光电倍增管简介及使用特性

合集下载

光电倍增管简介

光电倍增管简介

光电倍增管简介1. 光电倍增管的结构和工作原理由光阴极、次阴极(倍增电极)以及阳极三部分组成。

光阴极是由半导体光电材料锑铯做成;次阴极是在镍或铜-铍的衬底上涂上锑铯材料而形成的,次阴极多的可达30级;阳极是最后用来收集电子的,收集到的电子数是阴极发射电子数的105~106倍。

即光电倍增管的放大倍数可达几万倍到几百万倍。

光电倍增管的灵敏度就比普通光电管高几万倍到几百万倍。

因此在很微弱的光照时,它就能产生很大的光电流。

2. 光电倍增管的主要参数(1)倍增系数M 倍增系数M等于n个倍增电极的二次电子发射系数δ的乘积。

如果n个倍增电极的δ都相同,则M=1因此,阳极电流I 为i —光电阴极的光电流光电倍增管的电流放大倍数β为M与所加电压有关,M在105~108之间,稳定性为1%左右,加速电压稳定性要在0.1%以内。

如果有波动,倍增系数也要波动,因此M具有一定的统计涨落。

一般阳极和阴极之间的电压为1000~2500V,两个相邻的倍增电极的电位差为50~100V。

对所加电压越稳越好,这样可以减小统计涨落,从而减小测量误差。

光电倍增管的特性曲线(2)光电阴极灵敏度和光电倍增管总灵敏度一个光子在阴极上能够打出的平均电子数叫做光电倍增管的阴极灵敏度。

而一个光子在阳极上产生的平均电子数叫做光电倍增管的总灵敏度。

光电倍增管的最大灵敏度可达10A/lm,极间电压越高,灵敏度越高;但极间电压也不能太高,太高反而会使阳极电流不稳。

另外,由于光电倍增管的灵敏度很高,所以不能受强光照射,否则将会损坏。

(3)暗电流和本底脉冲一般在使用光电倍增管时,必须把管子放在暗室里避光使用,使其只对入射光起作用;但是由于环境温度、热辐射和其它因素的影响,即使没有光信号输入,加上电压后阳极仍有电流,这种电流称为暗电流,这是热发射所致或场致发射造成的,这种暗电流通常可以用补偿电路消除。

如果光电倍增管与闪烁体放在一处,在完全蔽光情况下,出现的电流称为本底电流,其值大于暗电流。

光电倍增管特性及应用

光电倍增管特性及应用

光电倍增管特性及应用光电倍增管(photomultiplier tube,简称PMT)是一种具有高增益和低噪声的光电探测器,广泛应用于光电传感、光谱分析、医学影像等领域。

在本文中,我将详细介绍光电倍增管的特性和应用。

光电倍增管的结构由光阴极、光学系统、电子倍增系统和采样系统组成。

当入射光通过光学系统到达光阴极时,光子会激发光阴极上的电子发射,被光阴极吸收的光子数与发射电子数成正比。

这些发射的电子经过电子倍增系统,通过二次发射和隔离电子逐级倍增,从而形成一个电荷增益的级联过程。

最后,采样系统将输出信号转化为电压脉冲形式。

光电倍增管具有以下特点:1. 高增益:光电倍增管的增益通常在10^6到10^8之间,即每一个入射光子可以产生大量的电子被乘以倍增因子。

2. 宽动态范围:光电倍增管的输出信号可以覆盖从甚微的光到极强的光,可以处理不同亮度范围的信号。

3. 快速响应:光电倍增管的时间响应通常在几纳秒到几十纳秒之间,可以满足对快速变化的光信号的需求。

4. 低噪声:光电倍增管的噪声来自于光电子发射过程和电子倍增过程中的随机性,但其噪声水平较低,可以提供较高的信噪比。

5. 可靠性:光电倍增管具有长寿命、高可靠性和较好的线性输出特性,适用于长时间连续工作。

光电倍增管在许多领域都有广泛应用:1. 光电传感:光电倍增管可以将光信号转换为电信号,用于检测和测量光的强度、波长和时间特性。

例如,在光谱仪、光度计和测光仪中,光电倍增管可以实现对光谱的高灵敏度和高分辨率的测量。

2. 时间测量:光电倍增管的快速响应特性使其在时间测量中得到广泛应用。

例如,在飞行时间质谱仪中,光电倍增管可以测量荷电粒子的到达时间,从而确定其质量和能量,广泛应用于物理、化学和生物学等领域。

3. 放射性测量:光电倍增管可用于检测和测量放射性粒子的能量和强度。

例如,在核物理实验中,光电倍增管可以用于测量射线的能量和位置,从而提供有关粒子的重要信息。

4. 医学影像:光电倍增管广泛应用于医学影像,如正电子发射断层成像(PET)和单光子发射断层成像(SPECT),用于检测和诊断疾病。

光电倍增管

光电倍增管

光电倍增管维基百科,自由的百科全书跳转到:导航, 搜索光电倍增管(Photomultiplier,简称PMT),是一种对紫外光、可见光和近红外光极其敏感的特殊真空管。

它能使进入的微弱光信号增强至原本的108倍,使光信号能被测量。

[编辑]工作原理光电倍增管示意图光电倍增管是由玻璃封装的真空装置,其内包含光电阴极 (photocathode),几个二次发射极 (dynode)和一个阳极。

入射光子撞击光电阴极,产生光电效应,产生的光电子被聚焦到二次发射极。

其后的工作原里如同电子倍增管,电子被加速到二次发射极产生多个二次电子,通常每个二次发射极的电位差在 100 到 200 伏特。

二次电子流像瀑布一般,经过一连串的二次发射极使得电子倍增,最后到达阳极。

一般光电倍增管的二次发射极是分离式的,而电子倍增管的二次发射极是连续式的。

[编辑]应用光电倍增管集高增益,低干扰,对高频信号有高灵敏度的优点,因此被广泛应用于高能物理、天文等领域的研究工作,与及流体流速计算、医学影像和连续镜头的剪辑。

雪崩光电二极管(Avalanche photodiodes,简称APDs)为光电倍增管的替代品。

然而,后者仍在大部份的应用情况下被采用。

光电管与光电倍增管编辑词条分享将微弱光信号转换成电信号的真空电子器件。

光电管通常用于自动控制、光度学测量和强度调制光的检测。

如用于保安与警报系统、计数与分类装置、影片音膜复制与还音、彩色胶片密度测量以及色度学测量等。

光电倍增管用在光学测量仪器和光谱分析仪器中。

它能在低能级光度学和光谱学方面测量波长200~1200纳米的极微弱辐射功率。

闪烁计数器的出现,扩大了光电倍增管的应用范围。

激光检测仪器的发展与采用光电倍增管作为有效接收器密切有关。

电视电影的发射和图像传送也离不开光电倍增管。

光电倍增管广泛地应用在冶金、电子、机械、化工、地质、医疗、核工业、天文和宇宙空间研究等领域。

光电管与光电倍增管构造和原理光电管由真空管壳内的光电阴极和阳极所构成(图中a)。

光电倍增管原理、特性与应用

光电倍增管原理、特性与应用
端窗型ˆ ¨ÅÁÄ• ÏΉ和侧窗型ˆÓÉÄÅ• ÏΉ两大类 " 侧窗型光电倍增管ˆ² 系列‰是从玻璃壳的侧面
接收入射光 Œ而端窗型光电倍增管 ˆ£ ² 系列‰ 则从 玻璃壳的顶部接收入射光 " 图 ’ 和图 “ 分别是侧窗 式光电倍增管和端窗式光电倍增管的外形图 "
在通常情况下 Œ侧窗型光电倍增管 ˆ ² 系列‰ 的 单价比较便宜 ˆ一般数百元• 只‰ Œ在分光光度计 !旋 光仪和常规光度测定方面具有广泛的应用 " 大部分 的侧窗型光电倍增管使用不透明光阴极 ˆ反射式光 阴极‰和环形聚焦型电子倍增极结构 Œ这种结构能够 使其在较低的工作电压下具有较高的灵敏度 "
端窗型光电倍增管 ˆ£ ² 系列‰ 也称顶窗型光电
图 ’ 侧窗型光电倍增管
图 “ 端窗型光电倍增管
倍增管 " 其价格一般在千元以上 Œ 它是在其入射窗 的内表面上沉积了半透明的光阴极 ˆ透过式光阴 极‰ Œ这使其具有优于侧窗型的均匀性 " 端窗型光电 倍增管的特点是拥有从几十平方毫米到几百平方厘 米的光阴极 Œ另外 Œ现在还出现了针对高能物理实验 用的可以广角度捕获入射光的大尺寸半球形光窗的 光电倍增管 " “ Ž’ 按电子倍增系统分类
图 ‘ 端窗型光电倍增管的剖面图
” 小结
电子点火系统在现代汽车电子系统中有着广泛 的应用 Œ 用 ¬”˜” 专用集成电路可构成高能电子点 火器 Œ应当注意的是 š在使用中应合理选择工作点的 参数 Œ 以利提高电子点火系统乃至汽车发动机的可 靠性 "
收稿日期 š’••‘ • •‘ • •’ 咨询编号 š•‘•˜•”
图 ” 给出了双碱光电倍增管 ˆ其光阴极材料为 ³Â • ²  • £Ó和 ³Â • «• £Ó‰ 的典 型光 谱响 应曲 线"

光电倍增管的应用及原理图

光电倍增管的应用及原理图

光电倍增管的应用及原理图1. 光电倍增管的简介光电倍增管(Photomultiplier Tube,简称PMT)是一种具有极高灵敏度的光电转换器件,用于将光信号转换为电信号。

它广泛应用于光谱分析、粒子探测、荧光测量等领域,在科研、工业和医学等领域发挥着重要作用。

2. 光电倍增管的原理光电倍增管的工作原理基于光电子发射增强效应。

下面是光电倍增管的工作原理图:输入光信号 --> 光阴极 --> 集成光电子倍增机构(多级电子倍增器) --> 输出电信号3. 光电倍增管的应用光电倍增管在以下领域有着广泛的应用:•光谱仪:光电倍增管能够高效地转换光信号,因此被广泛应用于光谱仪中。

在光谱仪中,光信号被转换为电信号后,可以通过电子学系统进行放大、滤波、测量等处理,从而得到精确的光谱数据。

•粒子探测:光电倍增管对粒子的辐射有很高的灵敏度,因此可以应用于粒子探测器中。

通过探测粒子辐射后产生的光信号,光电倍增管可以将光信号放大为电信号,从而实现对粒子的探测和测量。

•荧光测量:光电倍增管对荧光的敏感度很高,因此在荧光测量中得到广泛应用。

光电倍增管能够将微弱的荧光信号转换为电信号,并对信号进行放大处理,以提高测量的灵敏度和精确度。

•生命科学:在细胞学、分子生物学等生命科学研究中,光电倍增管可以应用于荧光显微镜、流式细胞仪、免疫分析等仪器中。

通过光电倍增管将荧光信号转换为电信号,可以实现对生物样品的定量分析和图像获取。

4. 光电倍增管的优势相比于其他光电转换器件,光电倍增管具有以下优势:•高灵敏度:光电倍增管能够将微弱的光信号放大到可测量范围内,具有极高的灵敏度。

•宽动态范围:光电倍增管能够在大范围的光强下工作,具有较宽的动态范围。

•快速响应:光电倍增管具有快速的响应时间,能够处理高速的光信号。

•低噪声:光电倍增管的噪声水平较低,使得测量结果更加准确。

5. 光电倍增管的结构光电倍增管的基本结构分为以下几部分:•光阴极:将光信号转换为光电子信号的部分。

光电倍增管的使用教程

光电倍增管的使用教程

光电倍增管的使用教程光电倍增管(photomultiplier tube,PMT)是一种重要的光电转换器件,广泛应用于光电测量、光谱分析、核物理实验等领域。

本文将向大家介绍光电倍增管的使用教程,希望能对初学者有所帮助。

一、光电倍增管简介光电倍增管是一种电子倍增管,通过光电效应将光信号转换为电子信号,并通过一系列倍增过程将电子信号放大。

其光电转换效率高、信噪比优秀,能够检测到低强度光信号,因此在科学研究和工程应用中得到广泛使用。

二、光电倍增管的结构光电倍增管由光电阴极、光阴极边界、一系列倍增极和收集极组成。

其中光电阴极负责将光信号转换为电子信号,倍增极负责对电子进行倍增,而收集极则用于收集和读取电子信号。

三、光电倍增管的使用注意事项1. 预热:在使用光电倍增管前,必须进行预热。

预热时间一般为10-15分钟,旨在稳定光电倍增管内部温度并提高信噪比。

2. 高压:光电倍增管需要施加高压电源。

在施加高压前,请务必确保高压电源的稳定性,并正确设置预期的高压值,一般建议根据实际需求选择合适的高压数值。

3. 光源选择:使用光电倍增管时,需选择合适的光源。

光源应光谱匹配,光强适中,避免过强或过暗的光信号。

4. 避免干扰:避免将外部电磁场干扰引入光电倍增管内部,以免影响信号的准确性和稳定性。

建议在使用时使用屏蔽措施,如外壳金属防护和使用屏蔽电缆。

四、光电倍增管的应用案例1. 光谱分析:光电倍增管可用于光谱分析中,通过检测不同波长的光信号,实现对样品的成分和结构分析。

2. 核物理实验:光电倍增管可用于核物理实验中,通过检测宇宙射线或粒子产生的闪烁光信号,实现对粒子的探测、测量和分析。

3. 医学影像:光电倍增管可应用于医学影像领域,如正电子发射断层扫描(PET)等,实现对人体内部组织和器官的成像与诊断。

五、光电倍增管的发展趋势随着科学技术的进步和需求的增加,光电倍增管的性能不断提升。

目前,一些新型光电倍增管已经具备更高的增益、更宽的响应波长范围以及更小的体积和功耗。

光电倍增管PMT

光电倍增管PMT

光电倍增管—PMT简介光电倍增管:PhotoMultiplier Tube,简称PMT,是灵敏度极高,响应速度极快的光探测器。

可广泛应用于光子计数、极微弱光探测、化学发光、生物发光研究、极低能量射线探测、分光光度计、旋光仪、色度计、照度计、尘埃计、浊度计、光密度计、热释光量仪、辐射量热计、扫描电镜、生化分析仪等仪器设备中。

光电倍增管的一般结构光电倍增管由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。

典型的光电倍增管按入射光接收方式可分为端窗式和侧窗式两种类型。

其主要工作过程如下:当光照射到光阴极时,光阴极向真空中激发出光电子。

这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。

然后把放大后的电子用阳极收集作为信号输出。

因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。

另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。

光电倍增管的类型1 按接收入射光方式分类光电倍增管按其接收入射光的方式一般可分成端窗型(Head-on)和侧窗型(side-on)两大类。

侧窗型光电倍增管(R系列)是从玻璃壳的侧面接收入射光,两端窗型光电倍增管(CR系列)则从玻璃壳的顶部接收射光。

图2和图3分别是侧窗式光电倍增管和端窗式光电倍过管的外形图。

在通常情况下,侧窗型光电倍增管(R系列)的单价比较便宜(一般数百元/只),在分光光度计、旋光仪和常规光度测定方面具有广泛的应用。

大部分的侧窗型光电倍增管使用不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这种结构能够使其在较低的工作电压下具有较高的灵敏度。

端窗型光电倍增管(CR系列)也称顶窗型光电倍增管。

其价格一般在千元以上,它是在其入射窗的内表面上沉积了半透明的光阴极(透过式光阴极),这使其具有优于侧窗型的均匀性。

端窗型光电倍增管的特点是拥有从几十平方毫米到几百平方厘米的光阴极,另外,现在还出现了针对高能物理实验用的可以广角度捕获入射光的大尺寸半球形光窗的光电倍增管。

光电倍增管原理_特性与应用_武兴建

光电倍增管原理_特性与应用_武兴建

综述光电倍增管原理、特性与应用安徽阜阳药检所仪器室武兴建安徽阜阳制药厂仪器室吴金宏Princi p le,Characteristics and A pp lication of PhotoelectricMa g nification TubeWu Xin g j ian Wu Jinhon g摘要:光电倍增管是一种能将微弱的光信号转换成可测电信号的光电转换器件。

文中以北京滨松光子技术有限公司生产的R/CR系列产品为代表,介绍光电倍增管的一般原理、使用特性及其应用。

并特别给出了在各种应用领域所适用的光电倍增管的型号。

关键词:光子技术;光电倍增管;使用特性分类号:T N152文献标识码:B文章编号:1006-6977(2001)08-0013-053.3过电压限制为防止功率管Q的集电极过电压击穿,L484专门设计了过电压门限电路,可通过外接分压电阻R5、R6来确定过电压的门限值V OV P:V OV P=[(30/R5)+5 10-3]R6+30(V)3.4停转断电保护当负载断电时,L484内部的停转断电保护电路立刻关断外接的功率管Q,其阈值V D th可通过分压电阻R8、R9来调整:V D th=8.5[(R8+R9)/R9]+5 10-4R8(V)4小结电子点火系统在现代汽车电子系统中有着广泛的应用,用L484专用集成电路可构成高能电子点火器,应当注意的是:在使用中应合理选择工作点的参数,以利提高电子点火系统乃至汽车发动机的可靠性。

收稿日期:2001-01-02咨询编号:0108041概述光电子应用技术是一门新兴的高新技术,当前还处于发展阶段。

相信它在21世纪必将有重大创新并迅速崛起。

光电子技术产业也必将发展成为一种新兴的知识经济,从而在新兴技术领域形成巨大的生产力。

光电倍增管(PM T)是光子技术器件中的一个重要产品,它是一种具有极高灵敏度和超快时间响应的光探测器件。

可广泛应用于光子计数、极微弱光探测、化学发光、生物发光研究、极低能量射线探测、分光光度计、旋光仪、色度计、照度计、尘埃计、浊度计、光密度计、热释光量仪、辐射量热计、扫描电镜、生化分析仪等仪器设备中。

光电倍增管

光电倍增管

简介
光电倍增管是将微弱光信号转换成电信号的真空电子器件。光电倍增管用在光学测量仪器和光谱分析仪器中。 它能在低能级光度学和光谱学方面测量波长200~1200纳米的极微弱辐射功率。闪烁计数器的出现,扩大了光电倍 增管的应用范围。激光检测仪器的发展与采用光电倍增管作为有效接收器密切有关。电视电影的发射和图象传送 也离不开光电倍增管。光电倍增管广泛地应用在冶金、电子、机械、化工、地质、医疗、核工业、天文和宇宙空 间研究等领域。
基于外光电效应和二次电子发射效应的电子真空器件。它利用二次电子发射使逸出的光电子倍增,获得远高 于光电管的灵敏度,能测量微弱的光信号。光电倍增管包括阴极室和由若干打拿极组成的二次发射倍增系统两部 分(见图)。阴极室的结构与光阴极K的尺寸和形状有关,它的作用是把阴极在光照下由外光电效应(见光电式传 感器)产生的电子聚焦在面积比光阴极小的第一打拿极D1的表面上。二次发射倍增系统是最复杂的部分。打拿极 主要由那些能在较小入射电子能量下有较高的灵敏度和二次发射系数的材料制成。常用的打拿极材料有锑化铯、 氧化的银镁合金和氧化的铜铍合金等。打拿极的形状应有利于将前一级发射的电子收集到下一极。在各打拿极 D1、D2、D3…和阳极A上依次加有逐渐增高的正电压,而且相邻两极之间的电压差应使二次发射系数大于1。这样, 光阴极发射的电子在D1电场的作用下以高速射向打拿极D1,产生更多的二次发射电子,于是这些电子又在D2电场的 作用下向D2飞去。如此继续下去,每个光电子将激发成倍增加的二次发射电子,最后被阳极收集。电子倍增系统 有聚焦型和非聚焦型两类。聚焦型的打拿极把来自前一级的电子经倍增后聚焦到下一级去,两极之间可能发生电 子束轨迹的交叉。非聚焦型又分为圆环瓦片式(即鼠笼式)、直线瓦片式、盒栅式和百叶窗式。
倍增方式

光电倍增管原理特性及其应用

光电倍增管原理特性及其应用

光电倍增管原理特性及其应用光电倍增管(Photomultiplier Tube,简称PMT)是一种特殊的电子设备,广泛应用于光电探测、荧光测量、核物理实验等领域。

它利用电子受光激发释放的方式将光信号转换为电信号,并通过电子倍增过程将电信号放大多倍,达到目的信号放大的效果。

本文将介绍光电倍增管的原理、特性以及常见的应用。

1.光信号的发射:光信号通过光阴极进入光电管,光阴极通常由碱金属镓锑(NaKSb)材料制成。

当光信号照射到光阴极上时,光子与光阴极上的物质相互作用,使得光电子从光阴极上释放出来。

2.倍增过程:光释放的电子进入倍增极,倍增极是一种由若干离子阱和荧光幕构成的结构。

当光电子进入倍增极后,它们会受到倍增极上高电压的作用,在电场的驱动下不断加速并撞击倍增极表面的离子阱。

每一次撞击会产生一系列二次电子,这些二次电子再次撞击离子阱,又会产生更多的二次电子,从而形成电子的雪崩放大效应。

通过层层倍增,最终使得放大倍数达到几千倍甚至几万倍。

3.电子与收集极的相互作用:经过倍增极放大的电子进入到收集极,收集极是一个高电压的吸收电极。

当电子撞击收集极时,就会产生微弱的电流信号,这个电流信号即为光电倍增管放大后的输出信号。

1.高增益:光电倍增管能够将输入光信号进行倍增,放大增益可达几千倍甚至几万倍。

2.快速响应:光电倍增管由于对光信号的快速响应能力强,其时间分辨率可以达到纳秒级。

3.宽动态范围:光电倍增管的动态范围非常广,可以从微弱信号到强光信号都能够进行检测。

4.低噪声:光电倍增管具有较低的噪声水平,能够提高信号的信噪比。

1.光谱分析:光电倍增管适用于光谱仪器、光谱分析系统等领域,能够将微弱的光信号转换为电信号并放大,提高谱线的信噪比。

2.荧光测量:光电倍增管可以用于荧光检测系统中,通过对荧光信号的放大和检测,实现对荧光染料浓度、荧光标记物的检测等。

3.粒子探测:在核物理实验中,光电倍增管可以用于探测粒子轨迹、测量粒子能量、顶点位置等研究。

PMT基础知识之一光电倍增管的工作原理特点及应用)解析

PMT基础知识之一光电倍增管的工作原理特点及应用)解析

PMT基础知识之一光电倍增管的工作原理特点及应用)解析光电倍增管(Photomultiplier Tube,简称PMT)是一种能将光信号转化为电信号的光电转换器件。

它以其高增益、快速响应和低噪音等特点,在许多领域的光学测量中得到广泛应用,包括光谱分析、荧光检测、核物理实验等。

光电倍增管的工作原理是利用光电效应和二次电子倍增效应。

它由以下几个要素组成:光阴极、光增倍电极、聚焦电极、二极子结构和阳极。

光阴极是光电效应的关键部分,它所采用的材料通常是碱金属或多元化合物。

当光照射到光阴极上时,光子能量被转化为电子能量,从而产生光电子。

光电子经过电场的作用,被加速到光增倍电极上。

光增倍电极上有许多层金属环,称为光栅,它们可以运用电场将光电子逐级地加速,并在每一级都发生冲击电离,产生次级电子,使光电子数量逐级增加。

次级电子经过电场聚焦,被减震电极引导到二极子结构处。

二极子结构由多个层次的金属环组成,其中正极为阳极,负极为阴极。

次级电子在二极子结构上发生冲击电离,二次电子产生的数量比初始光电子数量更多。

最后,二次电子被加速到阳极上,产生电流信号。

该电流的幅度与初始光子的能量成正比。

这个信号经过放大和处理后,最终用于检测和测量。

光电倍增管的特点包括高增益、宽动态范围、快速响应和低噪音。

其高增益是由于倍增过程中的二次电子冲击电离效应,可以将一个光子转化为数千个电子。

它的宽动态范围可以处理从强光到弱光的广泛光强范围。

快速响应让光电倍增管适用于高速计数和时间分辨测量。

低噪音使得它对弱信号有很高的灵敏度。

光电倍增管在许多领域中得到广泛应用。

在光谱分析中,它可以用于光谱仪和分光仪的检测器。

在荧光检测中,光电倍增管可以提高荧光检测的灵敏度和信噪比。

在核物理实验中,它可以用于测量射线和粒子的强度和能量。

总结起来,光电倍增管的工作原理是通过光电效应和二次电子倍增效应将光信号转化为电信号。

它的特点包括高增益、宽动态范围、快速响应和低噪音。

光电倍增管使用特性

光电倍增管使用特性

光电倍增管使用特性光电倍增管(Photomultiplier Tube,简称PMT)是一种能将进入光电倍增管的单个光子转化为电流放大的光电转换器件。

它具有非常高的灵敏度和快速的响应速度,广泛应用于光子计数、荧光光谱、核与粒子物理学等领域。

光电倍增管的基本结构包括光阴极、一系列倍增极、收集极和输出电子接口。

当光子穿过光阴极时,会激发光电子的发射,产生初级电子。

初级电子由电场加速并打到第一个倍增极上,经过级联、倍增,最终在收集极上形成电流信号。

光电倍增管利用倍增过程中的二次发射效应和级联极的电场控制,将输入的单个光子转化为一个很大的电子倍增信号。

1.高增益:光电倍增管的增益通常在10^6-10^8量级,即每个进入光电倍增管的光子最终可以得到百万倍到亿倍的增强,这大大提高了信号的可靠性和测量的精确度。

2.宽动态范围:光电倍增管具有很宽的动态范围,可以在光强从几个光子到强光束甚至强电弧光源的程度下工作。

这使得光电倍增管非常适合于不同强度光的测量和检测。

3.快速响应:光电倍增管的响应时间通常在纳秒到微秒的量级,具有很高的时间分辨率。

因此,当需要对信号进行高速度的测量时,光电倍增管是一种非常理想的选择。

4.低噪声:光电倍增管具有很低的内部噪声,这可以保证非常高的信噪比,并提供非常精确的信号测量。

5.宽频率响应:光电倍增管具有宽频率响应范围,能够在直流到高频的频率下工作,这使得光电倍增管可以应用于不同频率下的信号检测和测量。

6.光谱响应范围广:光电倍增管对波长范围的响应通常从可见光到红外光,这使得它在光谱分析和成像等领域具有广泛应用。

除了以上的特性,光电倍增管还有一些应用上的特殊要求。

例如,在一些特定的应用场合中,对光电倍增管的暗噪声、温度稳定性、线性度和阴极的选择等方面有着更高的要求。

总之,光电倍增管是一种具有高增益、快速响应、低噪声和宽频率响应等优点的光电转换器件。

它在光子计数、荧光光谱、核与粒子物理学等领域发挥着重要的作用,为科学研究和工程应用提供了可靠的光探测技术。

光电倍增管

光电倍增管
光电倍增管的工作原理
1、光电倍增管的结构和特性 2、光电倍管的工作过程 3、线性工作 4、伏安特性
光电倍增管的结构和特性
光电倍增管由光阴极接收射入光子的能量并将其 转换为光子,其转换效率(阴极灵敏度)随入射光的 波长而变。这种光阴极灵敏度与入射光波长之间的关 系叫做光谱响应特性。一般情况下,光谱响应特性的 长波段取决于光阴极材料,短波段则取决于入射窗材 料。光电倍增管的阴极一般都采用具有低逸出功能的 碱金属材料所形成的光电发射面。光电倍增管的窗材 料通常由硼硅玻璃、透紫玻璃(UV玻璃)、合成石英 玻璃和氟化镁(或镁氟化物)玻璃制成。硼硅玻璃窗 材料可以透过近红外至300nm垢可见入射光,而其它3 种玻璃材料则可用于对紫外区不可见光的探测。
光电倍管的工作过程
光电倍增管主要由光阴极K、倍增极D和阳极A组成
光电倍管的工作过程
当有光子入射到光阴极K上,只要光子的 能量大于光阴极材料的脱出功,就会有电子从 阴极的表面逸出而成为光电子.在K和D1之间 的电场作用下,光电子被加速后轰击第一倍增 极D1,从而使D1产生二次电子发射.每一个 电子的轰击约可产生3~5个二次电子,这样就 实现了电子数目的放大.D1产生的二次电子被 D2和D1之间的电场加速后轰击D2,…….这 样的过程一直持续到最后一级倍增极Dn.
线性工作
造成非线性的原因 (1)内因,即空间电荷,光电阴极的电阻 率,聚焦或收集效率等的变化; (2)外因,光电倍增管的输出信号电流在 负载电阻上的压降,对末级倍增极电压 产生的负反馈和电压的再分配,都可能 破坏输出信号的线性。
伏安特性
(a)阴极伏安特性 在入射到光电倍增管阴极面上的光 通量一定时,阴极电流与阴极和第一倍 增极之间的电压(称阴极电压)的关系 曲线叫阴极伏安特性,经研究,在阴极 电压较小时,阴极电流随着阴极电压的 增大而增加,直到阴极电压大于一定值 后,阴极电流才趋向饱和,且与入射光 通量成线性关系。

PMT基础知识之一(A)光电倍增管的工作原理、特点及应用)

PMT基础知识之一(A)光电倍增管的工作原理、特点及应用)

光电倍增管基础知识之一(光电倍增管的工作原理、特点及应用)一光电倍增管的工作原理光电倍增管是一种真空光电器件(真空管)。

它的工作原理是建立在光电效应(光电发射)、二次电子发射、电子光学理论基础上的。

它昀工作过程是:光子通过光窗入射到光电阴极L产生光电子,光电子通过电子光学输入系统进入倍增系统,电子得到倍增,最后阳极把电子收集起来,形成阳极电流或电压。

因此一个光电倍增管可以分为几个部分:(1)入射光窗、(2)光电阴极、(3)电子光学输入系统、(4)二次倍增系统、(5)阳极。

光电倍增管结构如图(1)所示。

图(1)光电倍增管结构示意图1入射光窗:让光通过的光窗一般有(1) 硼硅玻璃(300nm)、(2) 透紫玻璃(185nm)、(3) 合成(熔融)石英(160nm)、(4) 蓝宝石(Al2O3)150nm、(5) MgF2(115nm)。

光电倍增管光谱短波阈由入射光窗决定。

2光电阴极光电阴极是接收光子而放出光电子的电极。

一般分为半透明(入射光和光电子同一方问)的端面或四面窗阴极和不透明(入射光的方向与光电子方向相反)。

见图(2)电子轨迹图。

图(2)电子轨迹图光电阴极的材料多用低逸出功的碱金属为主的半导体化合物,到目前为止,实用的先电阴极材料达十种之多:(1) Sb-Cs特点是:阴极电阻低,允许强光下有大电流流过阴极的场合下工作)(2) 双碱(Sb-RbCs、Sb-K-Cs)特点是:灵敏度较高暗电流小-热电子发射小)(3) 高温双碱(Sb-K-Na)特点是:耐高温-200℃(4) 多碱(Sb-K-Na-Cs).特点是:宽光谱灵敏度高(5) Ag-O-Cs多碱特点是:光谱可到近红外灵敏度低)(6) GaAs(Cs)特点是:高灵敏光谱平坦强光下容易引起灵敏度变坏)。

(7) Cs-I特点是日盲,在115nm的短波也有高(8) Cs-Te特点是:日盲、阴极面透过型和反射型)我公司生产的PMT的阴极材料主要是(1) Sb-Cs(2)双碱(Sb-RbCs、Sb-K-Cs)(3)高温双碱(Sb-K-Na ) (4)多碱(Sb-K-Na-Cs )表(1)各种阴极材料的特性(硼硅玻璃窗材料)3 电子光学输输入系统电子光学输入系统由光电阴极和第一倍增极之间的电极结构以及所加的电位构成,它使光电子尽可能多地聚焦在第一倍增极上。

光电倍增管综述完整版

光电倍增管综述完整版

光电倍增管综述标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]光电倍增管综述光电倍增管综述摘要:光电倍增管是一种能将微弱的光信号转换成可测电信号的光电转换器件。

本文将从结构,特性,应用及发展前景几方面做阐述。

一结构光电倍增管是一种真空器件。

它由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。

典型的光电倍增管按入射光接收方式可分为端窗式和侧窗式两种类型。

下图所示为端窗型光电倍增管的剖面结构图。

其主要工作过程如下:当光照射到光阴极时,光阴极向真空中激发出光电子。

这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。

然后把放大后的电子用阳极收集作为信号输出。

因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。

另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。

二特性一光谱响应光电倍增管由阴极收入射光子的能量并将其转换为光子,其转换效率(阴极灵敏度)随入射光的波长而变。

这种光阴极灵敏度与入射光波长之间的关系叫做光谱响应特性。

一般情况下,光谱响应特性的长波段取决于光阴极材料,短波段则取决于入射窗材料。

光电倍增管的阴极一般都采用具有低逸出功能的碱金属材料所形成的光电发射面。

光电倍增管的窗材料通常由硼硅玻璃、透紫玻璃(UV玻璃)、合成石英玻璃和氟化镁(或镁氟化物)玻璃制成。

硼硅玻璃窗材料可以透过近红外至300nm垢可见入射光,而其它3种玻璃材料则可用于对紫外区不可见光的探测。

二光照灵敏度由于测量光电倍增管的光谱响应特性需要精密的测试系统和很长的时间,因此,要为用户提供每一支光电倍增管的光谱响应特性曲线是不现实的,所以,一般是为用户提供阴极和阳极的光照灵敏度。

阴极光照灵敏度,是指使用钨灯产生的2856K色温光测试的每单位通量入射光产生的阴极光电子电流。

阳极光照灵敏度是每单位阴极上的入射光能量产生的阳极输出电流(即经过二次发射极倍增的输出电流)。

光电倍增管基础知识

光电倍增管基础知识

光电倍增管基础知识(光电倍增管原理、结构及特性)1 光电倍增管概述光电子应用技术是一门新兴的高新技术,当前还处于发展阶段。

相信它在21世纪必将有重大创新并迅速崛起。

光电子技术产业也必将发展成为一种新兴的知识经济,从而在新兴技术领域形成巨大的生产力。

光电倍增管(PMT)是光子技术器件中的一个重要产品,它是一种具有极高灵敏度和超快时间响应的光探测器件。

可广泛应用于光子计数、极微弱光探测、化学发光、生物发光研究、极低能量射线探测、分光光度计、旋光仪、色度计、照度计、尘埃计、浊度计、光密度计、热释光量仪、辐射量热计、扫描电镜、生化分析仪等仪器设备中。

2 光电倍增管的一般结构光电倍增管是一种真空器件。

它由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。

典型的光电倍增管按入射光接收方式可分为端窗式和侧窗式两种类型。

图1所示为端窗型光电倍增管的剖面结构图。

其主要工作过程如下:当光照射到光阴极时,光阴极向真空中激发出光电子。

这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。

然后把放大后的电子用阳极收集作为信号输出。

因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。

另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。

3 光电倍增管的类型3.1 按接收入射光方式分类光电倍增管按其接收入射光的方式一般可分成端窗型(Head-on)和侧窗型(side-on)两大类。

侧窗型光电倍增管(R系列)是从玻璃壳的侧面接收入射光,两端窗型光电倍增管(CR系列)则从玻璃壳的顶部接收射光。

图2和图3分别是侧窗式光电倍增管和端窗式光电倍过管的外形图。

在通常情况下,侧窗型光电倍增管(R系列)的单价比较便宜(一般数百元/只),在分光光度计、旋光仪和常规光度测定方面具有广泛的应用。

大部分的侧窗型光电倍增管使用不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这种结构能够使其在较低的工作电压下具有较高的灵敏度。

光电倍增管简介及使用特性

光电倍增管简介及使用特性

光电倍增管简介及使用特性我们做化学发光的仪器检测部分都是用光电倍增管来检测我们化学反应所发出的微弱的光信号,我在这里给大家介绍一下光电倍增管的一些参数,仅供大家参考。

介绍今天我们使用的光电器件中,光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。

典型的光电倍增管如图1所示,在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。

当光照射光阴极,光阴极向真空中激发出光电子。

这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。

放大后的电子被阳极收集作为信号输出。

因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。

光电倍增管还有快速响应、低本底、大面积阴极等特点。

下面将讲解光电倍增管结构的主要特点和基本使用特性。

结构一般,端窗型(Head-on)和侧窗型(Side-on)结构的光电倍增管都有一个光阴极。

侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。

通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。

大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。

端窗型(也称作顶窗型)光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。

端窗型光电倍增管的特点还包括它拥有从几十平方毫米到几百平方厘米的光阴极。

端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。

电子倍增系统光电倍增管的优异的灵敏度(高电流放大和高信噪比)得益于基于多个排列的二次电子发射系统的使用,它使电子低噪声的条件下得到倍增。

电子倍增系统包括从8至19极的被叫做打拿极或倍增极的电极。

光电倍增管原理特性及其应用

光电倍增管原理特性及其应用

. I目录1.概述 (1)2.结构 (1)3.电子倍增系统 (2)4.光谱响应 (2)5.使用材料 (3)5.1光阴极材料 (3)5.2窗材料 (3)6.使用特性 (4)6.1. 辐射灵敏度 (4)6.2.光照灵敏度 (4)6.3.电流放大(增益) (4)6.4.阳极暗电流 (5)6.5 温度特性 (5)6.6.滞后特性 (5)6.7.均匀性 (5)6.8.时间特性 (5)7.应用举例 (5)结束语 (7)参考文献 (7)光电倍增管原理特性及其应用摘要:光电倍增管是一种能将微弱的光信号转换成可测电信号的光电转换器件。

本文首先介绍光电倍增管的一般原理,对它的工作原理进行较详细的描述,然后介绍其组成结构,使用特性及其应用,并归纳总结了几种常用的光电倍增管光电阴极材料及窗材料,最后介绍了光电倍增管在一些领域的应用,如光电测光等。

关键词:光电倍增管;端窗型;侧窗型;光谱响应;材料;特性,光电测光。

1.概述光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。

当光照射到光阴极时,光阴极向真空中激发出光电子。

这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。

然后把放大后的电子用阳极收集作为信号输出。

因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。

另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。

基于外光电效应和二次电子发射效应的电子真空器件。

它利用二次电子发射使逸出的光电子倍增,获得远高于光电管的灵敏度,能测量微弱的光信号。

光电倍增管包括阴极室和由若干打拿极组成的二次发射倍增系统两部分(见图)。

图1 光电倍增管工作原理图阴极室的结构与光阴极K的尺寸和形状有关,它的作用是把阴极在光照下由外光电效应产生的电子聚焦在面积比光阴极小的第一打拿极D1的表面上。

二次发射倍增系统是最复杂的部分。

打拿极主要选择那些能在较小入射电子能量下有较高的灵敏度和二次发射系数的材料制成。

光电倍增管及其基本特性

光电倍增管及其基本特性

光电倍增管及其基本特性当入射光很微弱时,普通光电管产生的光电流很小,只有零点几μA,很不容易探测。

这时常用光电倍增管对电流进行放大,下图为其内部结构示意图。

1. 光电倍增管的结构和工作原理由光阴极、次阴极(倍增电极)以及阳极三部分组成。

光阴极是由半导体光电材料锑铯做成;次阴极是在镍或铜-铍的衬底上涂上锑铯材料而形成的,次阴极多的可达30级;阳极是最后用来收集电子的,收集到的电子数是阴极发射电子数的105~106倍。

即光电倍增管的放大倍数可达几万倍到几百万倍。

光电倍增管的灵敏度就比普通光电管高几万倍到几百万倍。

因此在很微弱的光照时,它就能产生很大的光电流。

2. 光电倍增管的主要参数(1)倍增系数M 倍增系数M等于n个倍增电极的二次电子发射系数δ的乘积。

如果n个倍增电极的δ都相同,则M=1因此,阳极电流 I 为i —光电阴极的光电流光电倍增管的电流放大倍数β为M与所加电压有关,M在105~108之间,稳定性为1%左右,加速电压稳定性要在%以内。

如果有波动,倍增系数也要波动,因此M具有一定的统计涨落。

一般阳极和阴极之间的电压为1000~2500V,两个相邻的倍增电极的电位差为50~100V。

对所加电压越稳越好,这样可以减小统计涨落,从而减小测量误差。

光电倍增管的特性曲线(2)光电阴极灵敏度和光电倍增管总灵敏度一个光子在阴极上能够打出的平均电子数叫做光电倍增管的阴极灵敏度。

而一个光子在阳极上产生的平均电子数叫做光电倍增管的总灵敏度。

光电倍增管的最大灵敏度可达10A/lm,极间电压越高,灵敏度越高;但极间电压也不能太高,太高反而会使阳极电流不稳。

另外,由于光电倍增管的灵敏度很高,所以不能受强光照射,否则将会损坏。

(3)暗电流和本底脉冲一般在使用光电倍增管时,必须把管子放在暗室里避光使用,使其只对入射光起作用;但是由于环境温度、热辐射和其它因素的影响,即使没有光信号输入,加上电压后阳极仍有电流,这种电流称为暗电流,这是热发射所致或场致发射造成的,这种暗电流通常可以用补偿电路消除。

光电倍增管综述

光电倍增管综述

光电倍增管综述班级1302202学号130220226姓名赵夏静学院名称信息与电气工程学院专业名称测控技术与仪器指导教师孙正鼐2016年6月9日摘要光电倍增管是一种具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。

光电倍增建立在外光电效应、二次电子发射和电子光学理论基础上,结合了高增益、低噪声、高频率响应和大信号接收区等特征,是一种具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。

日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏,具有噪声低(暗电流小于1nA)、响应快、接收面积大等特点。

光电倍增管高灵敏度和低噪声的特点使它在光测量方面获得广泛应用。

本文针对光电倍增管的综合能力以及发展市场进行论述。

关键词:概述重要性性能分析发展前景目录绪论1.1光电倍增管的概述---------------------------------------11.2光电倍增管的基本结构---------------------------------11.3 光电倍增管的原理--------------------------------------21.4 光电倍增管的基本特性参数--------------------------21.5 光电倍增管的特点--------------------------------------21.6 光电倍增管的应用--------------------------------------2光电倍增管的重要性-----------------------------------------3光电倍增管的性能分析--------------------------------------3光电倍增管的发展前景--------------------------------------3结束语-------------------------------------------------------------4参考文献----------------------------------------------------------41 绪论1.1光电倍增管的概述光电倍增管是一种建立在光电效应、二次电子发射和电子光学理论基础上的,它把微弱入射光转换成光电子,并获倍增的重要的真空发射器件。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们做化学发光的仪器检测部分都是用光电倍增管来检测我们化学反应所发出的微弱的光信号,我在这里给大家介绍一下光电倍增管的一些参数,仅供大家参考。

介绍今天我们使用的光电器件中,光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。

典型的光电倍增管如图1所示,在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。

当光照射光阴极,光阴极向真空中激发出光电子。

这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。

放大后的电子被阳极收集作为信号输出。

因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。

光电倍增管还有快速响应、低本底、大面积阴极等特点。

下面将讲解光电倍增管结构的主要特点和基本使用特性。

结构一般,端窗型(Head-on)和侧窗型(Side-on)结构的光电倍增管都有一个光阴极。

侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。

通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。

大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。

端窗型(也称作顶窗型)光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。

端窗型光电倍增管的特点还包括它拥有从几十平方毫米到几百平方厘米的光阴极。

端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。

电子倍增系统光电倍增管的优异的灵敏度(高电流放大和高信噪比)得益于基于多个排列的二次电子发射系统的使用,它使电子低噪声的条件下得到倍增。

电子倍增系统包括从8至19极的被叫做打拿极或倍增极的电极。

现在使用的电子倍增系统主要有以下几类:1)环形聚焦型环形聚焦型结构主要应用于侧窗型光电倍增管。

其主要特点为紧凑的结构和快速时间响应特性。

2)盒栅型这种结构包括了一系列的四分之一圆柱形的倍增极,并因其相对简单的倍增极结构和一致性的改良而被广泛地应用于端窗型光电倍增管,但在一些应用中,其时间响应可能略显缓慢。

3)直线聚焦型直线聚焦型因其极快的时间响应而被广泛地应用于要求时间分辨和线性脉冲研究用的端窗型光电倍增管中。

4)百叶窗型百叶窗型结构因倍增极可以较大而被用于大阴极的光电倍增管中,其一致性较好,可以有大的脉冲输出电流。

这种结构多用于不太要求时间响应的场合。

5)细网型细网型结构拥有封闭的精密组合的网状倍增极,而使其具有极强的抗磁性、一致性和脉冲线性输出特性。

另外,当使用交叠阳极或多阳极结构输出情况下,还具有位置灵敏特性。

6)微通道板(MCP)型MCP是上百万的微小玻璃管(通道)彼此平行地集成为薄形盘片状而形成。

每个通道都是一个独立的电子倍增器。

MCP比任何分离电极倍增极结构具有超快的时间响应,并且当采用多阳极输出结构时,在磁场中仍具有良好的一致性和二维探测能力。

7)金属通道型金属通道型拥有滨松公司独有的机械加工技术创造的紧凑阳极结构,各个倍增极之间狭窄的通道空间,使其比任何常规结构的光电倍增管可以达到更快的时间响应速度。

并可适用于位置灵敏探测。

此外,上述结构中两种结构相混合也是可能的。

混合的倍增极可以发挥各自的优势。

[ Last edit by wolf007_1]仪器专场展示:化学发光仪毛细管电泳芯片分析系统关键词:简介光电倍增管特性收藏分享评分wolf007_1∙技术∙财富∙∙个人资料加为好友∙给他留言帖子合集沙发只看作者回复于:2006-9-15 9:37:00回复本贴回复主题编辑举报管理光谱响应光电倍增管的阴极将入射光的能量转换为光电子。

其转换效率(阴极灵敏度)随入射光的波长而变。

这种光阴极灵敏度与入射光波长之间的关系叫做光谱响应特性。

图4给出了双碱光电倍增管的典型光谱响应曲线。

光谱响应特性的长波端取决于光阴极材料,短波端则取决于入射窗材料。

在本书的附件里给出了不同型号的光电倍增管的光谱响应特性,其中长波端的截止波长,对于双碱阴极和Ag-O-Cs阴极的光电倍增管定义为其灵敏度降至峰值灵敏度的1%点,多碱阴极则定义为峰值灵敏度的0.1%。

附件后的光谱响应特性曲线为典型值,对于每一支光电倍增管来讲,真实的数据可能会略有差异。

光阴极材料光电倍增管的阴极一般是具有低逸出功的碱金属材料形成的光电发射面。

常用的阴极材料有以下几种:1)Ag-O-Cs用此材料的透过型阴极具有典型的S-1谱,即具有从可见到红外(300-1200nm)的谱响应。

因为Ag-O-Cs阴极有较高的热电子发射(请参考阳极暗电流章节),所以这种光电倍增管一般要在制冷器中工作,用于近红外区的光探测。

2)GaAs(Cs)掺入活性Cs的GaAs材料也可以用作光阴极。

这种光阴极比多碱光阴极复盖更宽的光谱范围,可以从近紫外到930nm,并且响应曲线在300-850nm范围内较为平直。

3)InGaAs(Cs)这种阴极材料比GaAs在红外区有了较大的扩展,可以达到900 -1000nm,比Ag-O-Cs阴极有更高的信噪比。

4)Sb-Cs这是一种具有在紫外和可见光范围光谱响应的广泛应用的光阴极材料。

主要应用在反射式光阴极上,不太适合于透过式光阴极。

5)双碱材料(Sb-Rb-Cs)(Sb-K-Cs)这些材料与Sb-Cs材料具有相似的光谱响应特性,但比Sb-Cs材料具有更高的灵敏度和更低的噪声。

透过式双碱材料光阴极更具有与NaI(Tl)闪烁晶体匹配的良好的灵敏度光谱特性,所以这种光电倍增管常用于放射性领域中的闪烁探测工作。

6)高温双碱和低噪声双碱材料(Na-K-Sb)这种材料因为可以工作在高达175℃,所以常用于高温环境场合,比如石油测井行业等。

在室温下,这种阴极材料具有很低的暗电流,在光子计数应用方面较为理想。

7)多碱阴极(Na-K-Sb-Cs)多碱阴极在紫外到近红外区很宽的光谱范围内具有较高的灵敏度。

所以常用于宽光谱范围的分光光度计。

应用特殊的阴极制作方法可以将光谱响应范围扩展至930nm。

8)Cs-Te,Cs-I这些材料的光谱响应范围在真空紫外和紫外线区,因为对可见光没有响应,所以也叫做日盲材料。

Cs-T e材料光谱响应范围可以达到320nm,Cs-I材料也可达到200nm。

窗材料光电倍增管一般使用以下窗材料:1)硼硅玻璃这是一种常用的玻璃材料,可以透过从近红外至300nm的入射光,但不适合于紫外区的探测。

在一些应用中,常将双碱阴极与低本低硼硅玻璃(也称无钾玻璃)组合使用。

无钾玻璃中只有极低含量的钾,其中的K 40会造成暗计数。

所以通常用于闪烁计数的光电倍增管不仅入射窗,而且玻璃侧管也使用无钾玻璃,就是为了降低暗计数。

2)透紫玻璃(UV玻璃)这种玻璃材料就象其名字所表达的那样,可以很好地透过紫外光,和硼硅玻璃一样被广泛使用。

分光应用领域一般都要求用透紫玻璃,其截止波长可接近185nm。

3)合成石英合成石英可以将透过的紫外光波长延伸至160nm,并且在紫外区比熔融石英玻璃有更低的吸收。

合成石英材料的膨胀系数与芯柱用玻璃的膨胀系数有很大差别,所以,用热膨胀系数渐变的封接材料与合成石英逐渐过渡。

因此,此类光电倍增管的强度易受外界震动的破坏,使用中要采取足够的保护措施。

4)氟化镁(镁氟化物)该材料具有极好的紫外线透过性,但同时也有易潮解的不利因素。

尽管如此,氟化镁仍以其接近115nm的紫外透过能力而成为一种实用的光窗材料。

如上所述,光电倍增管的光谱响应特性同时取决于光阴极和光窗材料,这一点对选择适当的光电倍增管很重要。

辐射灵敏度和量子效率如图4所示,光谱响应经常以不同波长下的辐射灵敏度和量子效率来表示。

辐射灵敏度(S)即为某一波长下的光电倍增管阴极发射出的光电子电流与该波长的入射光能量的比值,单位为A/W(安培/瓦)。

量子效率(QE)为光阴极发射出来的光电子数量与入射光光子的数量之比。

一般用百分比来表示量子效率。

在给定波长下辐射灵敏度和量子效率有如下关系:这里S为给定波长下的辐射灵敏度,单位为A/W,λ为波长,单位为nm(纳米)。

光照灵敏度由于测量光电倍增管的光谱响应特性需要精密测试系统和很长的时间,所以提供给用户每一支光电倍增管的光谱响应特性不现实,所以我们提供阴极和阳极的光照灵敏度。

阴极光照灵敏度是使用钨灯产生的2856K色温光测试的每单位通量入射光(实际用10-5~10-2Lm)产生的阴极光电子电流。

阳极光照灵敏度是每单位阴极上的入射光通量(实际用10-10~10-5Lm)产生的阳极输出电流(经过二次发射极倍增后)。

虽然同样是用钨灯,测量时所加电压要作适当的调整。

当光电倍增管具有相同或相似的光谱响应范围时,这些参数显然很有用。

除了对钨灯产生的光没有响应的Cs-I和Cs-Te阴极的管子(这些管子将给出特定波长下的辐射灵敏度),滨松公司的光电倍增管的最终测试数据也常常提供这些参数。

阴极和阳极的光照灵敏度都是以A/Lm(安培/流明)为单位,请注意,流明是在可见光区的光通量的单位,所以对于光电倍增管的可见光区以外的光照灵敏度数值可能是没有实际意义的(对于这些光电倍增管,常常使用蓝光灵敏度和红白比来表示)蓝光灵敏度和红白比一般使用阴极蓝光灵敏度和红白比来简单地比较光电倍增管的光谱响应特性。

阴极蓝光灵敏度是使用钨灯产生的2856K色温光通过蓝色滤光片(康宁公司CS No.5-58磨光至一半厚度)后测试的每单位通量入射光(实际用10-5~10-2Lm)产生的阴极光电子电流。

对于光通量,通过蓝色滤光片后就不能再用流明表示了,所以蓝光灵敏度表示为A/Lm-b(安培/流明-蓝光)。

因为与闪烁计数用的NaI(T l)晶体产生的蓝色光谱非常相近,蓝光灵敏度在使用NaI(Tl)晶体的场合比较重要,对于能量分辨率更是决定性的参数。

红白比用于光谱响应扩展到近红外区的光电倍增管。

这个参数是使用钨灯产生的2856K色温光通过红色滤光片(东芝公司专门用于S-1谱光阴极的IR-D80A或用于其它阴极的R-68滤光片)后测试的阴极光照灵敏度除以去掉上述滤光片时的阴极光照灵敏度的商。

电流放大(增益)光阴极发射出来的光电子被电场加速撞击到第一倍增极,以便发生二次电子发射,产生多于光电子数目的电子流。

这些二次电子发射的电子流又被加速撞击到下一个倍增极产生又一次的二次电子发射,连续地重复这一过程,直到最末倍增极的二次电子发射被阳极收集,从而达到了电流放大的作用。

这时可以观测到,光电倍增管的阴极产生的很小的光电子电流,已经被放大成较大的阳极输出电流。

电流增益就是光电倍增管的阳极输出电流与阴极光电子电流的比值。

相关文档
最新文档