湖北省当阳二高高考数学平面向量多选题与热点解答题组合练含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省当阳二高高考数学平面向量多选题与热点解答题组合练含答案
一、平面向量多选题
1.设向量(1,1)a =-,(0,2)b =,则( )
A .||||a b =
B .()a b a -∥
C .()a b a -⊥
D .a 与b 的夹角为
4
π 【答案】CD 【分析】
根据平面向量的模、垂直、夹角的坐标运算公式和共线向量的坐标运算,即可对各项进行判断,即可求出结果. 【详解】 对于A ,(1,1)a =-,(0,2)b =,2,2a b ∴==,a b ∴≠,故A 错误; 对于B ,
(1,1)a =-,(0,2)b =,()=1,1a b ∴---,又(0,2)b =,则
()12100-⨯--⨯≠,()a b ∴-与b 不平行,故B 错误;
对于C ,又()
()()11110a b a -⋅=-⨯-+-⨯=,()a b a ∴-⊥,故C 正确;
对于D ,又cos ,22
a b a b a b
⋅<>=
=
=
⋅,又a 与b 的夹角范围是[]0,π,a ∴与b 的夹角为
π
4,故D 正确. 故选:CD. 【点睛】
关键点点睛:本题考查了平面向量的坐标运算,熟记平面向量的模、垂直、夹角坐标运算公式及共线向量的坐标运算时解题的关键,考查学生的运算能力,属于基础题.
2.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )
A .0GA G
B G
C ++= B .24AB AC HM MO +=- C .3AH OM =
D .OA OB OC ==
【答案】ABD 【分析】
向量的线性运算结果仍为向量可判断选项A ;由12GO HG =
可得2
3
HG HO =,利用向量的线性运算()
266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合
判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】
因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以1
2
GO HG =
, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;
对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,
3AM GM =,因为12GO HG =
,所以2
3
HG HO =, ()
226663AB AC AM GM HM HG HM HO ⎛⎫
+===-=- ⎪⎝⎭
()
646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,
故选项B 正确;
对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即
OA OB OC ==,故选项D 正确;
故选:ABD. 【点睛】
关键点点睛:本题解题的关键是利用已知条件12GO HG =得2
3
HG HO =,利用向量的线性运算结合2AG GM =可得出向量间的关系.
3.已知ABC 是边长为2的等边三角形,D ,E 分别是,AC AB 上的点,且AE EB =,
2AD DC =,BD 与CE 交于点O ,则( )
A .0OC EO +=
B .0AB CE ⋅=
C .3OA OB OC O
D +++=
D .ED 在BC 方向上的投影为
76
【答案】BD 【分析】
可证明EO CE =,结合平面向量线性运算法则可判断A ;由AB CE ⊥结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 【详解】
因为ABC 是边长为2的等边三角形,AE EB =,
所以E 为AB 的中点,且CE AB ⊥,以E 为原点如图建立直角坐标系,
则()0,0E ,()1,0A -,()10
B ,,(3
C , 由2A
D DC =可得2
22333AD AC ⎛=
= ⎝⎭,则1233D ⎛- ⎝⎭
, 取BD 的中点G ,连接GE ,易得//GE AD 且1
2
GE AD DC =
=, 所以CDO ≌EGO △,EO CO =,则3O ⎛ ⎝⎭
, 对于A ,0OC EO EC +=≠,故A 错误; 对于B ,由AB CE ⊥可得0AB CE ⋅=,故B 正确; 对于C ,31,2OA ⎛=--
⎝⎭,31,2OB ⎛⎫=- ⎪ ⎪⎝⎭,30,2OC ⎛⎫
= ⎪ ⎪⎝⎭,13,36OD ⎛=- ⎝⎭
, 所以13,3OA OB OC OD ⎛+++=- ⎝⎭
,所以2
3OA OB OC OD +++=,故C 错误;
对于D ,()
1,3BC =-,
123,
3ED ⎛⎫
=- ⎪ ⎪
⎝⎭
, 所以ED 在BC 方向上的投影为12
7326BC ED BC
+⋅==,故D 正确.
故选:BD. 【点睛】
关键点点睛:建立合理的平面直角坐标系是解题关键.
4.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .12
33
BE BA BC =
+ C .数列{a n }为等比数列 D .14n
n n a a +-=
【答案】BD 【分析】 证明12
33
BE BA BC =
+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}
是以4为首项,4为公比的等比数列,所以14n
n n a a +-=,所以选项D 正确,易得
321a =,选项C 不正确.
【详解】
因为2AE EC =,所以2
3
AE AC =, 所以2
()3
AB BE AB BC +=+, 所以12
33
BE BA BC =
+,所以选项B 正确;
设BD tBE =(0t >),
则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以
()()1111
23n n n n BE a a BA a a BC t t
-+=
-+-, 所以
()11123n n a a t --=,()11233
n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,
显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,
11
4n n
n n a a a a +--=-,
所以数列{1n n a a --}是以4为首项,4为公比的等比数列,
所以14n
n n a a +-=,所以选项D 正确,
易得321a =,显然选项C 不正确. 故选:BD 【点睛】
本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平.
5.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,
2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )
A .//P
B CQ B .1233
BP BA BC =
+ C .0PA PC ⋅> D .4S =
【答案】BD 【分析】
利用向量的共线定义可判断A ;利用向量加法的三角形法则以及向量减法的几何意义即可判断B ;利用向量数量积的定义可判断C ;利用三角形的面积公式即可判断D. 【详解】
由20PA PC +=,2QA QB =,
可知点P 为AC 的三等分点,点Q 为AB 延长线的点, 且B 为AQ 的中点,如图所示:
对于A ,点P 为AC 的三等分点,点B 为AQ 的中点, 所以PB 与CQ 不平行,故A 错误; 对于B ,()
2212
3333
BP BA AP BA AC BA BC BA BA BC =+=+=+-=+, 故B 正确;
对于C ,cos 0PA PC PA PC PA PC π⋅==-<,故C 错误; 对于D ,设ABC 的高为h ,1
32
ABC
S AB h =
=,即6AB h =, 则APQ 的面积12122
26423233
APQ
S AQ h AB h =
⋅=⋅⋅=⨯=,故D 正确; 故选:BD 【点睛】
本题考查了平面向量的共线定理、共线向量、向量的加法与减法、向量的数量积,属于基础题
6.在ABC 中,D ,E ,F 分别是边BC ,AC ,AB 中点,下列说法正确的是( ) A .0AB AC AD +-= B .0DA EB FC ++= C .若
3||||||
AB AC AD
AB AC AD +=,则BD 是BA 在BC 的投影向量 D .若点P 是线段AD 上的动点,且满足BP BA BC λμ=+,则λμ的最大值为18
【答案】BCD 【分析】
对选项A ,B ,利用平面向量的加减法即可判断A 错误,B 正确.对选项C ,首先根据已知得到AD 为BAC ∠的平分线,即AD BC ⊥,再利用平面向量的投影概念即可判断C 正确.对选项D ,首先根据,,A P D 三点共线,设(1)BP
tBA t BD ,01t ≤≤,再根据已知得
到12t t λμ=⎧⎪⎨-=⎪⎩
,从而得到21111()()2228
t
y
t t ,即可判断选项D 正确. 【详解】
如图所示:
对选项A ,20AB AC AD AD AD AD +-=-=≠,故A 错误. 对选项B ,111
()()()222
DA EB FC AB AC BA BC CA CB ++=-
+-+-+ 111111
222222
AB AC BA BC CA CB =------
111111
0222222
AB AC AB BC AC BC =--+-++=,故B 正确.
对选项C ,
||AB AB ,||AC AC ,||
AD
AD 分别表示平行于AB ,AC ,AD 的单位向量, 由平面向量加法可知:
||||
AB AC
AB AC +为BAC ∠的平分线表示的向量. 因为
3||||||
AB AC AD
AB AC AD +=,所以AD 为BAC ∠的平分线, 又因为AD 为BC 的中线,所以AD BC ⊥,如图所示:
BA 在BC 的投影为cos BD BA B
BA
BD BA

所以BD 是BA 在BC 的投影向量,故选项C 正确. 对选项D ,如图所示:
因为P 在AD 上,即,,A P D 三点共线, 设(1)BP
tBA t BD ,01t ≤≤.
又因为1
2BD BC =
,所以(1)2
t BP tBA BC . 因为BP BA BC λμ=+,则12t
t λμ=⎧⎪
⎨-=⎪⎩
,01t ≤≤.
令21111()2
228
t y
t
t , 当12t =时,λμ取得最大值为1
8.故选项D 正确.
故选:BCD 【点睛】
本题主要考查平面向量的加法,减法的几何意义,数形结合为解决本题的关键,属于中档题.
7.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤
B .若a b c b ⋅=⋅且0b ≠,则a c =
C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向
D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫-+∞ ⎪⎝⎭
【答案】AC 【分析】
根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】
对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,
对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,
对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即
22||||a b a b -⋅=,cos 1θ=-,
则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53
λ>-
, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时5
3
λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】
本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.
8.已知ABC ∆是边长为()20a a >的等边三角形,P 为ABC ∆所在平面内一点,则
()
PA PB PC ⋅+的值可能是( )
A .22a -
B .232
a -
C .243
a -
D .2a -
【答案】BCD 【分析】
通过建系,用坐标来表示向量,根据向量的乘法运算法则以及不等式,可得结果. 【详解】
建立如图所示的平面直角坐标系.
设(),P x y ,又()
3A a ,(),0B a -,
(),0C a ,则()
3PA x a y =--,
(),PB a x y =---,(),PC a x y =--.
则()(),,a x y a P PC x y B -+--+-=- 即()2,2PB x y PC --+=
所以
()(
)
()
2,2x PA PB P y x y C =--⋅--⋅+
则()PA PB PC ⋅+2
222x
y =+-

(
)
PA PB PC ⋅+2
2
232222x y a a ⎛⎫=+-- ⎪ ⎪⎝⎭
. 所以()
PA PB PC ⋅+232
a ≥- 故选:BCD. 【点睛】
本题主要通过建系的方法求解几何中向量的问题,属中档题.
9.在ABC 中,()2,3AB =,()1,AC k =,若ABC 是直角三角形,则k 的值可以是( )
A .1-
B .
113
C .
32
+ D .
32
【答案】BCD 【分析】
由题意,若ABC 是直角三角形,分析三个内有都有可能是直角,分别讨论三个角是直角的情况,根据向量垂直的坐标公式,即可求解. 【详解】
若A ∠为直角,则AB AC ⊥即0AC AB ⋅=
230k ∴+=解得23
k =-
若B 为直角,则BC AB ⊥即0BC AB ⋅=
()()2,3,1,AB AC k == ()1,3BC k ∴=--
2390k ∴-+-=解得113
k =
若C ∠为直角,则BC AC ⊥,即0BC AC ⋅=
()()2,3,1,AB AC k == ()1,3BC k ∴=--
()130k k ∴-+-=解得k =
综合可得,k 的值可能为211313313,,,33+-- 故选:BCD
【点睛】 本题考查向量垂直的坐标公式,考查分类讨论思想,考察计算能力,属于中等题型.
10.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )
A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个
B .满足10OA OB -=B 共有3个
C .存在格点B ,C ,使得OA OB OC =+
D .满足1OA OB ⋅=的格点B 共有4个
【答案】BCD 【分析】
根据向量的定义及运算逐个分析选项,确定结果.
【详解】
解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,
设(,)B m n ,若10OA OB -=
22(1)(2)10m n -+-(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.
当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.
若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.
故选:BCD .
【点睛】
本题考查向量的定义,坐标运算,属于中档题.。

相关文档
最新文档