2020年初一数学下期末一模试题含答案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年初一数学下期末一模试题含答案(1)
一、选择题
1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )
A .40°
B .50°
C .60°
D .70°
2.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )
A .20o
B .30o
C .40o
D .60o
3.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )
A .20cm
B .22cm
C .24cm
D .26cm 4.下面不等式一定成立的是( )
A .2a a <
B .a a -<
C .若a b >,c d =,则ac bd >
D .若1a b >>,则22a b > 5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A .15°
B .22.5°
C .30°
D .45° 6.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )
A .﹣3
B .﹣5
C .1或﹣3
D .1或﹣5
7.若不等式组20{210
x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1
B .a =2,b =3
C .a =-2,b =3
D .a =-2,b =1 8.16的平方根为( ) A .±
4 B .±
2 C .+4
D .2
9.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()
A .()8,3--
B .()4,2
C .()0,1
D .()1,8 10.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )
A .(2,1)
B .(﹣2,﹣1)
C .(﹣2,1)
D .(2,﹣1)
11.已知m=4+3,则以下对m 的估算正确的( )
A .2<m <3
B .3<m <4
C .4<m <5
D .5<m <6
12.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.
A .一
B .二
C .三
D .四
二、填空题 13.某小区地下停车场入口门栏杆的平面示意图如图所示,
垂直地面 于点 , 平行于地面 ,若 ,则 ________.
14.不等式71x ->的正整数解为:______________.
15.27的立方根为 .
16.化简(2-1)0+(12
)-2-9+327-=________________________. 17.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________. 18.关于x 的不等式(3a-2)x<2的解为x >
,则a 的取值范围是________
19.已知方程1(2)(3)
5m n m x n y --+-=是二元一次方程,则mn =_________;
20.关于x 的不等式111x -<-的非负整数解为________.
三、解答题
21.(1)计算:2020011(1)(2019)3sin 60()2
π---+--+o (2)解不等式组:34223154x x x x +≥⎧⎪⎨+--≥⎪⎩
①②,并求整数解。

22.各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15~65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A .没影响;B .影响不大;C .有影响,建议做无声运动;D .影响很大,建议取缔;E.不关心这个问题,将调查结果统计整理并绘制成如下两幅不完整的统计图.
请根据以上信息解答下列问题:
(1)填空m =________,态度为C 所对应的圆心角的度数为________;
(2)补全条形统计图;
(3)若全区15~65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B 的市民人数;
23.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.
(1)当x >1时,请分別直接写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)在(1)的条件下,小明选择哪家快递公司更省钱?
24.问题情境
在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动.
操作发现
(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG =α,则∠CFG等于______(用含α的式子表示).
25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,
∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据
∠AOM=90°﹣∠COM即可求解.
∵OE平分∠BON,
∴∠BON=2∠EON=40°,
∴∠COM=∠BON=40°,
∵AO⊥BC,
∴∠AOC=90°,
∴∠AOM=90°﹣∠COM=90°﹣40°=50°.
故选B.
【点睛】
本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.
2.B
解析:B
【解析】
【分析】
根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.
【详解】
因为∠1=∠2,
所以AB∥CE
所以∠B=∠3=30o
故选B
【点睛】
熟练运用平行线的判定和性质.
3.D
解析:D
【解析】
平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:
四边形ABFD的周长为:
AB+BF+FD+DA
=AB+BE+EF+DF+AD
=AB+BC+CA+2AD
=20+2×3
=26.
点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.
4.D
解析:D
【解析】
【分析】
根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.
【详解】
A. 当0a ≤时,2
a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若a
b >,当0
c
d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;
D. 若1a b >>,则必有22a b >,正确;
故选D .
【点睛】
主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.
5.A
解析:A
【解析】
试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .
考点:平行线的性质.
6.A
解析:A
【解析】
分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.
详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,
∴4=|2a+2|,a+2≠3,
解得:a=−3,
故选A.
点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.
7.A
解析:A
【解析】
试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.
解:
20
210
x a
x b
+->


--<



,由①得,x>2﹣a,由②得,x<
1
2
b
+

故不等式组的解集为;2﹣a<x<1
2
b +

∵原不等式组的解集为0<x<1,
∴2﹣a=0,1
2
b
+
=1,解得a=2,b=1.
故选A.
8.A
解析:A
【解析】
【分析】
根据平方根的概念即可求出答案.
【详解】
∵(±4)2=16,∴16的平方根是±4.
故选A.
【点睛】
本题考查了平方根的概念,属于基础题型.
9.C
解析:C
【解析】
【分析】
根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.
【详解】
点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,
于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,
故D(0,1).
故选C.
【点睛】
此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.
10.C
解析:C
【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.
详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,
∴点B的坐标是(-2,1).
故选:C.
点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
11.B
解析:B
【解析】
【分析】
【详解】

12,
∴3<m<4,
故选B.
【点睛】
的取值范围是解题关键.
12.B
解析:B
【解析】
【分析】
由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.
【详解】
∵点P(a,a-1)在x轴上,
∴a-1=0,即a=1,
则点Q坐标为(-1,2),
∴点Q在第二象限,
故选:B.
【点睛】
此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.
二、填空题
13.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于
A∠BCD=120°求得答案【详解】如图过
解析:
【解析】
【分析】
先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.
【详解】
如图,过点B作BF∥CD,
∵CD∥AE,
∴CD∥BF∥AE,
∴∠1+∠BCD=180°,∠2+∠BAE=180°,
∵∠BCD=120°,∠BAE=90°,
∴∠1=60°,∠2=90°,
∴∠ABC=∠1+∠2=150°.
故答案是:150o.
【点睛】
考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.14.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为12345
解析:1,2,3,4,5.
【解析】
【分析】
【详解】
解:由7-x>1
-x>-6,x<6,
∴x 的正整数解为1,2,3,4,5,6
故答案为1,2,3,4,5.
15.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答
案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算
解析:3
【解析】
找到立方等于27的数即可.
解:∵33=27,
∴27的立方根是3,
故答案为3.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
16.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键
解析:-1
【解析】
分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.
详解:原式=1+4-3-3
=-1.
故答案为:-1.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
17.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组
解析:m>3.
【解析】
试题分析:因为点P在第二象限,所以,
30
{
m
m
-<
>
,解得:
考点:(1)平面直角坐标;(2)解不等式组
18.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次
解析:x<
【解析】
【分析】
根据已知不等式的解集确定出a的范围即可.
【详解】
∵关于x的不等式(3a-2)x<2的解为x>,
∴3a-2<0,
解得:a <,
故答案为:a <
【点睛】
此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.
19.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2
解析:-2
【解析】
【分析】
二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.
【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,
∴m=-2,n=1,
∴mn =-2.
故答案为:-2.
【点睛】
本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
20.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不
解析:0,1,2
【解析】
【分析】
先解不等式,确定不等式的解集,然后再确定其非负整数解即可得到答案.
【详解】 解:解不等式111x <-得:111x <, ∵3911164=<<=, ∴1113x <<, ∴1113x <<的非负整数解为:0,1,2.
故答案为:0,1,2.
【点睛】
本题主要考查了二次根式的应用及一元一次不等式的整数解的知识,确定其解集是解题的关键.
三、解答题
21.(1)1
2
;(2)原不等式组的整数解为:-4,±3,±2,±1,0.
【解析】
【分析】
(1)根据实数的运算法则计算即可;
(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,进而求其整数解即可.【详解】
(1)解:(1
)原式112 =-++
1
2 =.
(2)解:
342
23
1
54
x x
x x
+≥


⎨+-
-≥
⎪⎩


由①得x≥4
﹣;
由②得x≤3;
∴﹣4≤x≤3.
∴原不等式组的整数解为:-4,±3,±2,±1,0
【点睛】
本题考查了实数的混合运算和解不等式组,正确解出不等式组的解集是解决本题的关键.22.(1)32;115.2°;(2)补图见解析;(3)6.6万人.
【解析】
【分析】
(1)由扇形统计图可求得m的值;由态度为C的占32%,即可求得态度为C所对应的圆心角的度数;
(2)首先求得25到35的人数,继而可补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
【详解】
(1)m=100-10-5-20-33=32;
态度为C所对应的圆心角的度数为:32%×360=115.2°;
故答案为:32,115.2°.
(2)500×20%-15-35-20-5=25,补全条形统计图如图.
(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23.(1)y甲=15x+7,y乙=16x+3(2)当1<x<4时,选乙快递公司省钱;当x=4时,选甲、乙两家快递公司快递费一样多;当x>4时,选甲快递公司省钱
【解析】
【分析】
(1) 根据甲、乙公司的收费方式结合数量关系,可得y甲、y乙 (元) 与x ( 千克) 之间的函数关系式;
(2)当x>1时,分别求出y甲<y乙、y甲=y乙、y甲<y乙时x的取值范围, 综上即可得出结论.【详解】
(1)y甲=22+15(x-1)=15x+7,
y乙=16x+3.
(2)令y甲<y乙,即15x+7<16x+3,解得x>4,
令y甲=y乙,即15x+7=16x+3,解得x=4,
令y甲>y乙,即15x+7>16x+3,解得x<4,
综上可知:当1<x<4时,选乙快递公司省钱;当x=4时,选甲、乙两家快递公司快递费一样多;当x>4时,选甲快递公司省钱.
【点睛】
本题主要考查一次函数的实际应用,注意准确列好方程及分类讨论思想在解题中的应用. 24.(1)∠1=40°;(2)∠AEF+∠GFC=90°;(3)60°﹣α.
【解析】
【分析】
(1)依据AB∥CD,可得∠1=∠EGD,再根据∠2=2∠1,∠FGE=60°,即可得出
∠EGD
1
3
(180°﹣60°)=40°,进而得到∠1=40°;
(2)根据AB∥CD,可得∠AEG+∠CGE=180°,再根据∠FEG+∠EGF=90°,即可得到∠AEF+∠GFC=90°;
(3)根据AB∥CD,可得∠AEF+∠CFE=180°,再根据∠GFE=90°,∠GEF=30°,
∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.【详解】
(1)如图1.
∵AB∥CD,∴∠1=∠EGD.
又∵∠2=2∠1,∴∠2=2∠EGD.
又∵∠FGE=60°,∴∠EGD
1
3
=(180°﹣60°)=40°,∴∠1=40°;
(2)如图2.
∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.
又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;
(3)如图3.
∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.
又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.
故答案为:60°﹣α.
【点睛】
本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.25.(1)CPDαβ
∠=∠+∠,理由见解析;
(2)当点P在B、O两点之间时,CPDαβ
∠=∠-∠;
当点P在射线AM上时,CPDβα
∠=∠-∠.
【解析】
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出
∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.。

相关文档
最新文档