2020-2021初中数学圆的基础测试题及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初中数学圆的基础测试题及解析
一、选择题
1.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C 的度数是()
A.48°B.42°C.34°D.24°
【答案】B
【解析】
【分析】
根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.
【详解】
解:∵∠ABD=24°,
∴∠AOC=48°,
∵AC是⊙O的切线,
∴∠OAC=90°,
∴∠AOC+∠C=90°,
∴∠C=90°﹣48°=42°,
故选:B.
【点睛】
考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.
2.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()
A.4 B.3C.6 D.43
【答案】B
【解析】
【分析】
设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.
【详解】
设三角板与圆的切点为C,连接OA、OB,
由切线长定理知,AB=AC=3,AO平分∠BAC,
∴∠OAB=60°,
在Rt△ABO中,OB=AB tan∠OAB=43,
∴光盘的直径为83.
故选:B.
【点睛】
本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.
3.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=2
5
,则线段AC的长为()
A.1 B.2 C.4 D.5
【答案】C
【解析】
【分析】
首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由
⊙O的半径是5,sinB=2
5
,即可求得答案.
【详解】
解:连接CO并延长交⊙O于点D,连接AD,
由CD是⊙O的直径,可得∠CAD=90°,
∵∠B和∠D所对的弧都为弧AC,
∴∠B=∠D ,即sinB=sinD=25, ∵半径AO=5,
∴CD=10,
∴2sin 105
AC AC D CD =
==, ∴AC=4,
故选:C.
【点睛】 本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.
4.如图,AB 是O e 的直径,C 是O e 上一点(A 、B 除外),132AOD ∠=︒,则C ∠的度数是( )
A .68︒
B .48︒
C .34︒
D .24︒
【答案】D
【解析】
【分析】 根据平角得出BOD ∠的度数,进而利用圆周角定理得出C ∠的度数即可.
【详解】
解:132AOD ∠=︒Q ,
48BOD ∴∠=︒,
24C ∴∠=︒,
故选:D .
【点睛】
本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的度数的一半是解答此题的关键.
5.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )
A .OE=OF
B .AB=CD
C .∠AOB =∠CO
D D .O
E >OF
【答案】D
【解析】
【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.
【详解】
解:∵»»AB CD =,
∴AB =CD ,∠AOB =∠COD ,
∵OE AB ⊥,OF CD ⊥,
∴BE =12AB ,DF =12
CD , ∴BE =DF ,
又∵OB =OD , ∴由勾股定理可知OE =OF ,
即A 、B 、C 正确,D 错误,
故选:D .
【点睛】
本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.
6.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD 等于( )
A .20°
B .25°
C .30°
D .32.5°
【答案】A
【解析】
【分析】
连接OD,根据三角形内角和定理和等边对等角求出∠DOB=40°,再根据圆周角定理即可求出∠BAD的度数.
【详解】
解:连接OD,
∵OC⊥AB,
∴∠COB=90°,
∵∠AEC=65°,
∴∠OCE=180°﹣90°﹣65°=25°,
∵OD=OC,
∴∠ODC=∠OCD=25°,
∴∠DOC=180°﹣25°﹣25°=130°,
∴∠DOB=∠DOC﹣∠BOC=130°﹣90°=40°,
∴由圆周角定理得:∠BAD=1
2
∠DOB=20°,
故选:A.
【点睛】
本题考查了圆和三角形的问题,掌握三角形内角和定理、等边对等角、圆周角定理是解题的关键.
7.如图,用半径为12cm,面积2
72cm
的扇形无重叠地围成一个圆锥,则这个圆锥的高为()
A.12cm B.6cm C.6√2 cm D.3
【答案】D
【解析】
【分析】
先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.
【详解】
72π=212360n π⨯ 解得n=180°,
∴扇形的弧长=
18012180
π⨯=12πcm . 围成一个圆锥后如图所示:
因为扇形弧长=圆锥底面周长
即12π=2πr
解得r=6cm ,即OB=6cm
根据勾股定理得OC=22126=63-cm ,
故选D .
【点睛】
本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.
8.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为( )
A .60πcm 2
B .65πcm 2
C .120πcm 2
D .130πcm 2
【答案】B
【解析】
【分析】 先利用三视图得到底面圆的半径为5cm ,圆锥的高为12cm ,再根据勾股定理计算出母线长为13cm ,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
根据三视图得到圆锥的底面圆的直径为10cm ,即底面圆的半径为5cm ,圆锥的高为12cm ,
所以圆锥的母线长225+12=13,
所以这个圆锥的侧面积=1
2
×2π×5×13=65π(cm2).
故选B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
9.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()
A.4
3
B.
3
4
C.
3
5
D.
4
5
【答案】D
【解析】
【分析】
由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD 的值.
【详解】
∵AB是⊙O的直径,CD⊥AB,
∴弧AC=弧AD,
∴∠ABD=∠ABC.
根据勾股定理求得AB=5,
∴sin∠ABD=sin∠ABC=4
5
.
故选D.
【点睛】
此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.
10.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.
下列说法中错误的是( )
A .勒洛三角形是轴对称图形
B .图1中,点A 到¶BC
上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.
【详解】
鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;
点A 到¶BC
上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;
鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22
DE DE ππ⨯=⨯ ,故说法正确.
故选C.
【点睛】
主要考察轴对称图形,弧长的求法即对于新概念的理解.
11.如图,⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC =3:5,则AB 的长为( )
A 91
B .8cm
C .6cm
D .4cm
【解析】
【分析】
由于⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,又已知OM :OC =3:5,则可以求出OM =3,OC =5,连接OA ,根据勾股定理和垂径定理可求得AB .
【详解】
解:如图所示,连接OA .
⊙O 的直径CD =10cm ,
则⊙O 的半径为5cm ,
即OA =OC =5,
又∵OM :OC =3:5,
所以OM =3,
∵AB ⊥CD ,垂足为M ,OC 过圆心
∴AM =BM ,
在Rt △AOM 中,22AM=5-3=4,
∴AB =2AM =2×4=8.
故选:B .
【点睛】
本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.
12.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E 点,若AD =CD = 23.则»BC
的长为( )
A .3π
B .23π
C 3π
D 23π 【答案】B
【解析】
根据垂径定理得到3CE DE ==,»»BC BD = ,∠A=30°,再利用三角函数求出OD=2,即可利用弧长公式计算解答.
【详解】
如图:连接OD ,
∵AB 是⊙O 的直径,弦CD ⊥AB 于E 点,AD =CD = 23,
∴3CE DE ==
,»»BC BD = ,∠A=30°, ∴∠DOE=60°,
∴OD=2sin 60DE =o
, ∴»BC
的长=»BD 的长=60221803ππ⨯=, 故选:B.
【点睛】
此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.
13.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm ,则这个圆锥的侧面积为( )
A .50cm 2
B .50πcm 2
C .52
D .5cm 2
【答案】D
【解析】
【分析】 根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm ,
22105+=55,圆锥底面圆半
径为5,
∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积=
1
2
×10π×55=255πcm2,
故选:D.
【点睛】
本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.14.如图,点A、B、C、D、E、F等分⊙O,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O的半径为1,那么“三叶轮”图案的面积为()
A.π+33
B.π-
33
C.
33
π+
D.
33
π-
【答案】B
【解析】
【分析】
连接OA、OB、AB,作OH⊥AB于H,根据正多边形的中心角的求法求出∠AOB,根据扇形面积公式计算.
【详解】
连接OA、OB、AB,作OH⊥AB于H,
∵点A、B、C、D、E、F是⊙O的等分点,
∴∠AOB=60°,又OA=OB ,
∴△AOB 是等边三角形,
∴AB=OB=1,∠ABO=60°,
∴OH=2211()2-=3, ∴“三叶轮”图案的面积=(2601360π⨯⨯-12×1×3)×6=π-33, 故选B .
【点睛】
本题考查的是正多边形和圆、扇形面积的计算,掌握正多边形的中心角的求法、扇形面积公式是解题的关键.
15.如图,四边形ABCD 内接于圆O ,DA DC =,50CBE ∠=︒,AOD ∠的大小为( )
A .130°
B .100°
C .20°
D .10°
【答案】A
【解析】
【分析】 先求出∠ABC 的大小,根据内接四边形角度关系,得到∠ADC 的大小,从而得出∠C 的大小,最后利用圆周角与圆心角的关系得∠AOD 的大小.
【详解】
∵∠CBE=50°
∴∠ABC=130°
∵四边形ABCD 是内接四边形
∴∠ADC=50°
∵AD=DC
∴在△ADC 中,∠C=∠DAC=65°
∴∠AOD=2∠C=130°
故选:A
【点睛】
本题考查圆的性质,主要是内接四边形对角互补和同弧对应圆心角是圆周角2倍,解题中,我们要充分利用圆的性质进行角度转换,以便得到我们需要的角度.
16.如图,有一圆锥形粮堆,其侧面展开图是半径为6m 的半圆,粮堆母线AC 的中点P 处
有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程长为( )
A .3m
B .33m
C .35m
D .4m
【答案】C
【解析】
【分析】
【详解】
如图,由题意得:AP =3,AB =6,90.BAP ∠=o
∴在圆锥侧面展开图中223635.BP m =+=
故小猫经过的最短距离是35.m
故选C.
17.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=86°,则∠BCD 的度数是(
)
A .86°
B .94°
C .107°
D .137°
【答案】D
【解析】
【分析】
【详解】
解:∵∠BOD=86°,
∴∠BAD=86°÷2=43°,
∵∠BAD+∠BCD=180°,
∴∠BCD=180°-43°=137°,
即∠BCD 的度数是137°.
故选D .
【点睛】
本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).
18.如图,四边形ABCD内接于⊙O,F是¶CD上一点,且¶¶
=,连接CF并延长交
DF BC
AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()
A.45°B.50°C.55°D.60°
【答案】B
【解析】
【分析】
先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.
【详解】
∵四边形ABCD内接于⊙O,∠ABC=105°,
∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.
∵»»
=,∠BAC=25°,
DF BC
∴∠DCE=∠BAC=25°,
∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.
【点睛】
本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.
19.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.
图1图2
有如下四个结论:
①勒洛三角形是中心对称图形
②图1中,点A到BC上任意一点的距离都相等
③图2中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是()
A.①②B.②③C.②④D.③④【答案】B
【解析】
【分析】
逐一对选项进行分析即可.
【详解】
①勒洛三角形不是中心对称图形,故①错误;
②图1中,点A到BC上任意一点的距离都相等,故②正确;
③图2中,设圆的半径为r
∴勒洛三角形的周长=
120
32
180
r
r
π
π⨯=
g g
圆的周长为2r
π
∴勒洛三角形的周长与圆的周长相等,故③正确;
④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误
故选B
【点睛】
本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 20.下列命题错误的是()
A.平分弦的直径垂直于弦
B.三角形一定有外接圆和内切圆
C.等弧对等弦
D.经过切点且垂直于切线的直线必经过圆心
【答案】C
【解析】
【分析】
根据垂径定理、三角形外接圆、圆的有关概念判断即可.
【详解】
A、平分弦的直径一定垂直于弦,是真命题;
B、三角形一定有外接圆和内切圆,是真命题;
C、在同圆或等圆中,等弧对等弦,是假命题;
D、经过切点且垂直于切线的直线必经过圆心,是真命题;
故选C.
【点睛】
本题考查了命题与定理的知识,解题的关键是根据垂径定理、三角形外接圆、圆的有关概念等知识解答,难度不大.。