广东省深圳市乐而思教育2017-2018学年高一数学必修2专题复习试卷:直线、平面平行的判定与性质(

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线、平面平行的判定与性质
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如果两直线a∥b,且a∥α,则b与α的位置关系是()
A.相交
B.b∥α
C.b⊂α
D.b∥α或b⊂α
2.已知m,n是两条直线,α,β是两个平面.有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是()
A.0
B.1
C.2
D.3
3.在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC和平面DEF的位置关系是()
A.平行
B.相交
C.在平面内
D.异面
4.设平面α∥平面β,点A∈α,点B∈β,C是AB的中点,当点A,B分别在平面α,β内运动时,则所有的动点C()
A.不共面
B.不论点A,B如何移动,都共面
C.当且仅当点A,B分别在两条直线上移动时才共面
D.当且仅当点A,B分别在两条给定的异面直线上移动时才共面
5.平面α与β平行的条件可能是()
A.α内有无穷多条直线与β平行
B.直线a∥α,a∥β
C.直线a⊂α,直线b⊂β,且a∥β,b∥α
D.α内的任何直线都与β平行
6.如图,在四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面P AD,则()
A.MN∥PD
B.MN∥P A
C.MN∥AD
D.以上均有可能
7.在长方体ABCD-A1B1C1D1中,若经过D1B的平面分别交AA1和CC1于点E,F,则四边形D1EBF的形状是()
A.矩形
B.菱形
C.平行四边形
D.正方形
8.已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b的位置关系是()
A.平行B.相交
C.异面D.不确定
9.(2016安徽安庆高二期中)若直线a平行于平面α,则下列结论错误的是()
A.a平行于α内的所有直线
B.α内有无数条直线与a平行
C.直线a上的点到平面α的距离相等
D.α内存在无数条直线与a成90°角
10.对于直线m,n和平面α,下列命题中正确的是()
A.如果m⊂α,n⊄α,m,n是异面直线,那么n∥α
B.如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交
C.如果m⊂α,n∥α,m,n共面,那么m∥n
D.如果m∥α,n∥α,m,n共面,那么m∥n
11.设平面α∥平面β,A∈α,B∈β,C是AB的中点,当A,B分别在α,β内运动时,那么所有的动点C() A.不共面
B.当且仅当A,B在两条相交直线上移动时才共面
C.当且仅当A,B在两条给定的平行直线上移动时才共面
D.不论A,B如何移动都共面
12.下列说法正确的是()
A.平行于同一条直线的两个平面平行
B.平行于同一个平面的两个平面平行
C.一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行
D.若三直线a,b,c两两平行,则在过直线a的平面中,有且只有一个平面与b,c均平行
二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)
13.如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.
14.如图,E,F,G分别是四面体ABCD的棱BC,CD,DA的中点,则此四面体中与过点E,F,G的截面平行的棱
是.
15.若直线l不存在与平面α内无数条直线都相交的可能,则直线l与平面α的关系为.
16.如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.如图所示,在三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点,求证:BC1∥平面CA1D.
18.如图是一个以△A1B1C1为底面的直三棱柱被一平面所截得的几何体,截面为△ABC.已知AA1=4,BB1=2,CC1=3.在边AB上是否存在一点O,使得OC∥平面A1B1C1?
19.如图,在三棱锥S-ABC中,D,E,F分别是AC,BC,SC的中点,G是AB上任意一点.求证:SG∥平面DEF.
20.如图所示,已知P是▱ABCD所在平面外一点,M,N分别是AB,PC的中点,平面P AD∩平面PBC=l.
求证:(1)l∥BC.
(2)MN∥平面P AD.
21.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,E,E1分别是棱AD,AA1的中点,设F是棱AB的中点,证明:直线EE1∥平面FCC1.
22.如图,正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点.
求证:平面AMN∥平面EFDB.。

相关文档
最新文档