1),
∴a n+1=3a n(n≥2)
又a2=3,a1=1也满足上式,
∴a n=3n﹣1;
b5﹣b3=2d=6∴d=3
∴b n=3+(n﹣3)×3=3n﹣6;
(2),
∴对n∈N*恒成立,
∴对n∈N*恒成立,
令,,
当n≤3时,c n>c n﹣1,当n≥4时,c n<c n﹣1,

所以实数k的取值范围是
【点评】已知数列的项与前n项和间的递推关系求数列的通项,一般通过仿写作差的方法得到数列的递推关系,再据递推关系选择合适的求通项方法.
23.【答案】
【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,
即有(ax﹣1)(x﹣1)>0,
当a=0时,即有1﹣x>0,解得x<1;
当a<0时,即有(x﹣1)(x﹣)<0,
由1>可得<x<1;
当a=1时,(x﹣1)2>0,即有x∈R,x≠1;
当a>1时,1>,可得x>1或x<;
当0<a<1时,1<,可得x<1或x>.
综上可得,a=0时,解集为{x|x<1};
a<0时,解集为{x|<x<1};
a=1时,解集为{x|x∈R,x≠1};
a>1时,解集为{x|x>1或x<};
0<a<1时,解集为{x|x<1或x>}.
(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,
即为ax2﹣(a+1)x+1>0,
即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.
设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].
则g(﹣1)>0,且g(1)>0,
即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,
即(x﹣1)(x+2)<0,且x(x﹣1)>0,
解得﹣2<x<1,且x>1或x<0.
可得﹣2<x<0.
故x的取值范围是(﹣2,0).
24.【答案】
【解析】(1)证明:∵AC=BC=AB,
∴△ABC为等腰直角三角形,
∵M为AB的中点,
∴AM=BM=CM,CM⊥AB,
∵EA⊥平面ABC,
∴EA⊥AC,
设AM=BM=CM=1,则有AC=,AE=AC=,
在Rt△AEC中,根据勾股定理得:EC==,
在Rt△AEM中,根据勾股定理得:EM==,
∴EM2+MC2=EC2,
∴CM⊥EM;
(2)解:过M作MN⊥AC,可得∠MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为45°.。

相关文档
最新文档